Cause-Effect Structures Behaving like Reaction System

Ludwik Czaja
Vistula University
University of Warsaw

1. Informal exposition of cause-effect (c-e) structures
2. Sketch of formalism
3. Examples
4. Basic notions of c-e structures
5. Basic notions of reaction systems
6. Examples

Informal presentation of of cause-effect structures

Graphic representation with grouping of nodes

Upper (entry - causes) and lower (exit - effects) formal polynomials annotaing nodes and determining movement of signals: „॰" simultaneous, „+" - nondeterministic. Hence: arrows redundant - for visualization only!

Two other representations:
Set (of names) of nodes with superscript/subscript formal polynomials:

$$
U=\left\{a_{e}^{\theta}, b_{e}^{\theta}, c_{e}^{\theta}, d_{e}^{\theta}, e_{f \bullet g+h}^{a \bullet b+b \bullet c+d}, f_{\theta}^{e}, g_{\theta}^{e}, h_{\theta}^{e}\right\}
$$

Arrow expression:

$$
(a \rightarrow e) \bullet(b \rightarrow e)+(b \rightarrow e) \bullet(c \rightarrow e)+(d \rightarrow e)+(e \rightarrow f) \bullet(e \rightarrow g)+(e \rightarrow h)
$$

which may be reduced to:

$$
(b \rightarrow e) \cdot[(a \rightarrow e)+(c \rightarrow e)]+(d \rightarrow e)+(e \rightarrow f) \bullet(e \rightarrow g)+(e \rightarrow h)
$$

Thus: c-e structures may be combined by „addition" (+) and „multiplication" (•) - respective algebra, called a quasi-semiring.

Thus: c-e structures may be compared: $U \leq V$ iff $V=U+V$ U is a substructure of $V ., \leq \prime$ is a partial order.

A crucial notion for semantics may be defined:
A firing component of a c-e structure U is its substructure Q such that every node of Q with annotating polynomials are without „+" (thus monomials) and if one of them is θ then the other is not θ.

Firing components of from the former example c-e structure

$$
U=\left\{a_{e}^{\theta}, b_{e}^{\theta}, c_{e}^{\theta}, d_{e}^{\theta}, e_{f \bullet g+h}^{a \bullet b+b+d}, f_{\theta}^{e}, g_{\theta}^{e}, h_{\theta}^{e}\right\}
$$

are:

$\left\{a_{e}^{\theta}, b_{e}^{\theta}, e_{\theta}^{a \bullet b}\right\} \quad\left\{b_{e}^{\theta}, c_{e}^{\theta}, e_{\theta}^{b \bullet c}\right\} \quad\left\{d_{e}^{\theta}, e_{\theta}^{d}\right\}$
$\left\{e_{f \cdot g}^{\theta}, g_{\theta}^{e} \quad f_{\theta}^{e}\right\} \quad\left\{e_{h}^{\theta}, h_{\theta}^{e}\right\}$

Example:

Firing components:
$\left\{a_{b}^{\theta}, b_{\theta}^{a}\right\}\left\{b_{c \cdot d}^{\theta}, c_{\theta}^{b}, d_{\theta}^{b}\right\}\left\{c_{e}^{\theta}, e_{\theta}^{c}\right\}\left\{b_{e}^{\theta}, e_{\theta}^{b}\right\}\left\{e_{d}^{\theta}, d_{\theta}^{e}\right\}\left\{e_{a}^{\theta}, a_{\theta}^{e}\right\}$

Possible run:

Fring component Q with weighted (multiplied) effect and cause monomials:

$$
\begin{array}{cll}
E_{Q}(a)=x & E_{Q}(b)=x \bullet y & E_{Q}(c)=y \\
\overline{E_{Q}}(a)=5 \otimes x & \overline{E_{Q}}(b)=\omega \otimes(x \bullet y) & \overline{E_{Q}}(c)=3 \otimes y \\
\text { weight of } E_{Q}(a) & \text { weight of } E_{Q}(b) &
\end{array}
$$

extended c-e structure with inhibiting node b

equivalent Petri net with inhibitor arrow
enabled

Construction of c-e structure $Q_{0}+Q_{1}$ implementing "test zero".
A token at the node i starts testing contents of T; on termination, the token appears at z (zero) if T is empty and at n (not zero) otherwise. The tested node T plays two roles: inhibiting in Q_{o} and ordinary in Q_{1}. Capacity of T is infinite, whereas of remaining nodes is 1 . The empty subscript/superscript θ is skipped. In the Petri net counterpart, the inhibiting arrow enters the left transition.

