
Evaluating Fault Localization

Techniques with Bug Signatures

and Joined Predicates

Roman Milewski, Simon Heiden, Lars Grunske

Automated Fault Localization

 given:

 program with (at least) one known bug

 usually indicated by at least one failing test case

 goals:

 locate the cause of the bug in the source code

 require as little human effort (time) as possible

2

FL

technique1 1. …
2. …
3. …

n. …

ranking of
suspicious elements

1[Won+16]

Bug Signatures

 in this context: sets of predicates1,2, indicative of the occurring bug

 common: use of data mining techniques to find the most

discriminative predicate sets

 predicates:

 boolean properties that were true at some point during a program run

 evaluated at multiple instrumentation sites during execution

 track simple relationships between program variables (e.g., x < y,

x == y, x >= y, …), or other properties that can be evaluated to true or

false. (e.g., x > 0, x == null, has a branch been taken?, …)

31[Lib+05], 2[SK13]

1. …
2. …
3. …

n. …

ranking of
suspicious elements

1. { 12:[z>0], 14:[i==j] }
2. { 12:[z>0] }
3. { 23:[a<b], 24:[b<c] }
…

=

ranking of
bug signatures

Example

4

1 public boolean isAnyTrue (boolean a, boolean b) {
2 int x = 1;
3 if (a)
4 ++x;
5 if (b)
6 ++x;
7 return x == 2; // bug; should be x >= 2
8 }

 Tests:

 isAnyTrue(true, false)

 result: true (expected: true)

 isAnyTrue(false, true)

 result: true (expected: true)

 isAnyTrue(true, true)

 result: false (expected: true)
 most discriminative bug signature:

{ 3:[a==true], 5:[b==true] }

Example (cont.)

5

1 public boolean isAnyTrue (boolean a, boolean b) {
2 int x = 1;
3 if (a)
4 ++x;
5 if (b)
6 ++x;
7 return x == 2; // bug; should be x >= 2
8 }

 Tests:

 isAnyTrue(true, false) ||

isAnyTrue(false, true) ||

isAnyTrue(false, false)

 result: true (expected: true)

 isAnyTrue(false, true) ||

isAnyTrue(true, false) ||

isAnyTrue(false, false)

 result: true (expected: true)

 isAnyTrue(true, true) ||

isAnyTrue(false, false)

 result: false (expected: true)

 problem:

 collected predicate data does not

allow to discriminate between test

cases.

Joined Predicates

 main idea: utilize information about the order of predicates

 joined predicate: sequence of satisfied predicates that has been

observed during a run of the program

 in our implementation: two predicates that directly follow each other

6

1 public boolean isAnyTrue (boolean a, boolean b) {
2 int x = 1;
3 if (a)
4 ++x;
5 if (b)
6 ++x;
7 return x == 2; // bug; should be x >= 2
8 }

 a discriminative

(joined) predicate:

3:[a==true] → 5:[b==true]

Evaluation

 three FL techniques:

 joined predicate bug signature

mining (our approach)

 singular predicate bug signature

mining1

 spectrum-based fault localization

(SBFL)2 using the DStar (D*) metric3

 evaluated on a subset of bugs from

the Defects4J benchmark4

 issues: source code compilation,

instrumenter crashes, JVM crashes

during test execution, runtime

evaluation timeouts, …

71[SK13], 2[Hei+19], 3[Won+14], 4[JJE14]

Quick side note: SBFL

8

1 public boolean isAnyTrue (boolean a, boolean b) {
2 int x = 1;
3 if (a)
4 ++x;
5 if (b)
6 ++x;
7 return x == 2; // bug; should be x >= 2
8 }

 Tests:

 isAnyTrue(true, false)

 result: true (exp.: true)

 isAnyTrue(false, true)

 result: true (exp.: true)

 isAnyTrue(true, true)

 result: false (exp.: true)

 output is ranking of executed lines

 SBFL assigns a score to each line

 based on the number of successful and

failing test cases that execute it (or do not)

