Specifying Event/Data-based Systems

Alexander Knapp
Universitat Augsburg

Joint work with Rolf Hennicker and Alexandre Madeira

Specifying Event/Data-based Systems

Event/Data-based systems
» behaviour controlled by events
» data states may change in reaction to events

Specification of event/data-based systems
» Model-oriented approaches (constructive specification)

» Event-B, symbolic transition systems, CSP with data, UML
behavioural/protocol state machines

» Property-oriented approaches (abstract specification)
» modal (temporal, dynamic) logics, TLA

» Checking whether a concrete model satisfies certain abstract properties
» Refining abstract models to concrete implementations

A. Knapp: Specifying Event/Data-based Systems 2/34

Example: Specifying an ATM

Events {insertCard, enterPIN, ejectCard}, data attributes {chk}

Axiomatic specification using modal logic formulee, like

» “Whenever a card has been inserted, a correct PIN can eventually be
entered.”

» AG(done(insertCard) — EF(done(enterPIN) A chk = 1))
» [E*;insertCard|(E*; (enterPIN//chk’ = r))true

» “Whenever a correct PIN has been entered, the card can eventually be
ejected.”

» AG(chk = 1t — EF enabled(ejectCard))
» [E*; (enterPIN//chk’ = 11)](E*; ejectCard)true

» “A card cannot be ejected if it has not been inserted before.”

» —enabled(ejectCard) W done(insertCard)
» [(—insertCard)*; ejectCard]false

A. Knapp: Specifying Event/Data-based Systems 3/34

Temporal Logic of Actions (1)

Leslie Lamport. Specifying Systems. Addison Wesley, 2002
» linear temporal logic for describing transition systems
» data from general set theory, no special notions of states or events

InitATM = st = Card N\ chk € B A trls € N

InsertCard = st = Card N\ chk' = ff Ntrls' = 0 A st = PIN
EnterPIN1 = st = PIN A trls < 2 A chk’ = ff A trls’ = trls + 1 A st' = PIN
EnterPIN2 = st = PIN A trls = 2 A chk’ = ff A trls’ = trls + 1 A st’ = Card
EnterPIN3 = st = PIN A tris < 2 A chk’ = tt A trls’ = trls + 1 A st = Return

EnterPIN = EnterPIN1 V EnterPIN2 \/ EnterPIN3

Cancel = st = PIN A chk’ = ff A trls’ = trls A st = Return
EjectCard = st = Return A chk’ = chk A trls' = trls A\ st = Card
NextATM = InsertCard N EnterPIN V Cancel NV EjectCard
ATM = InitATM N O[NextATM)y ek ris N WEst ek ir1s(NextATM)

A. Knapp: Specifying Event/Data-based Systems

4/34

Temporal Logic of Actions (2)

General TLA system specification format
Init A O[Next|3 A L

v

Init state predicate for initial states
Next disjunction of transition predicates (actions)
» involving primed and unprimed variables
tuple Vv of variables that can be changed by the system
_____ w =AV (v =VIAL AV, =)
» L conjunction of action fairness conditions (weak, strong)

v

v

TLA stutter-invariant
» stuttering steps without changes to system variables

» parallel composition (mainly) by conjunction, trace refinement as
implication

» property specifications in LTL

A. Knapp: Specifying Event/Data-based Systems

5/34

UML State Machines (1)

Object Managment Group. Unified Modeling Language 2.5.1.
formal/2017-12-05, 2017

» protocol and behaviour state machines (like Harel state charts)

» data from contextual static structure, dedicated support for (hierarchical)
states and (signal, call, &c.) events

[trls < 2]enterPIN/

insertCard
insertCard/ [chk = ff A trls = trlsépre + 1]

[chk = ff A trls = 0]

[trls = 2]enterPIN/

[chk = ff A trls = tris@pre + 1]
cancel/
ejectCard/ [chk = ff A trls = tris@pre]

[chk = chk@pre Atrls = trls@pre]

R
Return

A. Knapp: Specifying Event/Data-based Systems 6/34

[trls < 2]enterPIN/
[chk = 1t A trls = tris@pre + 1]

UML State Machines (2)

Protocol state machines for describing legal sequences of event occurrences

A [prelevt/[post] B

Behaviour state machines for operational specifications

A evi|guard)/effect B

UML notorious for lack of semantics

» parallel composition “synchronously” by orthogonal regions (same
machine), or “asynchronously” (different machines) via event queues

» refinement (“redefinition”) rather unclear

» property specifications in OCL (oc1lInState)

A. Knapp: Specifying Event/Data-based Systems 7/34

Symbolic Transition Systems (1)

Pascal Poizat, Jean-Claude Royer. A Formal Architectural Description
Language based on Symbolic Transition Systems and Modal Logic. J. Univ.
Comp. Sci. 12(12), 2006, pp. 1741-1782

