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Problem

➔ ~4 bln PLN - annual cost of traffic 
gridlocks in 7 largest Polish cities 
(cost of wasted time and fuel)1)

➔ Air Pollution Cuts Two Years Off 
The Average World Life 
Expectancy2)

➔ Over 1.2 mln people worldwide die each 
year in car accidents, 20-50 mln are 
injured3)

 
➔ Car accidents cost the U.S. $230.6 billion 

every year4)

1) https://www.ibtta.org/sites/default/files/documents/MAF/Costs-of-Congestion-INRIX-Cebr-Report%20(3).pdf
2) https://futurism.com/air-pollution-two-years-off-average-life-expectancy
3) http://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
4) https://www.supermoney.com/2018/01/average-cost-car-accident-pay

https://www.ibtta.org/sites/default/files/documents/MAF/Costs-of-Congestion-INRIX-Cebr-Report%20(3).pdf
https://futurism.com/air-pollution-two-years-off-average-life-expectancy
http://korkometr.targeo.pl/Raport_Korki_2015.pdf%20https://futurism.com/air-pollution-two-years-off-average-life-expectancy%20http://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.supermoney.com/2018/01/average-cost-car-accident-pay/


Traffic Simulation Framework

Gora P., "Traffic Simulation Framework - a Cellular Automaton based tool for simulating and investigating real 
city traffic", in "Recent Advances in Intelligent Information Systems", 2009, pp. 641-653, ISBN: 
978-83-60434-59-8. (Screencast: https://www.youtube.com/watch?v=94RatF5SrLw)

https://www.youtube.com/watch?v=94RatF5SrLw


What will happen if we change something in the road network?
What will happen if we change traffic signal settings?

Step toward traffic optimization

Prediction “What-if”



➔The most popular and important tools to analyze traffic: traffic simulations.

➔But accurate traffic simulations are time-consuming, especially in a large scale.

➔ In some cases we have to run large number of such simulations, with different 
settings (e.g., real-time traffic signal control, tolling, finding optimal locations and 
capacities of parkings / charging stations for electric vehicles). 

Prediction “What-if”

Nr of games: 10700 Nr of settings: > 120800

(and the problem is proved to be NP-hard!)

More than the number of atoms in the visible Universe!



➔The most popular and important tools to analyze traffic: traffic simulations.

➔But accurate traffic simulations are time-consuming, especially in a large scale.

➔ In some cases we have to run large number of such simulations, with different 
settings (e.g., real-time traffic signal control, tolling, finding optimal locations and 
capacities of parkings / charging stations for electric vehicles). 

➔We would like to do it as efficiently as possible.

➔We can distribute computations on GPU or many machines, but it may be expensive 
and has limitations.

Prediction “What-if”



➔The most popular and important tools to analyze traffic: traffic simulations.

➔But accurate traffic simulations are time-consuming, especially in a large scale.

➔ In some cases we have to run large number of such simulations, with different 
settings (e.g., real-time traffic signal control, tolling, finding optimal locations and 
capacities of parkings / charging stations for electric vehicles). 

➔We would like to do it as efficiently as possible.

➔We can distribute computations on GPU or many machines, but it may be expensive 
and has limitations.

➔ In many cases we are not interested in the simulation process, but only in its 
outcomes. So, maybe we can somehow approximate the outcome based on partial 
output data?

Prediction “What-if”



Problem

Input Output
Simulation

F: X -> Y

Example: X – traffic signal setting, Y – total delay, total time of waiting etc (real number) 
(Y can be also a random variable in case of stochastic models)

Can we „compute” F faster / easier than by running traffic simulations? 
Can we find a „metamodel” (surrogate model) approximating outcomes of simulations?



Using Traffic Simulation Framework we generated set composed of 105336 
elements, divided it into training set (85336 elements) and test set (20000 elements). 
Each run simulated 10 minutes of traffic with 42 000 cars on a realistic map of 
Warsaw (OSM).

21 x  Time of waiting

{0,1,2,…,119}21

Solution



We focused on approximating the total waiting times on a red signal as a function of 
signal offset settings (signal offset setting = offsets of 21 traffic signal representatives 
on a Stara Ochota district in Warsaw). 

21 x

{0,1,2,…,119}21

Solution

 Time of waiting



➔ We developed a TensorTraffic tool for approximating outcomes of traffic simulations 
using NN and predicting what may happen if we change traffic signal settings.

➔ Initially, we tested only feed forward neural networks. We found out, that, indeed, 
outcomes of traffic simulation can be approximated using NN with a good 
accuracy (best mean error on a test set: ~1.62%, maximal error: ~10.95%).

Solution



Distribution of error on a test set



➔ We developed a TensorTraffic tool for approximating outcomes of traffic simulations 
using NN and predicting what may happen if we change traffic signal settings.

➔ Initially, we tested only feed forward neural networks. We found out, that, indeed, 
outcomes of traffic simulation can be approximated using NN with a good 
accuracy (best mean error on a test set: ~1.62%, maximal error: ~10.95%).