 Dstar (D*): 𝑠𝑢𝑠𝑝 𝑠 =
𝑛𝑒𝑓
∗ (𝑠)

𝑛𝑒𝑝(𝑠)+𝑛𝑛𝑓(𝑠)

 lines 4 and 6 are seen as most suspicious

(executed less by passing test cases)

Evaluation metrics

 results are difficult to compare across FL techniques

 not all executed lines (i.e., included in SBFL results) are

instrumentation sites for the predicate based approaches

 our evaluation metric „simulates“ the user looking for the bug in the

neighborhood of the instrumentation sites, adding a penalty for the

performed additional effort (details in the paper)

 simplified, results are evaluated with a simple wasted effort metric

 elements can have the same suspiciousness score, so we

consider the following 3 cases:

 min. wasted effort: 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡(𝑠) = 𝑠′ 𝑠𝑢𝑠𝑝 𝑠′ > 𝑠𝑢𝑠𝑝(𝑠)

 max. wasted effort: 𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡 𝑠 = 𝑠′ 𝑠𝑢𝑠𝑝 𝑠′ ≥ 𝑠𝑢𝑠𝑝 𝑠 − 1

 avg. wasted effort: 𝑆𝑐𝑜𝑟𝑒𝑎𝑣𝑔(𝑠) =
𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 𝑠 +𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡(𝑠)

2

9

Results

 best case (lucky placement):

 (singular) predicate approach

is better than

 joined predicate approach

is better than

 SBFL approach

 worst case (unlucky placement):

 (singular) predicate approach

is better than

 joined predicate approach

and

 SBFL approach

10

Results (cont.)

 both predicate based approaches achieve better average scores

across nearly all projects (except cli)

11

Conclusions

1. the singular predicate based approach is clearly superior to SBFL

 quantitatively, as shown in our experiments

 qualitatively, since the user may access additional information

beyond the mere execution of a program element

2. using our prototype joined predicate based approach in its

current state is not advisable

 mediocre quantitative results

 potential qualitative benefits will likely not outweigh the overall

decreased performance

12

Future Work

 potential changes to make the approach more viable:

 smarter (pre-)selection of predicates to be joined (heuristics, etc.)

• reduction of noise

 optimizing the technical implementation (improved data structures,

statistical debugging techniques, …)

13

thank you!

14

References

 [Won+16] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, A survey on software fault

localization, IEEE Transactions on Software Engineering 42 (2016) 707–740.

doi:10.1109/tse.2016. 2521368.

 [Lib+05] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, M. I. Jordan, Scalable statistical bug

isolation, ACM SIGPLAN Notices 40 (2005) 15–26. doi:10.1145/1064978.1065014.

 [SK13] C. Sun, S.-C. Khoo, Mining succinct predicated bug signatures, in: Proceedings of the

2013 9th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2013, ACM

Press, 2013, pp. 576–586. doi:10.1145/2491411.2491449

 [Won+14] W. E. Wong, V. Debroy, R. Gao, Y. Li, The DStar method for effective software fault

localization, IEEE Transactions on Reliability 63 (2014) 290–308. doi:10.1109/tr.2013.

2285319.

 [Hei+19] S. Heiden, L. Grunske, T. Kehrer, F. Keller, A. Hoorn, A. Filieri, D. Lo, An evaluation

of pure spectrum-based fault localization techniques for large-scale software systems,

Software: Practice and Experience 49 (2019) 1197–1224. doi:10.1002/spe.2703

 [JJE14] R. Just, D. Jalali, M. D. Ernst, Defects4j: a database of existing faults to enable

controlled testing studies for java programs, in: Proceedings of the 2014 International

Symposium on Software Testing and Analysis - ISSTA 2014, ACM Press, 2014, pp. 437–440.

doi:10.1145/ 2610384.2628055

15

