Graph-based sparse neural networks for traffic
signal optimization

tukasz Skowronek, Pawet Gora, Marcin Mozejko,
Arkadiusz Klemenko

Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

&

TensorCell

p.gora@mimuw.edu.pl
http://www.mimuw.edu.pl/~pawelg

28.09.2021

mailto:p.gora@mimuw.edu.pl
http://www.mimuw.edu.pl/~pawelg

Problem

=> ~4 bin PLN - annual cost of traffic => Over 1.2 min people worldwide die each
gridlocks in 7 largest Polish cities year in car accidents, 20-50 min are
(cost of wasted time and fuel)" injured®

=> Air Pollution Cuts Two Years Off - Car accidents cost the U.S. $230.6 billion
The Average World Life every year?
Expectancy?

1) https://www.ibtta.org/sites/default/files/documents/MAF/Costs-of-Congestion-INRIX-Cebr-Report%20(3).pdf
2) https://futurism.com/air-pollution-two-years-off-average-life-expectancy

3) http://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries

4) https://www.supermoney.com/2018/01/average-cost-car-accident-pay

https://www.ibtta.org/sites/default/files/documents/MAF/Costs-of-Congestion-INRIX-Cebr-Report%20(3).pdf
https://futurism.com/air-pollution-two-years-off-average-life-expectancy
http://korkometr.targeo.pl/Raport_Korki_2015.pdf%20https://futurism.com/air-pollution-two-years-off-average-life-expectancy%20http://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.supermoney.com/2018/01/average-cost-car-accident-pay/

Traffic Simulation Framework

TRAFFIC SIMULATION FRAMEWORK

a
File Edit View Run Help
RN | Acceleration; x1 | %5
A
Display [Search I Statistics Speed Range l 0-D Distribution l. 7 g ,’ '// NK ’\5 /‘ o . f'
— [= 'w‘w", 'I)" !-"- “/\\) :

Nl Wl R
‘w_hgf_a_m_,\l ,.J—]\J._ = R \\{’\ Elektr

™~ "

| i .y § /e - ¥
‘. y / 3 \;". \\ i{, \ (\ A
‘ I fie - Eim | = -y

| 4 | 3 v |
; 7 4 Q 7 ,
Gora P., "Traffic Simulation Framework - a Cellular Automaton based tool for simulating and investigating real

\

g

city traffic", in "Recent Advances in Intelligent Information Systems", 2009, pp. 641-653, ISBN:
978-83-60434-59-8. (Screencast: https://www.youtube.com/watch?v=94RatF5SrLw)

https://www.youtube.com/watch?v=94RatF5SrLw

Prediction “What-if”

What will happen if we change something in the road network?
What will happen if we change traffic signal settings?

!

Step toward traffic optimization

Prediction “What-if”

=> The most popular and important tools to analyze traffic: traffic simulations.

=> But accurate traffic simulations are time-consuming, especially in a large scale.

= In some cases we have to run large number of such simulations, with different
settings (e.g., real-time traffic signal control, tolling, finding optimal locations and
capacities of parkings / charging stations for electric vehicles).

R
SEE Sotene
S OSSO SIS
jeRlaY aetee—
SS

32 = 1C® O A “

Nr of games: 107% Nr of settings: > 1203
(and the problem is proved to be NP-hard!)

More than the number of atoms in the visible Universe!

Prediction “What-if”

=> The most popular and important tools to analyze traffic: traffic simulations.

=> But accurate traffic simulations are time-consuming, especially in a large scale.

= In some cases we have to run large number of such simulations, with different
settings (e.g., real-time traffic signal control, tolling, finding optimal locations and
capacities of parkings / charging stations for electric vehicles).

=> We would like to do it as efficiently as possible.

=> We can distribute computations on GPU or many machines, but it may be expensive
and has limitations.

Prediction “What-if”

=> The most popular and important tools to analyze traffic: traffic simulations.

=> But accurate traffic simulations are time-consuming, especially in a large scale.

= In some cases we have to run large number of such simulations, with different
settings (e.g., real-time traffic signal control, tolling, finding optimal locations and
capacities of parkings / charging stations for electric vehicles).

=> We would like to do it as efficiently as possible.

=> We can distribute computations on GPU or many machines, but it may be expensive
and has limitations.

=>In many cases we are not interested in the simulation process, but only in its
outcomes. So, maybe we can somehow approximate the outcome based on partial
output data?