Sketch of formalism

Basic notions of c-e structures

\mathbb{X} - a non-empty enumerable set (of nodes), $\theta \notin \mathbb{X}$ - a neutral symbol. Any node $x \in \mathbb{X}$ and θ is a formal polynomial; if K and L are formal polynomials, then $(K+L)$ and $(K \cdot L)$ are too. Their set is $\mathbf{F}[\mathbb{X}]$.
Addition and multiplication of formal polynomials:
$K \bigoplus L=(K+L), K \odot L=(K \cdot L) \quad$ (use ,,+" and „•" instead of \bigoplus and $\odot)$. Let the algebra $\langle\mathbf{F}[\mathbb{X}],+, \bullet, \theta\rangle$ obey the axioms:
$\left.\begin{array}{llll}(+) & \theta+K=K+\theta=K & (\cdot) & \theta \cdot K=K \cdot \theta=K \\ (++) & K+K=K & (\cdot \bullet) & x \bullet x=x \\ (+++) & K+L=L+K & (\bullet \bullet) & K \cdot L=L \cdot K \\ (++++) & K+(L+M)=(K+L)+M & (\bullet \bullet \bullet) & K \cdot(L \cdot M)=(K \cdot L) \cdot M \\ (+\bullet) & \text { If } L \neq \theta \Leftrightarrow M \neq \theta & \text { then } K \cdot(L+M)=K \cdot L+K \cdot M\end{array}\right\}$

Definition (cause-effect structure, carrier, set CE[X])

A c-e structure over \mathbb{X} is a pair $U=\langle C, E\rangle$ of total functions:
$C: \mathbb{X} \rightarrow \mathbf{F}[\mathbb{X}]$ cause function; nodes in $C(x)$ are causes of x $E: \mathbb{X} \rightarrow \mathbf{F}[\mathbb{X}]$ effect function; nodes in $E(x)$ are effects of x such that x occurs in the formal polynomial $C(y)$ iff y occurs in $E(x)$

Carrier of U is the set $\quad \operatorname{car}(U)=\{x \in \mathbb{X}: C(x) \neq \theta \vee E(x) \neq \theta\}$ The set of all c-e structures over \mathbb{X} is denoted by $\mathbf{C E}[\mathbb{X}]$. Since \mathbb{X} is fixed, we write just $\mathbf{C E}$

A representation of $U=\langle C, E\rangle$ as a set of annotated nodes is $\left\{x_{E(x)}^{C(x)}: x \in \operatorname{car}(U)\right\}$

Definition (addition, multiplication, monomial c-e structure)
For c-e structures $U=\left\langle C_{U}, E_{U}\right\rangle, \quad V=\left\langle C_{V}, E_{V}\right\rangle, \quad$ define:
$U+V=\left\langle C_{U+V}, E_{U+V}\right\rangle=\left\langle C_{U}+C_{V}, E_{U}+E_{V}\right\rangle \quad$ where
$\left(C_{U}+C_{V}\right)(\mathrm{x})=C_{U}(x)+C_{V}(x) \quad$ and similarly for E
$U \cdot V=\left\langle C_{U \cdot V}, E_{U \cdot V}\right\rangle=\left\langle C_{U} \bullet C_{V}, E_{U} \bullet E_{V}\right\rangle \quad$ where
$\left(C_{U} \cdot C_{V}\right)(\mathrm{x})=C_{U}(x) \cdot C_{V}(x) \quad$ and similarly for E

Proposition

System $\langle\mathbf{C E}[\mathbb{X}],+, \bullet, \theta\rangle$ obeys equations for all $U, V, W \in \mathbf{C E}[\mathbb{X}], x, y \in \mathbb{X}:$

$$
\begin{array}{lll}
(+) & \theta+U=U+\theta=U & (\bullet) \quad \theta \cdot U=U \bullet \theta=U \\
(++) & U+U=U & (\cdot \bullet) \quad(x \rightarrow y) \cdot(x \rightarrow y)=(x \rightarrow y) \\
(+++) & U+V=V+U & (\bullet \bullet \bullet) \quad U \bullet V=V \cdot U \\
(++++) & U+(V+W)=(U+V)+W & (\bullet \bullet \bullet) \quad U \bullet(V \bullet W)=(U \bullet V) \cdot W \\
(+\bullet) & \text { If } C_{V}(x) \neq \theta \Leftrightarrow C_{W}(x) \neq \theta \text { and } E_{V}(x) \neq \theta \Leftrightarrow E_{W}(x) \neq \theta \text { then } \\
& U \bullet(V+W)=U \bullet V+U \bullet W
\end{array}
$$

