
Sorting by Decision Trees with Hypotheses

Mohammad Azad 1, Igor Chikalov 2, Shahid Hussain3 and Mikhail
Moshkov 4

1Jouf University, Sakaka 72441, Saudi Arabia

2Intel Corporation, Arizona 85226, USA

3Institute of Business Administration, University Road, Karachi 75270, Pakistan

4King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

28 September 2021

1 / 23

Agenda

1 Preliminaries

2 Design of decision trees

3 Results of Experiments

4 Discussion

2 / 23

Three domains

• Decision trees are widely used in many areas of computer science as
classifiers, as a means for knowledge representation, and as
algorithms to solve various problems of computational geometry,
combinatorial optimization, etc.

• They are studied in
• Test theory (initiated by Chegis and Yablonskii),
• Rough set theory (initiated by Pawlak),
• Exact learning (initiated by Angluin).

• These theories are closely related.

• Our aim (mainly theoretical) is to understand whether it is possible
to decrease the number of nodes as well as the depth in decision
trees if we use (additionally) hypotheses.

3 / 23

Attribute vs. Hypothesis

T =

f1 f2
0 0 0
0 1 0
1 0 0
1 1 1

f2

0 f1

0 1

0 1

0 1

• Let T be a decision table with n conditional
attributes f1, . . . , fn having values from the
set ω = {0, 1, 2, ...}.

• The rows of this table T are pairwise different
and each row is labeled with a decision from
ω.

• For a given row of T , we should recognize the
decision attached to this row.

• To this end, we can use decision trees based
on two types of queries.

• We can ask about the value of an attribute
fi ∈ {f1, . . . , fn} on the given row.

• We will obtain an answer of the kind fi = δ,
where δ is the number at the intersection of
the given row and the column fi.

4 / 23

Attribute vs. Hypothesis...

T =

f1 f2
0 0 0
0 1 0
1 0 0
1 1 1

f1, f2

1 0 0

1,
1

0,
*

*,0

• We can also ask if a hypothesis
f1 = δ1, . . . , fn = δn is true, where δ1, . . . , δn
are numbers from the columns f1, . . . , fn
respectively.

• Either this hypothesis will be confirmed or we
obtain a counterexample in the form fi = σ,
where fi ∈ {f1, . . . , fn} and σ is a number
from the column fi different from δi.

• The considered hypothesis is called proper if
(δ1, . . . , δn) is a row of the table T .

5 / 23

Attribute vs. Hypothesis...

• Decision trees using hypotheses can be more efficient than the
decision trees using only attributes.

• As an example, let us consider the problem of computation of the
conjunction x1 ∧ · · · ∧ xn. The minimum number of realizable nodes
in a decision tree solving this problem using the attributes
x1, . . . , xn is equal to 2n+ 1.

• However, the minimum number of realizable nodes in a decision tree
solving this problem using proper hypotheses is equal to n+ 2: it is
enough to ask only about the hypothesis x1 = 1, . . . , xn = 1. If it is
true, then the considered conjunction is equal to 1. Otherwise, it is
equal to 0. The obtained decision tree contains one non terminal
node and n+ 1 terminal nodes.

6 / 23

Types of Decision Trees

We consider the following five types of decision trees. Decision trees
that use:

• Type 1: only attributes.

• Type 2: only hypotheses.

• Type 3: both attributes and hypotheses.

• Type 4: only proper hypotheses.

• Type 5: both attributes and proper hypotheses.

7 / 23

Decision Tables

• Subtable TS of T is obtained by removing one or more rows from it;

• T (fi1 = a1) . . . (fim = am) is a separable subtable of T ;

T =

f1 f2
r1 1 0 1
r2 0 0 2
r3 0 1 3

;T (f1 = 0) =
f1 f2

r2 0 0 2
r3 0 1 3

• |SEP (T)| is the number of different separable subtables of T .

8 / 23

Parameters of decision trees

Let Γ be a decision tree for T . As the space complexity of the decision
tree Γ, we consider the number of its realizable relative to T nodes. A
node v of Γ is called realizable relative to T if and only if the subtable
TS(Γ, v) is nonempty. We denote by L(T,Γ) the number of nodes in Γ
that are realizable relative to T .

As the time complexity of a decision tree, we consider its depth that is
the maximum number of working nodes in a complete path in the tree.
We denote by h(Γ) the depth of a decision tree Γ.

