
Evaluating Fault Localization

Techniques with Bug Signatures

and Joined Predicates

Roman Milewski, Simon Heiden, Lars Grunske

Automated Fault Localization

 given:

 program with (at least) one known bug

 usually indicated by at least one failing test case

 goals:

 locate the cause of the bug in the source code

 require as little human effort (time) as possible

2

FL

technique1 1. …
2. …
3. …

n. …

ranking of
suspicious elements

1[Won+16]

Bug Signatures

 in this context: sets of predicates1,2, indicative of the occurring bug

 common: use of data mining techniques to find the most

discriminative predicate sets

 predicates:

 boolean properties that were true at some point during a program run

 evaluated at multiple instrumentation sites during execution

 track simple relationships between program variables (e.g., x < y,

x == y, x >= y, …), or other properties that can be evaluated to true or

false. (e.g., x > 0, x == null, has a branch been taken?, …)

31[Lib+05], 2[SK13]

1. …
2. …
3. …

n. …

ranking of
suspicious elements

1. { 12:[z>0], 14:[i==j] }
2. { 12:[z>0] }
3. { 23:[a<b], 24:[b<c] }
…

=

ranking of
bug signatures

Example

4

1 public boolean isAnyTrue (boolean a, boolean b) {
2 int x = 1;
3 if (a)
4 ++x;
5 if (b)
6 ++x;
7 return x == 2; // bug; should be x >= 2
8 }

 Tests:

 isAnyTrue(true, false)

 result: true (expected: true)

 isAnyTrue(false, true)

 result: true (expected: true)

 isAnyTrue(true, true)

 result: false (expected: true)
 most discriminative bug signature:

{ 3:[a==true], 5:[b==true] }

Example (cont.)

5

1 public boolean isAnyTrue (boolean a, boolean b) {
2 int x = 1;
3 if (a)
4 ++x;
5 if (b)
6 ++x;
7 return x == 2; // bug; should be x >= 2
8 }

 Tests:

 isAnyTrue(true, false) ||

isAnyTrue(false, true) ||

isAnyTrue(false, false)

 result: true (expected: true)

 isAnyTrue(false, true) ||

isAnyTrue(true, false) ||

isAnyTrue(false, false)

 result: true (expected: true)

 isAnyTrue(true, true) ||

isAnyTrue(false, false)

 result: false (expected: true)

 problem:

 collected predicate data does not

allow to discriminate between test

cases.

Joined Predicates

 main idea: utilize information about the order of predicates

 joined predicate: sequence of satisfied predicates that has been

observed during a run of the program

 in our implementation: two predicates that directly follow each other

6

1 public boolean isAnyTrue (boolean a, boolean b) {
2 int x = 1;
3 if (a)
4 ++x;
5 if (b)
6 ++x;
7 return x == 2; // bug; should be x >= 2
8 }

 a discriminative

(joined) predicate:

3:[a==true] → 5:[b==true]

Evaluation

 three FL techniques:

 joined predicate bug signature

mining (our approach)

 singular predicate bug signature

mining1

 spectrum-based fault localization

(SBFL)2 using the DStar (D*) metric3

 evaluated on a subset of bugs from

the Defects4J benchmark4

 issues: source code compilation,

instrumenter crashes, JVM crashes

during test execution, runtime

evaluation timeouts, …

71[SK13], 2[Hei+19], 3[Won+14], 4[JJE14]

Quick side note: SBFL

8

1 public boolean isAnyTrue (boolean a, boolean b) {
2 int x = 1;
3 if (a)
4 ++x;
5 if (b)
6 ++x;
7 return x == 2; // bug; should be x >= 2
8 }

 Tests:

 isAnyTrue(true, false)

 result: true (exp.: true)

 isAnyTrue(false, true)

 result: true (exp.: true)

 isAnyTrue(true, true)

 result: false (exp.: true)

 output is ranking of executed lines

 SBFL assigns a score to each line

 based on the number of successful and

failing test cases that execute it (or do not)