This is the quasi-semiring of c -e structures

Definition (partial order \leq; substructure, set SUB[V], firing component, set FC, pre-set and post-set)
For $U, V \in \mathbf{C E}$ let $U \leq V \Leftrightarrow V=U+V ; \leq$ is a partial order in $\mathbf{C E}$. If $U \leq V$ then U is a substructure of V; $\mathbf{S U B}[V]=\{U: U \leq V\}$ is the set of all substructures of V. For $A \subseteq \mathbf{C E}: V \in A$ is minimal (wrt \leq) in A iff $\forall W \in A:(W \leq V \Rightarrow W=V)$. A minimal in $\mathbf{C E} \backslash\{\theta\}$ c-e structure $\mathrm{Q}=\left\langle C_{Q}, E_{Q}\right\rangle$ is a firing component iff Q is a monomial c-e structure and $C_{Q}(x)=\theta \Leftrightarrow E_{Q}(x) \neq \theta$ for any $x \in \operatorname{car}(Q)$. The set of all firing components is $\mathbf{F C}$, thus the set of all firing components of $U \in \mathbf{C E}$ is $F C[U]=\mathbf{S U B}[U] \cap \mathbf{F C}$.

Let for $Q \in \mathbf{F C}$ and $G \subseteq \mathbf{F C}$:

$$
\begin{aligned}
& \text { • } Q=\left\{x \in \operatorname{car}(Q): C_{Q}(x)=\theta\right\} \quad \text { (pre-set or causes of } Q \text {) } \\
& Q^{\bullet}=\left\{x \in \operatorname{car}(Q): E_{Q}(x)=\theta\right\} \quad \text { (post-set or effects of } Q \text {) } \\
& Q^{\bullet}={ }^{\bullet} Q \cup Q^{\bullet} \\
& \cdot G=\bigcup_{Q \in G} \cdot Q \\
& G^{*}=\bigcup_{Q \in G} Q^{\bullet} \\
& \text { (pre-set or causes of } G \text {) } \\
& \text { (post-set or effects of G) } \\
& { }^{\cdot} G^{\cdot}=\bigcup_{Q \in G}{ }^{\bullet} \cdot{ }^{\bullet}
\end{aligned}
$$

Definition (state of c-e structures)

A state of a c-e structure U is a total function $s: \operatorname{car}(U) \rightarrow \mathbb{N}$, thus a multiset over $\operatorname{car}(U)$. The set of all states of U is \mathbb{S}

Definition (weights of monomials and capacity of nodes)

For a c-e structure $U=\langle C, E\rangle$ and firing component $Q \in \mathbf{F C}[U]$, let with the pre-set ${ }^{\circ} Q$ and post-set Q^{\bullet}, multisets
$\overline{{ }^{\bullet}} Q^{\bullet} Q \rightarrow \mathbb{N} \cup\{\omega\}$ and $\overline{Q^{\bullet}}: Q^{\bullet} \rightarrow \mathbb{N} \cup\{\omega\}$ be given as additional information. The value ${ }^{\circ} \bar{Q}(x)$ is a weight of monomial $E_{Q}(x)$ and the value $\overline{Q^{\bullet}}(x)$ - a weight of monomial $C_{Q}(x)$

An effect monomial $E_{Q}(x)$ of a node $x \in{ }^{\bullet} Q$ with weight ${ }^{\circ} \bar{Q}(x)$ is denoted by ${ }^{\bullet} \bar{Q}(x) \otimes E_{Q}(x)$

Similarly for a cause monomial.

The coefficient representing weight will be abandoned if it is 1 .

Definition (inhibitors)

For a firing component $Q \in \mathbf{F C}[U]$
$\left.\operatorname{inh}[Q]=\left\{x \in^{\bullet} Q:{ }^{\bullet} \bar{Q}(x)\right\}=\omega\right\}$
thus a set of nodes in the pre-set of Q, whose effect monomials $E_{Q}(x)$ are of weight ω.

The nodes in $\operatorname{inh}[Q]$ will play role of inhibiting nodes of firing component Q.

