Evaluating Fault Localization
Techniques with Bug Signatures
and Joined Predicates

Roman Milewski, SImon Heiden, Lars Grunske

o
XA
R
|

Software
Engineering

Automated Fault Localization

= given:

= program with (at least) one known bug

= usually indicated by at least one failing test case
= goals:

= |ocate the cause of the bug in the source code

= require as little human effort (time) as possible

ranking of
FL suspicious elements

0 techniquel %
3. ...

[Won+16] 2

Bug Signatures

= jn this context: sets of predicates!?, indicative of the occurring bug

= common: use of data mining techniques to find the most
discriminative predicate sets

= predicates:
= boolean properties that were true at some point during a program run

= evaluated at multiple instrumentation sites during execution

= track simple relationships between program variables (e.g., x <y,
X ==Yy, X>=Yy, ...), or other properties that can be evaluated to true or

false. (e.g., x > 0, x == null, has a branch been taken?, ...)

ranking of ranking of
suspicious elements bug signatures

1. ... 1. {12:[z>0], 14:[i==j] }

2. ... = 2. {12:[z>0]}

3. ... 3. {23:[a<b], 24:[b<c] }

1Lib+05], 2[SK13] o J

Example

1 public boolean isAnyTrue (boolean a, boolean b) {

2 intx=1,;

3 if (a)

4 ++X; :

5 if (b) = Tests:

6 ++X; = ISAnyTrue(true, false)

; \ return x == 2; // bug; should be x >= 2 = result: true (expected: true)

= |SAnyTrue(false, true)
= result: true (expected: true)

= ISAnyTrue(true, true)

= most discriminative bug signature: " result: false (expected: true)

{ 3:[a==true], 5:[b==true] }

Example (cont.)

1 public boolean isAnyTrue (boolean a, boolean b) {

2 intx=1;
3 if(a) = Tests:
4 ++X; .
5 if (b) = IsSAnyTrue(true, false) ||
6 +4x: iISAnyTrue(false, true) ||
7 return x == 2; // bug; should be x >= 2 iSAnyTrue(false, false)
8
} = result: true (expected: true)
= isAnyTrue(false, true) ||
iISAnyTrue(true, false) ||
iISAnyTrue(false, false)
= result: true (expected: true)
= problem:
= collected predicate data does not = isAnyTrue(true, true) ||
allow to discriminate between test isAnyTrue(false, false)
cases.

= result: false (expected: true)
5

Joined Predicates Som

= main idea: utilize information about the order of predicates

= joined predicate: sequence of satisfied predicates that has been
observed during a run of the program
= In our implementation: two predicates that directly follow each other

1 public boolean isAnyTrue (boolean a, boolean b)) {

2 intx=1,

3 if (a)

4 ++X; . " .

5 if (b) = adiscriminative

6 +4X; (Joined) predicate:
7 return x == 2; // bug; should be x >= 2

8}

3:[a==true] — 5:[b==true]

Evaluation

= three FL technigues:

= Jjoined predicate bug signature
mining (our approach)

= singular predicate bug signature
mining?

= spectrum-based fault localization
(SBFL)? using the DStar (D*) metric3

= evaluated on a subset of bugs from
the Defects4J benchmark?
= |ssues: source code compilation,
Instrumenter crashes, JVM crashes

during test execution, runtime
evaluation timeouts, ...

1[SK13], 2[Hei+19], 3[Won+14], 4JIE14]

project size[loc] #bugs
jfreechart (Chart) 96k 26
commons-cli (Cli) 2k 39
commons-codec (Codec) 3k 18
commons-csv (Csv) 1k 16
gson (Gson) 6k 18
commons-lang (Lang) 22k 64
commons-math (Math) 84k 106
joda-time (Time) 90k 26
Total 313

Applicable after
Instrumentation 292

Applicable after

Runtime Eval.

162

Quick side note: SBFL

1 public boolean isAnyTrue (boolean a, boolean b) {

2 intx=1;

3 if (a)

4 ++X; .

5 if (b) = Tests:

6 ++X; = ISAnyTrue(true, false)
7 return x == 2;// bug; should be x >= 2 . .

