SIBIOS Ontology: A Robust Package for the Integration and Pipelining of Bioinformatics Services

M. Mahoui, Z.B. Miled, S. Srinivasan, M. Dippold, B. Yang, N. Li

IUPUI, Indianapolis, USA

Outline

- Introduction & Background
- SIBIOS Architecture
- Ontology Design
- Ontology Deployment in SIBIOS
- Conclusions & Future Work

Introduction

- Biology increasingly becoming information driven
- Large amount of data generated need to be analyzed through a series of pipelines "in-silico experiments"
- Substantial involvement from researchers is required to work on the logistics of the workflow

Introduction

- Need for a workflow infrastructure to assist researchers in:
 - Selecting appropriate biological databases and analytical tools – bioinformatics services
 - Composing workflows
 - Enacting workflows

Introduction

Challenges

- Large number of available bioinformatics services – absence for a service discovery solution
- Distributed and mostly http-based bioinformatics services
- Data Heterogeneity of bioinformatics services
 - Different data structures, formats, entity labeling, etc.

Introduction

- Dimensions for Data integration approaches include:
 - Aim of integration
 Portals (NCBI Entrez)
 Complex querying systems (TAMBIS)
 Workflow systems (MyGrid)
 - Integration techniques include:
 Warehousing systems (NCBI Entrez)
 Wrapper-Mediator systems (MyGrid)

Introduction

Data Integration techniques

- Warehouse approach
 - Global schema to reconcile heterogeneity between services
 - Simple solution but require a local copy of integrated services
- Wrapper mediator approach
 - Wrappers specific to each service are applied to query services and extract data from remote service to the integrated system
 - Scale well with addition of new services but more sensitive to service changes
 - Often rely on *ontologies* as basis for the integration solution

Introduction

Example of workflow environment for bioinformatics using a wrapper approach with an ontology: SIBIOS

The System for the Integration of BIOinformtics Servcies

Outline

- Introduction & Background
- SIBIOS Architecture
- Ontology Design
- Ontology Deployment in SIBIOS
- Conclusions & Future Work

SIBIOS Architecture

Outline

- Introduction & Background
- SIBIOS Architecture
- Ontology Design
- Ontology Deployment in SIBIOS
- Conclusions & Future Work

Ontology Design

What's an ontology?

- The specification of conceptualizations, used to help programs and humans share knowledge." - Thomas R. Gruber
- A simplified and well defined view of a specific area of interest or domain
- Provide semantic capabilities

Human and machine-readable

Ontology Design

Service centric approach

- Allow the definition of services at different levels
 - Service composition
 - Service invocation

Ontology Design

- Ontology Role at the service invocation
 - Provide a common terminology to describe input and output parameters to facilitate pipelining of services
 - E.g. EC (output of SwissProt) and accession (input of Genbank)

Ontology Design

- Ontology Role at the service composition
 - Provide service description that cater to researchers with different expertise in bioinformatics
 - Serve as a mapping model to ensure correct composition of services

Ontology Design

Service description

- Properties are most common way for describing concepts within an ontology
- In SIBIOS a service can be described by five properties
 - □ Input (e.g. accession number)
 - Output (e.g. DNA sequence)
 - □ Task performed (e.g. sequence alignment)
 - Resources (e.g. database used for a tool)
 - Function/algorithm (e.g. Smith-Waterman algorithm)

Ontology Design

Design criteria

- Scalable and easy to maintain ontologyby proposing a structure that can easily adapt to new concepts and services localizing projects that are likely to change together
- Provide a hierarchical structure for concepts to enhance service selection composition capabilities

Ontology Design

□ SIBIOS ontology serialization: DAML + OIL → OWL DL → OWL DL + OWL-S

Using tools such as Protégé, WonderWeb, and RacerPro

Ontology Design

Ontology Maintenance

- SIBIOS ontology is designed as an open ontology
- Despite availability of editing tools, ontology update is still a complex process
- E.g. adding new service necessitates placing the service at the right level in the ontology, defining restrictions (properties)
- Need for user-friendly tools to facilitate adding/deletion of services

Ontology Maintenance

The ontology writer: allow researchers to add/delete users without having to be exposed to low level operations

Outline

- Introduction & Background
- SIBIOS Architecture
- Ontology Design
- Ontology Deployment in SIBIOS
- Conclusions & Future Work