➔ Time of simulating 10 minutes of traffic in a large-scale (e.g., Warsaw) using a 
microscopic model (TSF) – (~30 seconds on standard machines).

➔ Time of inferencing neural network: ~0.8 ms (time of training with GPU: ~10-15 
minutes).

➔ And in the investigated case we don’t even need large networks (3-4 layers with a 
few hundred neurons are sufficient).

Solution



➔ We developed a TensorTraffic tool for approximating outcomes of traffic simulations 
using NN and predicting what may happen if we change traffic signal settings.

➔ Initially, we tested only feed forward neural networks. We found out, that, indeed, 
outcomes of traffic simulation can be approximated using NN with a good 
accuracy (best mean error on a test set: ~1.62%, maximal error: ~10.95%).

➔ Time of simulating 10 minutes of traffic in a large-scale (e.g., Warsaw) using a 
microscopic model (TSF) – (~30 seconds on standard machines).

➔ Time of inferencing neural network: ~0.8 ms (time of training with GPU: ~10-15 
minutes).

➔ And in the investigated case we don’t even need large networks (3-4 layers with a 
few hundred neurons are sufficient).

➔ We also achieved good results using LightGBM (best avg error: ~1.72%, max 
error: ~10.83%, inference: ~0.4 ms).

Solution



We used both models as surrogate models (metamodels) evaluating traffic signal 
settings in traffic optimization algorithms.

6 algorithms tested:
● Genetic algorithms
● Simulated annealing
● Particle swarm optimization
● Tabu search
● Bayesian optimization (without metamodels)
● Gradient optimization (work in progress) 

Application

Comparison of best results found by optimization algorithms



Distribution of error close to local optima



Results of a metamodel vs results of simulation for best settings from 
genetic algorithms (last 20 points from each run are marked orange)



Architecture I:

1. Neurons in the even numbered layers, starting with input layer as layer 0, should 
be localized at graph vertices (in our case - road crossings).

2. Neurons in the odd numbered layers should be localized at the graph edges (in 
our case - roads).

3. An exception should be the final layer with just one neuron.

4. Connections from a vertex-localized layer to an edge-localized layer should only 
be present if a given vertex is an end of a given edge. There will be exactly two 
such connections for every edge neuron.

5. Connections from an edge-localized layer to a vertex-localized layer should only 
be present if the edge has the vertex as its end. The number of such 
connections will be equal to the number of particular vertex neighbors.

Graph neural networks



Architecture I:

Graph neural networks
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Architecture II:

1. Neurons in all layers, with the exception of the output layer, should be localized 
at graph vertices.

2. Connections from a neuron in one layer to a neuron in the next one should only 
be present if the corresponding vertices are neighbors in the graph. The number 
of connections for the vertex node will be equal to the number of the vertex 
neighbors.

Graph neural networks



Architecture II:

Graph neural networks
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Results (Architecture I):
➔ reduced avg error of approximation on a test set (before: 1.62%, now: 1.32%),
➔ reduced max error of approximation on a test set (before: 10-11%, now: 6.18%),
➔ similar minima attained in the simulation (before: 31735, now: 31827),
➔ lower approximation error near minima

Graph neural networks

Best 15 rows in terms of the minimum simulator output value obtained by gradient descent. Columns #Lyr, #Ch 
and Act mean the number of layers, number of channels and activation function, respectively. Column MinSim 
includes the minimum output value of the simulator. Columns ErrTest, ErrSim and ErrSim-ErrTest contains 
average errors obtained on a test set, on a gradient descent trajectory and a difference between those average 
errors, respectively. The next 6 columns contain average errors on subsets of the trajectories obtained by
thresholding on the simulator output values.



Problem:
It is not fully clear that including information about the topology of a 
road network brings any value. Perhaps, any similar graph, even not 
related to the problem at hand, could do equally well.

Sanity check:
We fixed the number of layers to 3 and the number of channels to 4 
per layer (for architecture of type 1), and built our nets using random 
graphs with various degrees of similarity to the true problem graph 
(measure of similarity: symmetric difference between the sets of 
edges)

◆ Method 1: random edge insertions and deletions at the same 
time keeping the desired value of the symmetric difference.

◆ Method 2: random permutations of the vertex labels while 
keeping the connection graph structure exactly the same

Graph neural networks



Problem:
It is not fully clear that including information about the topology of a road network 
brings any value. Perhaps, any similar graph, even not related to the problem at 
hand, could do equally well.

Graph neural networks



Thank you for your attention!

Questions?

E-mail: p.gora@mimuw.edu.pl,     
            tensorcell.research@gmail.com 

www:   http://www.mimuw.edu.pl/~pawelg
             http://www.tensortraffic.com  

                                    FB:       https://www.facebook.com/TensorCell

“Logic can get you from A to B, imagination will take you everywhere” A. Einstein

“The sky is NOT the limit”

mailto:p.gora@mimuw.edu.pl
mailto:tensorcell.research@gmail.com
http://www.mimuw.edu.pl/~pawelg
http://www.tensortraffic.com
https://www.facebook.com/TensorCell/