Problem

I Input I?” Simulation =|I Output I

F:X->Y

Example: X — traffic signal setting, Y — total delay, total time of waiting etc (real number)
(Y can be also a random variable in case of stochastic models)

Can we ,compute” F faster / easier than by running traffic simulations?
Can we find a ,metamodel” (surrogate model) approximating outcomes of simulations?

Solution

Using Traffic Simulation Framework we generated set composed of 105336
elements, divided it into training set (85336 elements) and test set (20000 elements).
Each run simulated 10 minutes of traffic with 42 000 cars on a realistic map of

Warsaw (OSM).

- Time of waiting

{0,1,2,...,119)"

Solution

We focused on approximating the total waiting times on a red signal as a function of
signal offset settings (signal offset setting = offsets of 21 traffic signal representatives
on a Stara Ochota district in Warsaw).

21 x

—) Time of waiting

—
—

{0,1,2,...,119)"

Solution +

TensorFlo

—=> We developed a TensorTraffic tool for approximating outcomes of traffic simulations
using NN and predicting what may happen if we change traffic signal settings.

=> Initially, we tested only feed forward neural networks. We found out, that, indeed,
outcomes of traffic simulation can be approximated using NN with a good
accuracy (best mean error on a test set: ~1.62%, maximal error: ~10.95%).

Distribution of error on a test se

Count.

1400

1000

Count

00

200

Count

Count

00

200

oo b5 0050 005 000 0025 0050 0075
actwauun relu layers=[200, 300]
optimi ‘msprop regularization=0.001
structure=robin

A

activation=relu layers=5
optimizer=rmsprop regularization=0.001
residual_connections=True structure=line units=500

A

-0100 0075 -0050 0025 oaoo
activation=relu layers:

optimizer=rmsprop regularlzatlon kY 0001
structure=robi

A

-0100 -0.075

ouzs 0050 0075

-0050 -0025 0000 0025 0050 0075
activation=tanh layers=3
optimizer=rmsprop regularization=0.0001

residual_connections=True structure=line units=200

A

0075 0050 -0025 0025 0050

0075
ke\anve errer

activation=tanh layers=
optimizer=rmsprop regularization=0.0001
residual_connections=True structure=line units=350

1400
1200
1000
&0
600
200
20
—0lo0 -0075 0050 -0.025 0000 unzs 0050 0075 0100
activation=relu Iiyers 0,
optimizer=rmsprop regu rorisation=0. cum
structure=robin
1400

1400

1200

1000

800

600

400

200

%50

1200
0
800
600
a00
200
ol

-0100 -0075 0050 0025
activation=tanh lays

optimizer=msprop regulanzanon ey 0001

A

~0.075

0000 oazs 0050 0075

-0050 -0025 0000 0025 0050 0075
activation=tanh layers:
optimizer=rmsprop regularization=0.0001

residual_connections=False structure=line units=200

A

-0075 0050 -0.025 0025 0050 0075

0000
Relative error

nr\

Tensor

Solution

We developed a TensorTraffic tool for approximating outcomes of traffic simulations
using NN and predicting what may happen if we change traffic signal settings.

Initially, we tested only feed forward neural networks. We found out, that, indeed,
outcomes of traffic simulation can be approximated using NN with a good
accuracy (best mean error on a test set: ~1.62%, maximal error: ~10.95%).

Time of simulating 10 minutes of traffic in a large-scale (e.g., Warsaw) using a
microscopic model (TSF) — (~30 seconds on standard machines).

Time of inferencing neural network: ~0.8 ms (time of training with GPU: ~10-15
minutes).

And in the investigated case we don’t even need large networks (3-4 layers with a
few hundred neurons are sufficient).

N

Solution L.

Tensor

We developed a TensorTraffic tool for approximating outcomes of traffic simulations
using NN and predicting what may happen if we change traffic signal settings.

Initially, we tested only feed forward neural networks. We found out, that, indeed,
outcomes of traffic simulation can be approximated using NN with a good
accuracy (best mean error on a test set: ~1.62%, maximal error: ~10.95%).

Time of simulating 10 minutes of traffic in a large-scale (e.g., Warsaw) using a
microscopic model (TSF) — (~30 seconds on standard machines).

Time of inferencing neural network: ~0.8 ms (time of training with GPU: ~10-15
minutes).

And in the investigated case we don’t even need large networks (3-4 layers with a
few hundred neurons are sufficient).

We also achieved good results using LightGBM (best avg error: ~1.72%, max
error: ~10.83%, inference: ~0.4 ms).

Application

We used both models as surrogate models (metamodels) evaluating traffic signal

settings in traffic optimization algorithms.

