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Automated Fault Localization

 given: 

 program with (at least) one known bug

 usually indicated by at least one failing test case

 goals: 

 locate the cause of the bug in the source code

 require as little human effort (time) as possible
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Bug Signatures

 in this context: sets of predicates1,2, indicative of the occurring bug

 common: use of data mining techniques to find the most

discriminative predicate sets

 predicates: 

 boolean properties that were true at some point during a program run

 evaluated at multiple instrumentation sites during execution

 track simple relationships between program variables (e.g., x < y, 

x == y, x >= y, …), or other properties that can be evaluated to true or

false. (e.g., x > 0, x == null, has a branch been taken?, …)
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1. { 12:[z>0], 14:[i==j] }
2. { 12:[z>0] }
3. { 23:[a<b], 24:[b<c] }
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Example
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1 public boolean isAnyTrue ( boolean a, boolean b ) {
2 int x = 1;
3 if (a) 
4 ++x;
5 if (b) 
6 ++x;
7 return x == 2; // bug; should be x >= 2
8 }

 Tests:

 isAnyTrue( true, false )

 result: true (expected: true)

 isAnyTrue( false, true )

 result: true (expected: true)

 isAnyTrue( true, true )

 result: false (expected: true)
 most discriminative bug signature:

{ 3:[a==true], 5:[b==true] }



Example (cont.)
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1 public boolean isAnyTrue ( boolean a, boolean b ) {
2 int x = 1;
3 if (a) 
4 ++x;
5 if (b) 
6 ++x;
7 return x == 2; // bug; should be x >= 2
8 }

 Tests:

 isAnyTrue( true, false ) ||

isAnyTrue( false, true ) ||

isAnyTrue( false, false )

 result: true (expected: true)

 isAnyTrue( false, true ) ||

isAnyTrue( true, false ) ||

isAnyTrue( false, false )

 result: true (expected: true)

 isAnyTrue( true, true ) ||

isAnyTrue( false, false )

 result: false (expected: true)

 problem: 

 collected predicate data does not 

allow to discriminate between test

cases.



Joined Predicates

 main idea: utilize information about the order of predicates

 joined predicate: sequence of satisfied predicates that has been

observed during a run of the program

 in our implementation: two predicates that directly follow each other
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1 public boolean isAnyTrue ( boolean a, boolean b ) {
2 int x = 1;
3 if (a) 
4 ++x;
5 if (b) 
6 ++x;
7 return x == 2; // bug; should be x >= 2
8 }

 a discriminative

(joined) predicate:

3:[a==true] → 5:[b==true]



Evaluation

 three FL techniques:

 joined predicate bug signature

mining (our approach)

 singular predicate bug signature

mining1

 spectrum-based fault localization

(SBFL)2 using the DStar (D*) metric3

 evaluated on a subset of bugs from

the Defects4J benchmark4

 issues: source code compilation, 

instrumenter crashes, JVM crashes 

during test execution, runtime 

evaluation timeouts, …

71[SK13], 2[Hei+19], 3[Won+14], 4[JJE14]



Quick side note: SBFL
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1 public boolean isAnyTrue ( boolean a, boolean b ) {
2 int x = 1;
3 if (a) 
4 ++x;
5 if (b) 
6 ++x;
7 return x == 2; // bug; should be x >= 2
8 }

 Tests:

 isAnyTrue( true, false )

 result: true (exp.: true)

 isAnyTrue( false, true )

 result: true (exp.: true)

 isAnyTrue( true, true )

 result: false (exp.: true)

 output is ranking of executed lines

 SBFL assigns a score to each line

 based on the number of successful and

failing test cases that execute it (or do not)

 Dstar (D*): 𝑠𝑢𝑠𝑝 𝑠 =
𝑛𝑒𝑓
∗ (𝑠)

𝑛𝑒𝑝(𝑠)+𝑛𝑛𝑓(𝑠)

 lines 4 and 6 are seen as most suspicious

(executed less by passing test cases)



Evaluation metrics

 results are difficult to compare across FL techniques

 not all executed lines (i.e., included in SBFL results) are

instrumentation sites for the predicate based approaches

 our evaluation metric „simulates“ the user looking for the bug in the

neighborhood of the instrumentation sites, adding a penalty for the

performed additional effort (details in the paper)

 simplified, results are evaluated with a simple wasted effort metric

 elements can have the same suspiciousness score, so we

consider the following 3 cases:

 min. wasted effort:    𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡(𝑠) = 𝑠′ 𝑠𝑢𝑠𝑝 𝑠′ > 𝑠𝑢𝑠𝑝(𝑠)

 max. wasted effort: 𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡 𝑠 = 𝑠′ 𝑠𝑢𝑠𝑝 𝑠′ ≥ 𝑠𝑢𝑠𝑝 𝑠 − 1

 avg. wasted effort:    𝑆𝑐𝑜𝑟𝑒𝑎𝑣𝑔(𝑠) =
𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 𝑠 +𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡(𝑠)
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Results

 best case (lucky placement):

 (singular) predicate approach

is better than

 joined predicate approach

is better than

 SBFL approach

 worst case (unlucky placement):

 (singular) predicate approach

is better than

 joined predicate approach

and

 SBFL approach
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Results (cont.)

 both predicate based approaches achieve better average scores

across nearly all projects (except cli)
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Conclusions

1. the singular predicate based approach is clearly superior to SBFL

 quantitatively, as shown in our experiments

 qualitatively, since the user may access additional information

beyond the mere execution of a program element

2. using our prototype joined predicate based approach in its

current state is not advisable

 mediocre quantitative results

 potential qualitative benefits will likely not outweigh the overall

decreased performance
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Future Work

 potential changes to make the approach more viable:

 smarter (pre-)selection of predicates to be joined (heuristics, etc.)

• reduction of noise

 optimizing the technical implementation (improved data structures, 

statistical debugging techniques, …)
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thank you!
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