• h(k)(T) denotes the minimum depth of a decision tree of the type k
for T , k = 1, . . . , 5.

• L(k)(T) denotes the minimum number of nodes realizable relative to
T in a decision tree of the type k for T , k = 1, . . . , 5.

9 / 23

Decision Trees

T =

f1 f2
0 0 0
0 1 0
1 0 0
1 1 1

f2

0 f1

0 1

0 1

0 1

• Greedy heuristics;

• Ant colony algorithms;

• Genetic algorithms;

• Branch and bound techniques;

• Directed acyclic graph
(DAG) construction using
dynamic programming (DP).

10 / 23

Agenda

1 Preliminaries

2 Design of decision trees

3 Results of Experiments

4 Discussion

11 / 23

DAG ∆(T)

Algorithm B0

1 Construct the graph that consists of one node T which is not
marked as processed.

2 If all nodes of the graph are processed, then the work of algorithm is
finished. Return the resulting graph as ∆(T). Otherwise, choose a
node (table) Θ that has not been processed yet.

3 a. If Θ is degenerate, mark the node Θ as processed and proceed to
step 2.

b. If Θ is not degenerate, then for each fi ∈ E(Θ), draw a bundle of
edges from the node Θ (this bundle of edges will be called the
fi-bundle). Let E(Θ, fi) = {a1, . . . , ak}. Then, draw k edges from
Θ and label these edges with the pairs (fi, a1), . . . , (fi, ak). These
edges enter nodes Θ(fi, a1), . . . , Θ(fi, ak), respectively. If some of
the nodes Θ(fi, a1), . . . ,Θ(fi, ak) are not present in the graph, then
add these nodes to the graph. Mark the node Θ as processed and
return to step 2.

12 / 23

Example

f1 f2
0 0 0
0 1 0
1 0 0
1 1 1

f1 f2
0 0 0
0 1 0

f1 f2
1 0 0
1 1 1

f1, 0

f 1
, 1

f1 f2
0 0 0
1 0 0

f1 f2
0 1 0
1 1 1

f
2 , 0

f
2 , 1

f1 f2
1 0 0

f1 f2
1 1 1

f 2
, 0

f
2 , 1

f1 f2
0 1 0

f
1 , 0f 1

, 1

13 / 23

Example

f1 f2
0 0 0
0 1 0
1 0 0
1 1 1

f1 f2
0 0 0
0 1 0

f1 f2
1 0 0
1 1 1

f1, 0

f 1
, 1

f1 f2
0 0 0
1 0 0

f1 f2
0 1 0
1 1 1

f
2 , 0

f
2 , 1

f1 f2
1 0 0

f1 f2
1 1 1

f 2
, 0

f
2 , 1

f1 f2
0 1 0

f
1 , 0f 1

, 1

13 / 23

Example

f1 f2
0 0 0
0 1 0
1 0 0
1 1 1

f1 f2
0 0 0
0 1 0

f1 f2
1 0 0
1 1 1

f1, 0

f 1
, 1

f1 f2
0 0 0
1 0 0

f1 f2
0 1 0
1 1 1

f
2 , 0

f
2 , 1

f1 f2
1 0 0

f1 f2
1 1 1

f 2
, 0

f
2 , 1

f1 f2
0 1 0

f
1 , 0f 1

, 1

13 / 23

Example

f1 f2
0 0 0
0 1 0
1 0 0
1 1 1

f1 f2
0 0 0
0 1 0

f1 f2
1 0 0
1 1 1

f1, 0

f 1
, 1

f1 f2
0 0 0
1 0 0

f1 f2
0 1 0
1 1 1

f
2 , 0

f
2 , 1

f1 f2
1 0 0

f1 f2
1 1 1

f 2
, 0

f
2 , 1

f1 f2
0 1 0

f
1 , 0f 1

, 1

13 / 23

Example

f1 f2
0 0 0
0 1 0
1 0 0
1 1 1

f1 f2
0 0 0
0 1 0

f1 f2
1 0 0
1 1 1

f1, 0

f 1
, 1

f1 f2
0 0 0
1 0 0

f1 f2
0 1 0
1 1 1

f
2 , 0

f
2 , 1

f1 f2
1 0 0

f1 f2
1 1 1

f 2
, 0

f
2 , 1

f1 f2
0 1 0

f
1 , 0f 1

, 1

13 / 23

Time Complexity of Algorithm B0

We now analyze time complexity of the algorithm B0.

