
www.en.uw.edu.pl

Graph-based sparse neural networks for traffic
signal optimization

Łukasz Skowronek, Paweł Gora, Marcin Możejko,
Arkadiusz Klemenko

Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

&
TensorCell

p.gora@mimuw.edu.pl
http://www.mimuw.edu.pl/~pawelg

28.09.2021

mailto:p.gora@mimuw.edu.pl
http://www.mimuw.edu.pl/~pawelg

Problem

➔ ~4 bln PLN - annual cost of traffic
gridlocks in 7 largest Polish cities
(cost of wasted time and fuel)1)

➔ Air Pollution Cuts Two Years Off
The Average World Life
Expectancy2)

➔ Over 1.2 mln people worldwide die each
year in car accidents, 20-50 mln are
injured3)

➔ Car accidents cost the U.S. $230.6 billion

every year4)

1) https://www.ibtta.org/sites/default/files/documents/MAF/Costs-of-Congestion-INRIX-Cebr-Report%20(3).pdf
2) https://futurism.com/air-pollution-two-years-off-average-life-expectancy
3) http://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
4) https://www.supermoney.com/2018/01/average-cost-car-accident-pay

https://www.ibtta.org/sites/default/files/documents/MAF/Costs-of-Congestion-INRIX-Cebr-Report%20(3).pdf
https://futurism.com/air-pollution-two-years-off-average-life-expectancy
http://korkometr.targeo.pl/Raport_Korki_2015.pdf%20https://futurism.com/air-pollution-two-years-off-average-life-expectancy%20http://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.supermoney.com/2018/01/average-cost-car-accident-pay/

Traffic Simulation Framework

Gora P., "Traffic Simulation Framework - a Cellular Automaton based tool for simulating and investigating real
city traffic", in "Recent Advances in Intelligent Information Systems", 2009, pp. 641-653, ISBN:
978-83-60434-59-8. (Screencast: https://www.youtube.com/watch?v=94RatF5SrLw)

https://www.youtube.com/watch?v=94RatF5SrLw

What will happen if we change something in the road network?
What will happen if we change traffic signal settings?

Step toward traffic optimization

Prediction “What-if”

➔The most popular and important tools to analyze traffic: traffic simulations.

➔But accurate traffic simulations are time-consuming, especially in a large scale.

➔ In some cases we have to run large number of such simulations, with different
settings (e.g., real-time traffic signal control, tolling, finding optimal locations and
capacities of parkings / charging stations for electric vehicles).

Prediction “What-if”

Nr of games: 10700 Nr of settings: > 120800

(and the problem is proved to be NP-hard!)

More than the number of atoms in the visible Universe!

➔The most popular and important tools to analyze traffic: traffic simulations.

➔But accurate traffic simulations are time-consuming, especially in a large scale.

➔ In some cases we have to run large number of such simulations, with different
settings (e.g., real-time traffic signal control, tolling, finding optimal locations and
capacities of parkings / charging stations for electric vehicles).

➔We would like to do it as efficiently as possible.

➔We can distribute computations on GPU or many machines, but it may be expensive
and has limitations.

Prediction “What-if”

➔The most popular and important tools to analyze traffic: traffic simulations.

➔But accurate traffic simulations are time-consuming, especially in a large scale.

➔ In some cases we have to run large number of such simulations, with different
settings (e.g., real-time traffic signal control, tolling, finding optimal locations and
capacities of parkings / charging stations for electric vehicles).

➔We would like to do it as efficiently as possible.

➔We can distribute computations on GPU or many machines, but it may be expensive
and has limitations.

➔ In many cases we are not interested in the simulation process, but only in its
outcomes. So, maybe we can somehow approximate the outcome based on partial
output data?

Prediction “What-if”

Problem

Input Output
Simulation

F: X -> Y

Example: X – traffic signal setting, Y – total delay, total time of waiting etc (real number)
(Y can be also a random variable in case of stochastic models)

Can we „compute” F faster / easier than by running traffic simulations?
Can we find a „metamodel” (surrogate model) approximating outcomes of simulations?

Using Traffic Simulation Framework we generated set composed of 105336
elements, divided it into training set (85336 elements) and test set (20000 elements).
Each run simulated 10 minutes of traffic with 42 000 cars on a realistic map of
Warsaw (OSM).

21 x Time of waiting

{0,1,2,…,119}21

Solution

We focused on approximating the total waiting times on a red signal as a function of
signal offset settings (signal offset setting = offsets of 21 traffic signal representatives
on a Stara Ochota district in Warsaw).

21 x

{0,1,2,…,119}21

Solution

 Time of waiting

➔ We developed a TensorTraffic tool for approximating outcomes of traffic simulations
using NN and predicting what may happen if we change traffic signal settings.

➔ Initially, we tested only feed forward neural networks. We found out, that, indeed,
outcomes of traffic simulation can be approximated using NN with a good
accuracy (best mean error on a test set: ~1.62%, maximal error: ~10.95%).

Solution

Distribution of error on a test set

➔ We developed a TensorTraffic tool for approximating outcomes of traffic simulations
using NN and predicting what may happen if we change traffic signal settings.

