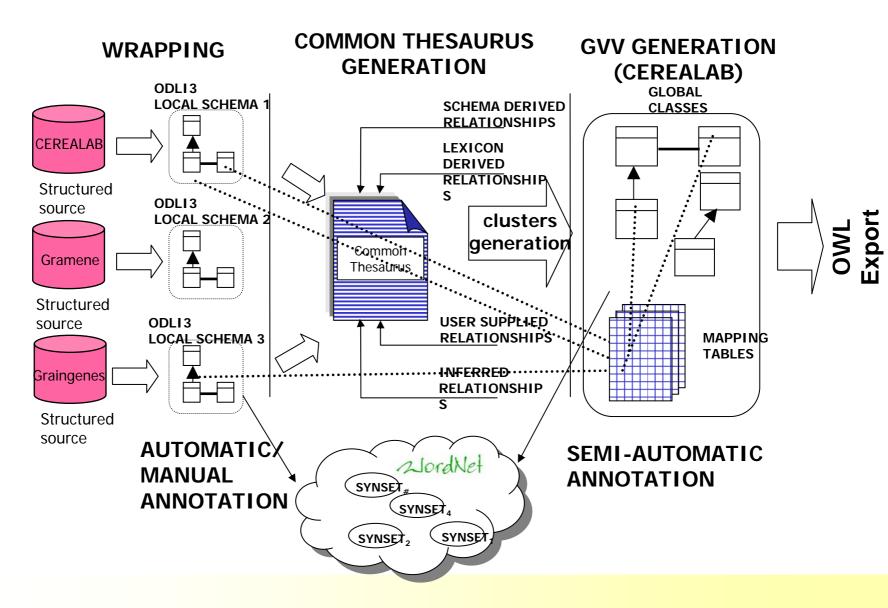
3rd International Workshop on Data Integration in Life Sciences DILS 06, European Bioinformatics Institute (EBI), Hinxton, UK


20 - 22 July 2006

Virtual Integration of Existing Web Databases for the Genotypic Selection of Cereal Cultivars

Sonia Bergamaschi - Antonio Sala www.dbgroup.unimo.it Dipartimento di Ingegneria dell'Informazione Università di Modena e Reggio Emilia, via Vignolese 905, 41100 Modena

- DB Group @ unimo
 - To perform intelligent data integration of existing databases to create a Global Virtual View (GVV) for the genotypic selection of cereal cultivars.
 - The GVV has been realized with the **MOMIS** system (Mediator envirOnment for Multiple Information Sources) developed by the Database Group of the University of Modena and Reggio Emilia as a part of the **CEREALAB** project conducted by the Agrarian faculty of the University of Modena and Reggio Emilia in collaboration and funded by the Regional Government of Emilia Romagna.

The MOMIS Integration Process

MOMIS uses an object-oriented language called ODL_{i3} as a common data model for integrating a given set of local information sources.

- ODL_{i3} extends ODL with the following relationships expressing intraand inter-schema knowledge for the source schemata:
- SYN (synonym of)
- BT (broader terms)
- NT (narrower terms)
- RT (related terms)
- By means of ODL_{i3} , only one language is exploited to describe both the sources (the input of the synthesis process) and the GVV (the result of the process).
- ODL_{i3} is based on the OCDL description logics. Translators $ODL_{i3}/OCDL$ and $OCDL/ODL_{i3}$ are available.

Global Virtual View Generation

MOMIS

- Identifies and groups similar ODL_{i3} classes (classes that describe the same or semantically related concept in different sources) into clusters (global classes)
- Generates mappings among global and local classes in the cluster

Cluster generation: affinity coefficients are evaluated for all possible pairs of ODL_{i3} classes, based on the relationships in the Common Thesaurus properly strengthened

- Affinity coefficients determine the degree of matching of two classes based on:
 - their names (Name Affinity coefficient)
 - their attributes (Structural Affinity coefficient)
- Affinity coefficients are fused into Global Affinity coefficients calculated by means of the linear combination of the two coefficients
- Global affinity coefficients are used by a hierarchical clustering algorithm, to include ODL_{i3} classes in clusters according to their degree of affinity
- The designer may interactively refine and complete the proposed integration results

- A Mapping Table (MT) is automatically generated for each global class of a GVV.
- The designer can extend the MT by adding:
 - Data Conversion Functions from local to global attributes
 - Join Conditions among pairs of local classes.
 - Resolution Functions for global attributes to solve data conflicts of local attribute values.
 - MOMIS provides some standard kinds of resolution functions for solving data conflicts for each global attribute mapping onto local attributes coming from more than one local source:
 - Random
 - Aggregation
 - Coalescence
 - Precedence function
 - All Values

The MOMIS Query Manager

The **MOMIS** Query Manager is the coordinated set of functions which allows the user to query the GVV

Query processing consists of the following steps:

- Query rewriting
 - to rewrite a global query as an equivalent set of queries expressed on the local sources (local queries)
- Local queries execution
 - the local queries are sent and executed at local sources
- Fusion and Reconciliation
 - The local answers are fused into the global answer