Definition (enabled firing components)

For a firing component $Q \in \mathbf{F C}[U]$ and state s define the formula:
enabled $[Q](s) \stackrel{\text { def }}{\Leftrightarrow}$
$\forall x \in \operatorname{inh}[Q]: s(x)=0 \wedge$
$\forall x \in{ }^{\bullet} Q \backslash i n h[Q]: s(x)>0 \wedge \wedge^{\circ} \bar{Q}(x) \leq s(x) \leq \operatorname{cap}(U)(x) \wedge$
$\forall x \in Q^{\bullet}: \overline{Q^{*}}(x)+s(x) \leq \operatorname{cap}(U)(x)$

So, Q is enabled in the state s iff none of inhibiting nodes $x \in{ }^{\circ} Q$ contains a token and each remaining node in ${ }^{\circ} Q$ contains, with no fewer tokens than is the weight of its effect monomial $E_{Q}(x)$ and no more than capacity of each $x \in{ }^{\circ} Q$

Moreover, none of $x \in Q^{\bullet}$ holds more tokens than their number when increased by the weight of the cause monomial $C_{Q}(x)$ exceeds capacity of x

Definition (Sequential and parallel semantics of c-e structures)
Sequential. For $Q \in \mathbf{F C}[U]$ let $[[Q]] \subseteq \mathbb{S} \times \mathbb{S}$ be a binary relation defined as: $(s, t) \in[[Q]]$ iff
enabled $[Q](s) \wedge t=\left(s-\cdot \bar{Q}+\overline{Q^{\bullet}} \leq \operatorname{cap}(U)(Q\right.$ transforms state s into $t)$. Semantics [[U]] of $U \in \mathbf{C E}$ is $[[U]]=U_{\mathrm{Q} \in \mathbf{F q} U}[[Q]]$
Parallel. Firing components Q and P detached iff ${ }^{\bullet} Q^{\bullet} \cap^{\bullet} P^{\bullet}=\varnothing$.
For any non-empty set $G \subseteq \mathbf{F C}$ of pairwise detached firing
components, the relations $[[G]]$ and $[[U]]_{\text {par }}$ are defined in the same way as [[Q]] and [[U]] in the sequential case, but with Q replaced with G and $\mathbf{F C}[U]$ replaced with the set of all pairwise detached non-empty firing components of U.

Reaction systems

Sketch of formalism and examples

Definition (reaction system)
Reaction system (RE) A is a pair of sets:
$A=(\mathbb{B}, \mathbb{R})$ where:
\mathbb{B} - background (comprises the so-called entities)
\mathbb{R} - set of reactions
$r \in \mathbb{R}$ - reaction created of three sets:
$r=\left(R_{r}, I_{r}, P_{r}\right)$ where:
$R_{r} \subseteq \mathbb{B}$ - set of reactants
$I_{r} \subseteq \mathbb{B}$ - set of inhibitors where:
$R_{r} \cap I_{r}=\varnothing$
$P_{r} \subseteq \mathbb{B}$ is a set of products
The initial state of the system A is a set $\mathbb{S}_{\boldsymbol{O}} \subseteq \mathbb{B}$

Definition (state of RE and enabled reactions)

State \mathbb{S} of reaction system A is a subset of its background:
$\mathbb{S} \subseteq \mathbb{B}$

The intention is that \mathbb{S} be the set of those background's members, which comprise entities.

A reaction $r=\left(R_{r}, I_{r}, P_{r}\right)$ is enabled in a state \mathbb{S} iff $R_{r} \subseteq \mathbb{S} \quad$ and $\quad I_{r} \cap \mathbb{S}=\varnothing$

Definition (semantics of reaction systems - change of state)

The result of a reaction $r=\left(R_{r}, I_{r}, P_{r}\right)$ in a state \mathbb{S} is the set P_{r} if r is enabled in \mathbb{S} and the empty set \varnothing otherwise.

This result is denoted by
$\operatorname{res}_{r}(\mathbb{S})= \begin{cases}P_{r} & \text { if } r \text { is enabled in the state } \mathbb{S} \\ \varnothing & \text { otherwise }\end{cases}$
The result of the reaction system A in a state \mathbb{S} is the union of all its reactions in this state:

$$
\operatorname{res}_{A}(\mathbb{S})=\bigcup_{r \in \mathbb{R}} \operatorname{res}_{r}(\mathbb{S})
$$

Remarks

1. On completion (if it exists) of reaction system work, the entities in the difference of sets $\mathbb{S} \backslash r e s_{A}(\mathbb{S})$ disappear.
2. Features differing the reaction systems from cause-effect structures (or Petri nets):

- the lack of conflicts
- possible absorption of reactants by products.

These features will be taken into account in definition of semantics of reaction c-e structures.