5y J = result: true (exp.: true)

= |SAnyTrue(false, true)

= output Is ranking of executed lines
= result: true (exp.: true)

SBFL assigns a score to each line

= bpased on the number of successful and
failing test cases that execute it (or do not)
an(S)

Nep(S)+Nnr(S)

lines 4 and 6 are seen as most suspicious

(executed less by passing test cases)

= ISAnyTrue(true, true)
= result: false (exp.: true)

» Dstar (D*): susp(s) =

Evaluation metrics

= results are difficult to compare across FL techniques

= not all executed lines (i.e., included in SBFL results) are
Instrumentation sites for the predicate based approaches

= our evaluation metric ,simulates” the user looking for the bug in the
neighborhood of the instrumentation sites, adding a penalty for the
performed additional effort (details in the paper)

= simplified, results are evaluated with a simple wasted effort metric

= elements can have the same suspiciousness score, SO we
consider the following 3 cases:
= min. wasted effort: Scorey s (s) = |{s'|susp(s’) > susp(s)}

= max. wasted effort: Score,, - (s) = |{s'|susp(s’) = susp(s)}| — 1

Score S)+Score S
= avg. wasted effort: Scoreg,y(s) = best(s) : worst(S)

Results

= pest case (lucky placement):

= (singular) predicate approach
IS better than

= Jjoined predicate approach
IS better than

= SBFL approach

= worst case (unlucky placement):

= (singular) predicate approach
IS better than

= joined predicate approach
and

= SBFL approach

400

EvaluationScore

200

p—values from Wilcoxon Signed Rank Tests (paired)

p = 0.0063
[
p = 5e-05
p=0.15
p =0.004
| p = 3.8e-20 |
p=0.01
|
: Score Type
E3 Best
B Worst
i
- $ *
: H
[] -
L H
T ; |
[]
3
L]
: |
é - _L I[_'_]l [L]
Joined Predicates Predicates SBFL

10

Total EvaluationScore

Results (cont.)

Best Waorst
8000
B I I
]
—
o M —
Joined Predicates SBFL Joined Predicates SBFL
Predicates Predicates

Defectsd
project

chart
cli
codec
CcsV
gson

lang
B math

time

time-

math-

lang-

gson-

CsV-

codec-

cli-

chart-

<
(=)
®
@
@Qﬂﬁéﬁ%
o

&,
NOICIONOXOXCIOI0,
HOXIO 00 |
oz
L=}

2

= pboth predicate based approaches achieve better average scores
across nearly all projects (except cli)

11

Conclusions

1. the singular predicate based approach is clearly superior to SBFL

= quantitatively, as shown in our experiments

= qualitatively, since the user may access additional information
beyond the mere execution of a program element

2. using our prototype joined predicate based approach in its
current state is not advisable
= mediocre quantitative results

= potential qualitative benefits will likely not outweigh the overall
decreased performance

Future Work

= potential changes to make the approach more viable:

= smarter (pre-)selection of predicates to be joined (heuristics, etc.)
* reduction of noise

= optimizing the technical implementation (improved data structures,

statistical debugging techniques, ...)

thank you!

~at,
~at,
S

Software
Engineering

References

= [Won+16] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, A survey on software fault
localization, IEEE Transactions on Software Engineering 42 (2016) 707—740.
doi:10.1109/tse.2016. 2521368.

= [Lib+05] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, M. |. Jordan, Scalable statistical bug
isolation, ACM SIGPLAN Notices 40 (2005) 15—-26. doi:10.1145/1064978.1065014.

= [SK13] C. Sun, S.-C. Khoo, Mining succinct predicated bug signatures, in: Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2013, ACM
Press, 2013, pp. 576-586. do0i:10.1145/2491411.2491449

= [Won+14] W. E. Wong, V. Debroy, R. Gao, Y. Li, The DStar method for effective software fault
localization, IEEE Transactions on Reliability 63 (2014) 290-308. doi:10.1109/tr.2013.
2285319.

= [Hei+19] S. Heiden, L. Grunske, T. Kehrer, F. Keller, A. Hoorn, A. Filieri, D. Lo, An evaluation
of pure spectrum-based fault localization techniques for large-scale software systems,
Software: Practice and Experience 49 (2019) 1197-1224. doi:10.1002/spe.2703

= [JJE14] R. Just, D. Jalali, M. D. Ernst, Defects4j: a database of existing faults to enable
controlled testing studies for java programs, in: Proceedings of the 2014 International
Symposium on Software Testing and Analysis - ISSTA 2014, ACM Press, 2014, pp. 437-440.
doi:10.1145/ 2610384.2628055