➔ Initially, we tested only feed forward neural networks. We found out, that, indeed,
outcomes of traffic simulation can be approximated using NN with a good
accuracy (best mean error on a test set: ~1.62%, maximal error: ~10.95%).

➔ Time of simulating 10 minutes of traffic in a large-scale (e.g., Warsaw) using a
microscopic model (TSF) – (~30 seconds on standard machines).

➔ Time of inferencing neural network: ~0.8 ms (time of training with GPU: ~10-15
minutes).

➔ And in the investigated case we don’t even need large networks (3-4 layers with a
few hundred neurons are sufficient).

Solution

➔ We developed a TensorTraffic tool for approximating outcomes of traffic simulations
using NN and predicting what may happen if we change traffic signal settings.

➔ Initially, we tested only feed forward neural networks. We found out, that, indeed,
outcomes of traffic simulation can be approximated using NN with a good
accuracy (best mean error on a test set: ~1.62%, maximal error: ~10.95%).

➔ Time of simulating 10 minutes of traffic in a large-scale (e.g., Warsaw) using a
microscopic model (TSF) – (~30 seconds on standard machines).

➔ Time of inferencing neural network: ~0.8 ms (time of training with GPU: ~10-15
minutes).

➔ And in the investigated case we don’t even need large networks (3-4 layers with a
few hundred neurons are sufficient).

➔ We also achieved good results using LightGBM (best avg error: ~1.72%, max
error: ~10.83%, inference: ~0.4 ms).

Solution

We used both models as surrogate models (metamodels) evaluating traffic signal
settings in traffic optimization algorithms.

6 algorithms tested:
● Genetic algorithms
● Simulated annealing
● Particle swarm optimization
● Tabu search
● Bayesian optimization (without metamodels)
● Gradient optimization (work in progress)

Application

Comparison of best results found by optimization algorithms

Distribution of error close to local optima

Results of a metamodel vs results of simulation for best settings from
genetic algorithms (last 20 points from each run are marked orange)

Architecture I:

1. Neurons in the even numbered layers, starting with input layer as layer 0, should
be localized at graph vertices (in our case - road crossings).

2. Neurons in the odd numbered layers should be localized at the graph edges (in
our case - roads).

3. An exception should be the final layer with just one neuron.

4. Connections from a vertex-localized layer to an edge-localized layer should only
be present if a given vertex is an end of a given edge. There will be exactly two
such connections for every edge neuron.

5. Connections from an edge-localized layer to a vertex-localized layer should only
be present if the edge has the vertex as its end. The number of such
connections will be equal to the number of particular vertex neighbors.

Graph neural networks

Architecture I:

Graph neural networks

5

1

2

34

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Architecture II:

1. Neurons in all layers, with the exception of the output layer, should be localized
at graph vertices.

2. Connections from a neuron in one layer to a neuron in the next one should only
be present if the corresponding vertices are neighbors in the graph. The number
of connections for the vertex node will be equal to the number of the vertex
neighbors.

Graph neural networks

Architecture II:

Graph neural networks

5

1

2

34

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Results (Architecture I):
➔ reduced avg error of approximation on a test set (before: 1.62%, now: 1.32%),
➔ reduced max error of approximation on a test set (before: 10-11%, now: 6.18%),
➔ similar minima attained in the simulation (before: 31735, now: 31827),
➔ lower approximation error near minima

Graph neural networks

Best 15 rows in terms of the minimum simulator output value obtained by gradient descent. Columns #Lyr, #Ch
and Act mean the number of layers, number of channels and activation function, respectively. Column MinSim
includes the minimum output value of the simulator. Columns ErrTest, ErrSim and ErrSim-ErrTest contains
average errors obtained on a test set, on a gradient descent trajectory and a difference between those average
errors, respectively. The next 6 columns contain average errors on subsets of the trajectories obtained by
thresholding on the simulator output values.

Problem:
It is not fully clear that including information about the topology of a
road network brings any value. Perhaps, any similar graph, even not
related to the problem at hand, could do equally well.

Sanity check:
We fixed the number of layers to 3 and the number of channels to 4
per layer (for architecture of type 1), and built our nets using random
graphs with various degrees of similarity to the true problem graph
(measure of similarity: symmetric difference between the sets of
edges)

◆ Method 1: random edge insertions and deletions at the same
time keeping the desired value of the symmetric difference.

◆ Method 2: random permutations of the vertex labels while
keeping the connection graph structure exactly the same

Graph neural networks

Problem:
It is not fully clear that including information about the topology of a road network
brings any value. Perhaps, any similar graph, even not related to the problem at
hand, could do equally well.

Graph neural networks

Thank you for your attention!

Questions?

E-mail: p.gora@mimuw.edu.pl,
 tensorcell.research@gmail.com

www: http://www.mimuw.edu.pl/~pawelg
 http://www.tensortraffic.com

 FB: https://www.facebook.com/TensorCell

“Logic can get you from A to B, imagination will take you everywhere” A. Einstein

“The sky is NOT the limit”

mailto:p.gora@mimuw.edu.pl
mailto:tensorcell.research@gmail.com
http://www.mimuw.edu.pl/~pawelg
http://www.tensortraffic.com
https://www.facebook.com/TensorCell/