Example (test zero)

The "test zero" task may be realized in the reaction system $A=(\mathbb{B}, \mathbb{R})$ with $\mathbb{B}=\{i, z, n, T\}, \quad \mathbb{R}=\{r 1, r 2\} \quad$ where $r l=(\{i\},\{T\},\{z\}), \quad r 2=(\{i, T\}, \varnothing,\{n\})$
Result of this system's work depends on the initial state \mathbb{S}_{0}
(i.e. what the environment supplies):

If $\mathbb{S}_{0}=\{i, T\}$ then the result is $\{n\}$ ("not zero" - presence of entity at T).
If $\mathbb{S}_{0}=\{i\}$ then result is $\{z\}$ ("zero" - absence of entity at T). Reactant i initiates work of the system, while T is tested for presence/absence of entity.

Evolution of the system $A=(\underbrace{\{i, z, n, T}_{\mathbb{B}}\},\{\underbrace{r 1, r 2\}}_{\mathbb{R}})$ with initial
state $\{i, T\}$ is the following:
$\operatorname{res}_{r I}(\{i, T\})=\varnothing \quad$ (because $\{i\} \subseteq\{i, T\}$ and $\left.\{T\} \cap\{i, T\} \neq \varnothing\right)$
$\operatorname{res}_{r 2}(\{i, T\})=\{n\}$ (because $\{i, T\} \subseteq\{i, T\}$ and $\varnothing \cap\{i, T\}=\varnothing$)
thus
$\operatorname{res}_{A}(\{i, T\})=\operatorname{res}_{r 1}(\{i, T\}) \cup \operatorname{res}_{r 2}(\{i, T\})=\{n\} \quad$ ("not zero")
Evolution of the system A with initial state $\{i\}$ is the following:
$\operatorname{res}_{r I}(\{i\})=\{z\}$ (because $\{i\} \subseteq\{i\}$ and $\{T\} \cap\{i\}=\varnothing$)
$\operatorname{res}_{r 2}(\{i\})=\varnothing \quad$ (because $\{i, T\} \nsubseteq\{i\}$ and $\varnothing \cap\{i\}=\varnothing$) thus $\operatorname{res}_{A}(\{i\})=\operatorname{res}_{r 1}(\{i\}) \cup \operatorname{res}_{r 2}(\{i\})=\{z\} \quad$ ("zero")

Cause-effect structures working similarly to reaction systems

The objective: to build a system structurally identical with c-e structures but working like reaction systems.

They are reaction c-e structures, denoted by RECE
The counterparts of some concepts of RECE and RE:
nodes
firing components
causes in a firing component effects in a firing component inhibitors in a firing component \leftrightarrow inhibitors in a reaction tokens

Definition (state of RECE)

A state of reaction c-e structure U is a total function $s: \operatorname{car}(U) \rightarrow\{0,1, \omega\}$. The set of all states of U is \mathbb{S}. Symbols 0 and 1 will be treated as logical values of false and true respectively and operations of propositional calculus on them will be applied. Operations \vee, \wedge on ω, are defined as:
$0 \vee \omega=\omega \vee 0=\omega, \quad 0 \wedge \omega=\omega \wedge 0=0, \quad 1 \vee \omega=\omega \vee 1=\omega, 1 \wedge \omega=\omega \wedge 1=1$,
$\omega \vee \omega=\omega \wedge \omega=\omega, \quad \neg \omega=0$.
ω will be used for inhibiting actions. Interpretation of 0 and 1 as false and true is justified by absorption property of entities in reaction systems and will be made formal later.

Definition (weights of monomials and inconsistent firing components)
For a c-e structure $U=\langle C, E\rangle$ and firing component $Q \in \mathbf{F C}[U]$, functions
${ }^{\bullet} \bar{Q}:{ }^{\bullet} Q \rightarrow\{0,1, \omega\}$ and $\overline{Q^{\bullet}}: Q^{\bullet} \rightarrow\{0,1, \omega\} \quad$ are given as additional information. The value ${ }^{\circ} \bar{Q}(x)$ is a weight of monomial $E_{Q}(x)$ and the value $\overline{Q^{\circ}}(x)$ - a weight of monomial $C_{Q}(x)$

As formerly, ω is interpreted as a "disable signal" and used for defining inhibiting nodes.