 Dstar (D*): 𝑠𝑢𝑠𝑝 𝑠 =
𝑛𝑒𝑓
∗ (𝑠)

𝑛𝑒𝑝(𝑠)+𝑛𝑛𝑓(𝑠)

 lines 4 and 6 are seen as most suspicious

(executed less by passing test cases)

Evaluation metrics

 results are difficult to compare across FL techniques

 not all executed lines (i.e., included in SBFL results) are

instrumentation sites for the predicate based approaches

 our evaluation metric „simulates“ the user looking for the bug in the

neighborhood of the instrumentation sites, adding a penalty for the

performed additional effort (details in the paper)

 simplified, results are evaluated with a simple wasted effort metric

 elements can have the same suspiciousness score, so we

consider the following 3 cases:

 min. wasted effort: 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡(𝑠) = 𝑠′ 𝑠𝑢𝑠𝑝 𝑠′ > 𝑠𝑢𝑠𝑝(𝑠)

 max. wasted effort: 𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡 𝑠 = 𝑠′ 𝑠𝑢𝑠𝑝 𝑠′ ≥ 𝑠𝑢𝑠𝑝 𝑠 − 1

 avg. wasted effort: 𝑆𝑐𝑜𝑟𝑒𝑎𝑣𝑔(𝑠) =
𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 𝑠 +𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡(𝑠)

2

9

Results

 best case (lucky placement):

 (singular) predicate approach

is better than

 joined predicate approach

is better than

 SBFL approach

 worst case (unlucky placement):

 (singular) predicate approach

is better than

 joined predicate approach

and

 SBFL approach

10

Results (cont.)

 both predicate based approaches achieve better average scores

across nearly all projects (except cli)

11

Conclusions

1. the singular predicate based approach is clearly superior to SBFL

 quantitatively, as shown in our experiments

 qualitatively, since the user may access additional information

beyond the mere execution of a program element

2. using our prototype joined predicate based approach in its

current state is not advisable

 mediocre quantitative results

 potential qualitative benefits will likely not outweigh the overall

decreased performance

12

Future Work

 potential changes to make the approach more viable:

 smarter (pre-)selection of predicates to be joined (heuristics, etc.)

• reduction of noise

 optimizing the technical implementation (improved data structures,

statistical debugging techniques, …)

13

thank you!

14

References

 [Won+16] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, A survey on software fault

localization, IEEE Transactions on Software Engineering 42 (2016) 707–740.

doi:10.1109/tse.2016. 2521368.

 [Lib+05] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, M. I. Jordan, Scalable statistical bug

isolation, ACM SIGPLAN Notices 40 (2005) 15–26. doi:10.1145/1064978.1065014.

 [SK13] C. Sun, S.-C. Khoo, Mining succinct predicated bug signatures, in: Proceedings of the

2013 9th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2013, ACM

Press, 2013, pp. 576–586. doi:10.1145/2491411.2491449

 [Won+14] W. E. Wong, V. Debroy, R. Gao, Y. Li, The DStar method for effective software fault

localization, IEEE Transactions on Reliability 63 (2014) 290–308. doi:10.1109/tr.2013.

2285319.

 [Hei+19] S. Heiden, L. Grunske, T. Kehrer, F. Keller, A. Hoorn, A. Filieri, D. Lo, An evaluation

of pure spectrum-based fault localization techniques for large-scale software systems,

Software: Practice and Experience 49 (2019) 1197–1224. doi:10.1002/spe.2703

 [JJE14] R. Just, D. Jalali, M. D. Ernst, Defects4j: a database of existing faults to enable

controlled testing studies for java programs, in: Proceedings of the 2014 International

Symposium on Software Testing and Analysis - ISSTA 2014, ACM Press, 2014, pp. 437–440.

doi:10.1145/ 2610384.2628055

15