6 algorithms tested:

e Genetic algorithms
e Simulated annealing
e Particle swarm optimization
e Tabu search
e Bayesian optimization (without metamodels)
e Gradient optimization (work in progress)
Algorithm Best result | Simulation for best | Best result | Simulation for best | Best result accord-
[LightGBM] result [LightGBM] [ANN] result [ANN] ing to simulation
Genetic 25318 37693 31890 37179 31735
algorithm
Simulated 31910 33860 32681 35885 33217
annealing
Bayesian opti- | N/A N/A N/A N/A 36692
mization
Tabu Search 40647 47384 40873 44864 44747
PSO 41356 43989 41938 44332 41431

Comparison of best results found by optimization algorithms

100

160

140

120

200

150

100

250

200

150

100

Distribution of error close to local optima

dart_regression_|2_31

dart_regression_|2_63

gbdt_poisson_31

gbdt_poisson_63

120

100

140

120

100

20

100

20

0- T T
-0.25-0.20-0.15-0.10-0.05 0.00 005 0.10

gbdt_regression_|1_31

A

0
—025—020—015—010—005 0.00 005 010

gbdt_regression_|1_63

|

0
—025-020—015—010—005 0.00 005 010

gbdt_regression_|2_31

A

0
—025—020—015—010—005 000 005 010

gbdt_regression_|2_63

120

100

04— T y T T T
-0.25-0.20-0.15-0.10-0.05 0.00 005 0.10

tanh_line_3_200_rs

A

0
~025-0120-0.15-0.10-0.05 0.00 005 010

tanh_line_3_200

100

20

"

-0.25-0.20-0.15-0.10-0.05 000 005 010

tanh_line_2_350_rs

100

20

'S

-0.25-0.20-0.15-0.10-0.05 0.00 005 010

relu_line_5_500_rs

140

120

3

[

8

0+ T T T T T
-0.25-0.20-0.15-0.10-0.05 0.00 005 0.10

relu_robin_350_500

L

0
-025-020-015-010-005 000 005 010

relu_robin_200_300

160

140

300

250

200

150

100

50

b

0
—025-020—015-010—005 0.00 005 010

tanh_robin_200_300

0

1

-025-020-015-010—005 0.00 005 010

relu_robin_100_200

300
200
300
175 250
250
150
200
200 125
150
150 100
15
100 100
50
50
%0 5
0= T T T T T 0= T 0 0
-0.25-0.20-0.15-0.10-0.05 0.00 005 0.10 ~0125-020-015-0.10-0.05 000 005 010 ~025-020-015-0.10-005 000 005 010 ~025-020-015-0110-0.05 000 005 010

Results of a metamodel vs results of simulation for best settings from
genetic algorithms (last 20 points from each run are marked orange)

All results vs All simulations NN results vs NN simulations LGBM results vs LGBM simulations
e early e early e early
44000 44000 44000
42000 42000 42000
40000 40000 40000
= 38000 < 38000 = 38000
8 § 5
2 2 2
B B B
3 3 3
365000 36000 36000
34000 3000 3000
32000 32000 32000
30000 30000 30000
30000 32000 34000 36000 38000 40000 42000 44000 30000 32000 34000 36000 38000 40000 42000 44000 30000 32000 34000 36000 38000 40000 42000 44000

Result Resuit Resuit

Graph neural networks

Architecture I:

1. Neurons in the even numbered layers, starting with input layer as layer 0, should
be localized at graph vertices (in our case - road crossings).

2. Neurons in the odd numbered layers should be localized at the graph edges (in
our case - roads).

3. An exception should be the final layer with just one neuron.

4. Connections from a vertex-localized layer to an edge-localized layer should only
be present if a given vertex is an end of a given edge. There will be exactly two
such connections for every edge neuron.

5. Connections from an edge-localized layer to a vertex-localized layer should only
be present if the edge has the vertex as its end. The number of such
connections will be equal to the number of particular vertex neighbors.

Graph neural networks

Architecture I:

Graph neural networks

Architecture ll:

1. Neurons in all layers, with the exception of the output layer, should be localized
at graph vertices.

2. Connections from a neuron in one layer to a neuron in the next one should only
be present if the corresponding vertices are neighbors in the graph. The number
of connections for the vertex node will be equal to the number of the vertex
neighbors.