Ontology Deployment in SIBIOS

- Service selection
- Service composition
- Fault tolerance framework

Ontology Deployment in SIBIOS

Service Selection

- Provide a flexible system for service selection that tackle to researchers with different expertise
- Two approaches:
 - Service browsing
 - Service discovery

Ontology Deployment in SIBIOS

Service browsing

- Supported by classification of services based on each of their properties
- Hierarchical structure of each property is available for browsing
- Leaf nodes correspond to services
- Property based classification is built dynamically using RacePro reasoning capabilities

DILS 2006

Ontology Deployment in SIBIOS

Service discovery

- Advanced searching
- Combine service properties (e.g. input and task)
- For non starting services, the output of previous services replace the input parameter
 - RacerPro is used to infer services that match combined properties

👙 Service Discove	ry		
Previous Services	Parameters		
Set parameters for service desired and click Start Discovery. Add one or more services from the results list by selecting and clicking Add.			
Input Type:	ARTICLE_TITLE AUTHOR CODON_TABLE		
Output Type:	ACCESSION_NUMBE ALIGNMENT_SEARCH AMINO_ACID_LENGT	1	
Uses Resource:	ENZYME SEQUENCE_DATABASE SEQUENCE_DATABASE SEQUENCE_DATABASE		
Function Of:	BAYESIAN_ALGORITHM BLAST_ALGORITHM PRATT_ALGORITHM		
	ALIGNMENT_SEARCH	1	<u> </u>
		Start Discovery	Stop Discovery
Results			
PDB_SEARCH_SERVICE PDB_SEARCH_SERVICE crossreference CLUSTAL_W_SERVICE CLUSTAL_W_SERVICE crossreference BLAST_SERVICE BLAST_SERVICE crossreference MSDFOLD			
<u>[</u>		Add	Clear Close

DILS 2006

Ontology Deployment in SIBIOS

Service Composition

- Process of connecting services into meaningful workflow
- Using service browsing together with service connectors as well as service discovery
- Five connectors: primitive, UNION, INTERSECT, MINUS, CROSS

Ontology Deployment in SIBIOS

Service Composition

- Based on matching between input/output parameters
- SIBIOS uses inclusive matching
 - E.g. service with sequence as output can be connected to a service with protein sequence as output – likewise for reverse situation
 - Rely on RacerPro reasoning capabilities to perform matching

DILS 2006

Ontology Deployment in SIBIOS

Fault tolerance framework

- Increase the reliability of workflow enactment in SIBIOS
- By decreasing the sensitivity of the workflow enactment due to service failure
- Three main strategies for service failure:
 - □ Mirror service
 - Service replacement
 - Nested workflow

Ontology Deployment in SIBIOS

□ Service replacement for service failure

Hypothesis: to replace a failed service, we only consider the invoked parameters for each property (vs. formal parameters)

Aim:

Increase the likelihood of finding replacement services using service properties

By defining different levels for matching replacement services

Ontology Deployment in SIBIOS

- □ Service replacement for service failure
 - Criteria for matching services
 - Service level: assign different weights for service properties with input and output having the highest weight
 - Service property level: consider the number of parameters for each property of the failed service that are present in the replacement service
 - Service parameter level: consider whether the subsumption relationship is used at the property parameter level
 - RacePro is used to infer information needed to check each criteria

Indiana University School of IUPUI

Summary & future work

SIBIOS co-exist with very interesting workflows management systems (e.g. Kepler, BioMOBY, InforSense, Taverna, Ubertool)

□ SIBIOS project main distinguishing features:

- Bioinformatics services include both http-based ones but also web services
- Simple workflow infrastructure that cater to researchers with different expertise
- Contribute to solve data integration issues (e.g. service replacement, automation support for wrapper generation)

Summary & future work

□ Future work includes:

- Description of services as semantic web services using OWL-S
- Automated service composition
- SIBIOS deployment to specific applications such as biomarker discovery using microarray data
- Include other properties for service description such as data quality

SIBIOS link:

Please visit -<u>http://sibios.engr.iupui.edu/</u>

Acknowledgements

This project was supported in part by NSF CAREER DBI-DBI-0133946 and NSF DBI-0110854.

Thank You!

Questions & Comments