Firing components Q and P are inconsistent if for a certain $x \in{ }^{\circ} Q^{\bullet} \cap^{\bullet} P^{\bullet}$ weights ${ }^{\circ} \bar{Q}(x)$ and ${ }^{\bullet} \bar{P}(x)$ or $\overline{Q^{\bullet}}(x)$ and $\overline{P^{\bullet}}(x)$ are different. 39 cs\&P'2021 Berlin

The lack of conflicts requires introducing for reaction c-e structures concept called here "volley"

Definition (volley - simultaneous firing, extension of weight functions)
Any set $G \subseteq \mathbf{F C}$ without inconsistent firing components is called a volley. The family of volleys is FCV.

If $G \subseteq \mathbf{F C}[U]$ then $\mathbf{F C V}[U]$ is a set of volleys in U.
The pre-set ${ }^{\bullet} G$ and post-set G^{*} of a volley G are defined as before.
Extension of the weight functions ${ }^{\circ} \bar{Q}$ and $\overline{Q^{*}}$ onto the volley G are:

$$
\begin{aligned}
& \cdot \bar{G}(x)= \begin{cases}\cdot \bar{Q}(x) & \text { for arbitrary } Q \text { if it belongs to } G \\
0 & \text { else }\end{cases} \\
& \overline{G^{*}}(x)= \begin{cases}\overline{Q^{*}}(x) & \text { for arbitrary } Q \text { if it belongs to } G \\
0 & \text { else }\end{cases}
\end{aligned}
$$

This is a correct definition since for any firing components Q and P in G : $\bar{Q}(x)=\cdot \bar{P}(x)$ if $x \in{ }^{\bullet} G$ and $\overline{Q^{*}}(x)=\overline{P^{*}}(x) \quad$ if $x \in G^{\bullet}$ Functions \bar{G} and $\overline{G^{*}}$ will be used in definition of reaction c-e structures semantics.

Inhibitors for RECE are the same as for CE:

For a firing component $Q \in \mathbf{F C}[U]$
$\left.\operatorname{inh}[Q]=\left\{x \in^{\circ} Q: \cdot \bar{Q}(x)\right\}=\omega\right\}$
thus a set of nodes in the pre-set of Q, whose effect monomials $E_{Q}(x)$ are of weight ω.

Definition (enabled firing components and enabled volleys) For a firing component $Q \in \mathrm{FC}[U]$ and state s let the formula enabled $[Q](s)$ be defined as:
$\forall x \in \operatorname{inh}[Q]: s(x)=0 \wedge \forall x \in \bullet Q \backslash i n h[Q]: s(x)=1$

For a volley $G \in \mathbf{F C V}[U]$, the formula enabled $[G](s)$ is defined as above by replacing Q with G and $\mathbf{F C}[U]$ with $\mathbf{F C V}[U]$

Definition (semantics [[...]] of reaction c-e structures)

For a volley $G \in \mathbf{F C V}[U], G \neq \varnothing$ let $[[G]] \subseteq \mathbb{S} \times \mathbb{S}$ be a binary relation defined as: $(s, t) \in[[G]]$ iff
enabled $[G](s) \wedge \forall \mathrm{x} \in \operatorname{car}(U): \quad t(x)=\left(s(x) \wedge \neg^{\bullet} \bar{G}(x)\right) \vee \overline{G^{\bullet}}(x)$

Semantics [[U]] of $U \in \operatorname{RECE}$ is $\bigcup_{\mathrm{G}_{\in} \mathbf{R C Y}(]}[[G]]$
for any maximal volley G, i.e. if $G \subseteq G^{\prime} \in \mathbf{F C V}[U]$ and
$(s, t) \in\left[\left[G^{\prime}\right]\right]$ then $G=G^{\prime}$

Description of semantics by means of this propositional formula is justified by the properties of reaction systems:

1. Presence of token ("entity") at a node absorbs another token arriving in this node.
2. Lack of conflicts between different reactions, takes place in reaction c-e structures due to the lack of inconsistent firing components in $G \in \operatorname{FCV}[U]$

Example (reaction c-e structure assembling a chemical molecule) Description of creating chemical molecules by the reaction system $A=(\{C, H, O, U, V, W, X, Y, Z\},\{r 1, r 2, r 3, r 4, r 5, r 6\})$
with reactions defined as:

$r l=(\{C, H\}, \varnothing,\{U\})$	U contains molecule	CH^{\prime}	(methylidyne)
$r 2=(\{U, C, H\}, \varnothing,\{V\})$	V contains molecule	$\mathrm{C}_{2} \mathrm{H}_{2}$	(acetylene)
$r 3=(\{V, H\}, \varnothing,\{W\})$	W contains molecule	$\mathrm{C}_{2} \mathrm{H}_{3}$	(ethylenyl)
$r 4=(\{W, H\}, \varnothing,\{X\})$	X contains molecule	$\mathrm{C}_{2} \mathrm{H}_{4}$	(ethylene)
$r 5=(\{X, H, O\}, \varnothing,\{Y\})$	Y contains molecule	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$	(ethoxide)
$r 6=(\{Y, H\}, \varnothing,\{Z\})$	Z contains molecule	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	(ethanol)
47 cssp2022			

is given by successive steps of this reaction system evolution shown at the following slides. This evolution assembles the molecule:

Starting with initial state $\{C, H, O\}$, the results of reactions are:
thus

$$
\operatorname{res}_{A}(\{C, H, O\})=\{U\}
$$

Continuing with the state $\{C, H, O, U\}$, the results of reactions are:

```
res
```

$\operatorname{res}_{r 2}(\{C, H, O, U\})=\{V\}$ (since $\{C, H, U\} \subseteq\{C, H, O, U\}$ and $\varnothing \cap\{C, H, O, U\}=\varnothing$)
$\operatorname{res}_{r 3}(\{C, H, O, U\})=\operatorname{res}_{r 4}(\{C, H, U\})=\operatorname{res}_{r 5}(\{C, H, O, U\})=r e s_{r 6}(\{C, H, O, U\})=\varnothing$
thus

$$
\operatorname{res}_{A}(\{C, H, O, U\})=\{U, V\}
$$

Continuing with the state $\{C, H, O, U, V\}$, the results of reactions are:
$\operatorname{res}_{r I}(\{C, H, O, U, V\})=\{U\} \quad$ (since $\{C, H\} \subseteq\{C, H, O, U, V\}$ and $\varnothing \cap\{C, H, O, U, V\}=\varnothing$) $\operatorname{res}_{r 2}(\{C, H, O, U, V\})=\{V\}$ (since $\{C, H, U\} \subseteq\{C, H, O, U, V\}$ and $\varnothing \cap\{C, H, O, U, V\}=\varnothing$) $\operatorname{res}_{r 3}(\{C, H, O, U, V\})=\{W\}$ (since $\{H, V\} \subseteq\{C, H, O, U, V\}$ and $\varnothing \cap\{C, H, O, U, V\}=\varnothing$) $\operatorname{res}_{r 4}(\{C, H, O, U, V\})=\operatorname{res}_{r 5}(\{C, H, O, U, V\})=\operatorname{res}_{r 6}(\{C, H, O, U, V\})=\varnothing$
thus
$\operatorname{res}_{A}(\{C, H, O, U, V\})=\{U, V, W\}$

Continuing with the state $\{C, H, O, U, V, W\}$, the results of reactions are:
$\operatorname{res}_{r l}(\{C, H, O, U, V, W\})=\{U\} \quad$ (since $\{C, H\} \subseteq\{C, H, O, U, V, W\}$ and $\varnothing \cap\{C, H, O, U, V, W\}=\varnothing$) $\operatorname{res}_{r 2}(\{C, H, O, U, V, W\})=\{V\}$ (since $\{C, H, U\} \subseteq\{C, H, O, U, V, W\}$ and $\varnothing \cap\{C, H, O, U, V, W\}=\varnothing$) $\operatorname{res}_{r 3}(\{C, H, O, U, V, W\})=\{W\}$ (since $\{H, V\} \subseteq\{C, H, O, U, V, W\}$ and $\varnothing \cap\{C, H, O, U, V, W\}=\varnothing$) $\operatorname{res}_{r 4}(\{C, H, O, U, V, W\})=\{X\}$ (since $\{H, W\} \subseteq\{C, H, O, U, V, W\}$ and $\varnothing \cap\{C, H, O, U, V, W\}=\varnothing$) $\operatorname{res}_{r 5}(\{C, H, O, U, V, W\})=\operatorname{res}_{r 6}(\{C, H, O, U, V, W\})=\varnothing$
thus
$\operatorname{res}_{A}(\{C, H, O, U, V, W\})=\{U, V, W, X\}$

Continuing with the state $\{C, H, O, U, V, W, X\}$, the results of reactions are:

Abstract

$\operatorname{res}_{r 1}(\{C, H, O, U, V, W, X\})=\{U\}$ (since $\{C, H\} \subseteq\{C, H, O, U, V, W, X\}$ and $\varnothing \cap\{C, H, O, U, V, W, X\}=\varnothing$) $\operatorname{res}_{r 2}(\{C, H, O, U, V, W, X\})=\{V\}$ (since $\{C, H, U\} \subseteq\{C, H, O, U, V, W, X\}$ and $\varnothing \cap\{C, H, O, U, V, W, X\}=\varnothing$) $\operatorname{res}_{r 3}(\{C, H, O, U, V, W, X\})=\{W\}$ (since $\{H, V\} \subseteq\{C, H, O, U, V, W, X\}$ and $\varnothing \cap\{C, H, O, U, V, W, X\}=\varnothing$) $\operatorname{res}_{r 4}(\{C, H, O, U, V, W, X\})=\{X\}$ (since $\{H, W\} \subseteq\{C, H, O, U, V, W, X\}$ and $\varnothing \cap\{C, H, O, U, V, W, X\}=\varnothing$) $\operatorname{res}_{r 5}(\{C, H, O, U, V, W, X\})=\{Y\}$ (since $\{H, O, X\} \subseteq\{C, H, O, U, V, W, X\}$ and $\varnothing \cap\{C, H, O, U, V, W, X\}=\varnothing$) $\operatorname{res}_{r 6}(\{C, H, O, U, V, W, X\})=\varnothing$ thus

$\operatorname{res}_{A}(\{C, H, O, U, V, W, W, X\})=\{U, V, W, X, Y\}$

Continuing with the state $\{C, H, O, U, V, W, X, Y\}$, the results of reactions are:
$\operatorname{res}_{r l}(\{C, H, O, U, V, W, X, Y\})=\{U\}$ (since $\{C, H\} \subseteq\{C, H, O, U, V, W, X, Y\}$ and $\varnothing \cap\{C, H, O, U, V, W, X, Y\}=\varnothing$) $\operatorname{res}_{r 2}(\{C, H, O, U, V, W, X, Y\})=\{V\}$ (since $\{C, H, U\} \subseteq\{C, H, O, U, V, W, X, Y\}$ and $\varnothing \cap\{C, H, O, U, V, W, X, Y\}=\varnothing$) $\operatorname{res}_{r 3}(\{C, H, O, U, V, W, X, Y\})=\{W\}$ (since $\{H, V\} \subseteq\{C, H, O, U, V, W, X, Y\}$ and $\varnothing \cap\{C, H, O, U, V, W, X, Y\}=\varnothing$) $\operatorname{res}_{r 4}(\{C, H, O, U, V, W, X, Y\})=\{X\}$ (since $\{H, W\} \subseteq\{C, H, O, U, V, W, X, Y\}$ and $\varnothing \cap\{C, H, O, U, V, W, X, Y\}=\varnothing$) $\operatorname{res}_{r j}(\{C, H, O, U, V, W, X, Y\})=\{Y\}$ (since $\{H, O, X\} \subseteq\{C, H, O, U, V, W, X, Y\}$ and $\varnothing \cap\{C, H, O, U, V, W, X, Y\}=\varnothing$) $\operatorname{res}_{r 6}(\{C, H, O, U, V, W, X, Y\})\{Z\}$ (since $\{H, Y\} \subseteq\{C, H, O, U, V, W, X, Y\} \quad$ and $\varnothing \cap\{C, H, O, U, V, W, X, Y\}=\varnothing$) thus

The next slides present the animated evolution of the c-e structure with initial state $s(C)=s(H)=s(O)=1$ (and empty remaining nodes) imitating behaviour of reaction system A passing successive states. Regarding it as a translation of A, note that small nodes $c 1, c 2, h 1, h 2, h 3, h 4, h 5, h 6$ are some "artifacts" of this translation and have no counterparts in A. Intuitively, they might be seen as holding single atoms taken from C and H. The big nodes C, H, O may be seen as stores for atoms of carbon, hydrogen and oxygen. Remember that coefficient 0 in lower polynomials of nodes U, V, W, X, Y, permanently sustains tokens at them (according to definition of semantics of c-e structures).

$\mathrm{U}=\mathrm{CH}$ (methylidyne)

$\mathrm{V}=\mathrm{C}_{2} \mathrm{H}_{2}$ (acetylene)

$\mathrm{W}=\mathrm{C}_{2} \mathrm{H}_{3}$ (ethylenyl)

$\mathrm{X}=\mathrm{C}_{2} \mathrm{H}_{4}$ (ethylene)

$\mathrm{Y}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$ (ethoxide)

$\mathrm{Z}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethanol)