Graph neural networks

P4

S

s XL
RS

<~

Y

Graph neural networks

Results (Architecture |):

=> reduced avg error of approximation on a test set (before: 1.62%, now: 1.32%),
=> reduced max error of approximation on a test set (before: 10-11%, now: 6.18%),
=> similar minima attained in the simulation (before: 31735, now: 31827),

=> lower approximation error near minima

#lyr #Ch Act MinSim ErrTest ErrSim ErSim-ErrTest <37000.0 <36000.0 <35000.0 <34000.0 <33000.0 <32000.0

3 3 tanh 31827 1.76% 1.90% 0.14% 1.85% 1.66% 1.47% 1.56% 3.49% 6.80%

3 4 tanh 31909 1.65% 1.80% 0.15% 1.63% 1.55% 1.51% 1.86% 2.66% 5.31%

2 4 tanh 31937 1.80% 2.06% 0.26% 1.82% 1.88% 2.26% 2.88% 4.85% 71.37%

5 3 tanh 31957 1.71% 1.80% 0.08% 1.65% 1.50% 1.35% 0.86% 2.30% 4.29%

5 4 tanh 32077 1.49% 2.08% 0.60% 2.03% 2.02% 1.98% 2.62% 4.29% -

5 5 tanh 32105 1.43% 1.83% 0.40% 1.85% 1.87% 2.10% 2.54% 3.63% -

5 6 tanh 32120 1.40% 1.85% 0.46% 1.89% 1.77% 1.51% 1.58% 2.53% -

5 2 tanh 32138 1.91% 2.23% 0.32% 2.24% 2.39% 2.82% 3.72% 5.35% -

+ 3 tanh 32142 1.67% 1.96% 0.29% 1.76% 1.64% 1.41% 1.39% 1.99% -

2 3 tanh 32246 1.89% 2.36% 0.46% 2.14% 2.03% 2.37% 2.88% 5.17% -

6 6 tanh 32298 1.32% 1.72% 0.40% 1.68% 1.60% 1.66% 2.07% 2.18% -

5 + relu 32301 1.60% 3.24% 1.64% 2.94% 2.47% 2.21% 2.09% 0.91% -

-+ 6 tanh 32332 1.40% 1.68% 0.28% 1.64% 1.67% 1.75% 2.35% 3.30% -

2 6 tanh 32337 1.62% 1.93% 0.30% 1.80% 1.70% 1.38% 1.70% 3.95% -

3 6 tanh 32360 1.57% 1.63% 0.07% 1.63% 1.58% 1.59% 1.99% 2. 7% -
Average 32139 1.61% 2.00% 0.39% 1.90 % 1.82 % 1.82% 2.14% 3.29% 5.94%

Best 15 rows in terms of the minimum simulator output value obtained by gradient descent. Columns #Lyr, #Ch
and Act mean the number of layers, number of channels and activation function, respectively. Column MinSim
includes the minimum output value of the simulator. Columns ErrTest, ErrSim and ErrSim-ErrTest contains
average errors obtained on a test set, on a gradient descent trajectory and a difference between those average
errors, respectively. The next 6 columns contain average errors on subsets of the trajectories obtained by
thresholding on the simulator output values.

Graph neural networks

Problem:

It is not fully clear that including information about the topology of a
road network brings any value. Perhaps, any similar graph, even not
related to the problem at hand, could do equally well.

Sanity check:
We fixed the number of layers to 3 and the number of channels to 4
per layer (for architecture of type 1), and built our nets using random
graphs with various degrees of similarity to the true problem graph
(measure of similarity: symmetric difference between the sets of
edges)
€ Method 1: random edge insertions and deletions at the same
time keeping the desired value of the symmetric difference.
€ Method 2: random permutations of the vertex labels while
keeping the connection graph structure exactly the same

Graph neural networks

Problem:

It is not fully clear that including information about the topology of a road network
brings any value. Perhaps, any similar graph, even not related to the problem at
hand, could do equally well.

0.6 |

0.5 1

0.4 -

3 -

Mean squared error

0.1 1

Symmetnc diff

Thank you for your attention!

Questions?

E-mail: p.gora@mimuw.edu.pl,
tensorcell.research(@gmail.com

www: http:/www.mimuw.edu.pl/~pawelg
http://www.tensortraffic.com

FB: https://www.facebook.com/TensorCell

“Logic can get you from A to B, imagination will take you everywhere” A. Einstein

“The sky is NOT the limit”

R IR
0:0:0:0
.9

TensorCell

mailto:p.gora@mimuw.edu.pl
mailto:tensorcell.research@gmail.com
http://www.mimuw.edu.pl/~pawelg
http://www.tensortraffic.com
https://www.facebook.com/TensorCell/