Proposition
The time complexity of the algorithm B0 is bounded from above by a
polynomial on the size of the input table T and the number |SEP (T)| of
different separable subtables of T .

14 / 23

Algorithm Bt (computation of L(t)(T)).

Input: A nonempty decision table T and the directed acyclic
graph ∆(T).

Output: The value L(t)(T).

• If a number is attached to each node of the DAG, then return the
number attached to the node T as L(t)(T) and halt the algorithm.
Otherwise, choose a node Θ of the graph ∆(T) without attached
number, which is either a terminal node of ∆(T) or a nonterminal
node of ∆(T) for which all children have attached numbers.

• If Θ is a terminal node, then attach to it the number L(t)(Θ) = 1
and proceed to step 1.

15 / 23

Algorithm Bt (computation of L(t)(T)).

• If Θ is not a terminal node, then depending on the value t do the
following:

• In the case t = 1, compute the value L
(1)
a (Θ) and attach to Θ the

value L(1)(Θ) = L
(1)
a (Θ).

• In the case t = 2, compute the value L
(2)
h (Θ) and attach to Θ the

value L(2)(Θ) = L
(2)
h (Θ).

• In the case t = 3, compute the values L
(3)
a (Θ) and L

(3)
h (Θ), and

attach to Θ the value L(3)(Θ) = min{L(3)
a (Θ), L

(3)
h (Θ)}.

• In the case t = 4, compute the value L
(4)
p (Θ) and attach to Θ the

value L(4)(Θ) = L
(4)
p (Θ).

• In the case t = 5, compute the values L
(5)
a (Θ) and L

(5)
p (Θ), and

attach to Θ the value L(5)(Θ) = min{L(5)
a (Θ), L

(5)
p (Θ)}.

Proceed to first step.

16 / 23

Sorting problem

Let x1, . . . , xn be pairwise different elements from a linearly ordered set.
We should find a permutation (p1, . . . , pn) from the set Pn of all
permutations of the set {1, . . . , n} for which xp1 < · · · < xpn . To this
end, we use attributes xi : xj such that i, j ∈ {1, . . . , n}, i < j,
xi : xj = 1 if xi < xj , and xi : xj = 0 if xi > xj .

The problem of sorting n elements can be represented as a decision table
Tn with n(n− 1)/2 conditional attributes xi : xj , i, j ∈ {1, . . . , n},
i < j, and n! rows corresponding to permutations from Pn.

For each permutation (p1, . . . , pn), the corresponding row of Tn is
labeled with this permutation as the decision. This row is filled with
values of attributes xi : xj such that xi : xj = 1 if and only if i stays
before j in the tuple (p1, . . . , pn).

17 / 23

Agenda

1 Preliminaries

2 Design of decision trees

3 Results of Experiments

4 Discussion

18 / 23

Experimental Results (Depth)

n h(1)(Tn) h(2)(Tn) h(3)(Tn) h(4)(Tn) h(5)(Tn)

3 3 2 2 2 2
4 5 4 4 4 4
5 7 6 6 6 6
6 10 9 9 9 9

19 / 23

Experimental results (Number of nodes)

n L(1)(Tn) L(2)(Tn) L(3)(Tn) L(4)(Tn) L(5)(Tn)

3 11 13 9 14 9
4 47 253 39 254 39
5 239 15,071 199 15,142 199
6 1,439 2,885,086 1,199 2,886,752 1,199

20 / 23

Agenda

1 Preliminaries

2 Design of decision trees

3 Results of Experiments

4 Discussion

21 / 23

Discussion and future direction

• In this paper, we studied modified decision trees that use queries
based on one attribute each and queries based on hypotheses about
values of all attributes.

• We proposed dynamic programming algorithms for the minimization
of depth and the number of realizable nodes in such decision trees
for sorting problem.

• From the obtained experimental results it follows that the decision
trees of the types 2–5 can have less depth than the decision trees of
the type 1. Decision trees of the types 3 and 5 can have less number
of realizable nodes than the decision trees of the type 1. Decision
trees of the types 2 and 4 have too many nodes.

• We are planning to study bi-criteria optimization for the decision
trees with hypothesis.

22 / 23

Thank You

23 / 23

	Preliminaries
	Design of decision trees
	Results of Experiments
	Discussion