» symbolic analysis by unfolding
» data from underlying abstract data type, explicit states and events

[ir2(self)] enterPIN? /
enterPIN1(self)

[eq2(self)] enterPIN? /enterPIN2(self)
cancel? /cancel(self)

ejectCard? /ejectCard(self)

[leq2(self)] enterPIN? /
enterPIN3(self)

Return

insertCard(newATM (chk, trls)) = newATM(ff,0)
112(newATM (chk, trls)) = trls < 2

A. Knapp: Specifying Event/Data-based Systems 8/34

Symbolic Transition Systems (2)

General form of transitions
T C S x Tm(Xpoor, X) x Evt(L) X Tm(Xp;, X) x S
» source (control) state, guard term, event (input/output),
action term, target (control) state
» Unfolding into symbolic state set §': if v € Tm(Xp,), (s,v) € §,
(s,8,e,a,t) € T,and g(v)|, then (t,a(v)]) € &
» initial semantics of abstract data type
Used for specifying software architectures
» parallel composition by synchronous product
» property specifications in modal logic over events with (control) state test

Q
@s and state binding 3 x. ¢

A. Knapp: Specifying Event/Data-based Systems 9/34

Communicating Sequential Processes (1)
Andrew W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1998

» process algebra (like CCS, LOTOS, uCRL)

» data from set theory, process terms as states, labels as events

Card(chk, trls) = insertCard — PIN(ff, 0)

PIN(chk, trls) = (trls < 2 & enterPIN — PIN(ff, trls + 1)
M Return(zt, trls + 1))

O (trls = 2 & enterPIN — Card(ff, trls + 1)
M Return(zt, trls + 1))

O (cancel — Return(ff, trls))
Return(chk, trls) = ejectCard — Card(chk, trls)

ATM = I_I(chk,trls)GBXN Card(chk, trls)

A. Knapp: Specifying Event/Data-based Systems 10/34

Communicating Sequential Processes (2)

Semantics based on traces, failures, and divergences

tr(a—P)={(O}U{{a) ~s|setr(P)}

tr(c & P) = {tr(P) if ¢ evalluates to true
{{)} otherwise
tr(PO Q) = tr(P) U tr(Q)
tr(PT1Q) = tr(P) U tr(Q)

» (synchronous) parallel composition integral part of the language
» property specifications also given by CSP processes

» combination with algebraic specification language CASL for loose
semantics of data

A. Knapp: Specifying Event/Data-based Systems

11/34

Synchronous Languages (1)

Rajeev Alur. Principles of Cyber-Physical Systems. MIT Press, 2015

» tick-based, synchronous execution (like Lustre, Esterel)
» events given by status of signals (present or absent)

bool chk, nat trls
event . Card?
insertCard insertCard? —
—) chk’ = ff Atrls’ =0
event
enterPIN
- 7 trls = 2 A enterPIN? —
event chk’ = ff Atrls’ =trls + 1
cancel cancel? —
ejectCard? —
chk’ = chk A trls’ = trls
event
ejectCard trls < 2 A enterPIN? —

trls < 2 A enterPIN? —
chk! = ff Atrls’ = trls + 1

chk! = ff Atrls’ = trls

chk’ = 1t Atrls’ = trls + 1

A. Knapp: Specifying Event/Data-based Systems

12/34

Synchronous Languages (2)

Synchrony hypothesis
» Model of computation: In each tick, read inputs, compute, produce outputs

» synchronous and instanteneous over all tasks
» dependency checks over tasks

. i1/o1 ir/02
» Semantics: s — sp ——

Status (and values) of all signals form a single event
» parallel composition by task union
» asynchronous variant based on channels (similar to Promela)

A. Knapp: Specifying Event/Data-based Systems 13/34

Event-B (1)
Jean-Raymond Abrial. Modeling in Event-B. Cambridge University Press, 2010

» abstract state machine approach (like Z, B)
» events as transitions, state and data from set theory

invariant st € {Card, PIN, Return} A chk € B Atlrs € N

events init = then st := Card end
insertCard = when st = Card then chk := ff; trls := 0; st := PIN end

enterPIN = when st = PIN then chk, trls, st :|
(trls <2 ANchk' =ff Ntrls' = trls + 1 A st = PIN) V

(trls = 2 AN chk’ = ff AN trls’ = trls + 1 A st’ = Card) V
(trls <2 A chk' =1t Nrls’ = trls + 1 A st' = Return)

end
cancel = when st = PIN then chk := ff; st := Return end

ejectCard = when st = Return then st := Card end

14/34

A. Knapp: Specifying Event/Data-based Systems

Event-B (2)

General event format
e = status o when G(V) then v :| H(V,V)
» guard G, before-after predicate H (or assignments)
» status ‘ordinary’ or ‘convergent’ (internal: decreasing variant) or
‘anticipated’ (not increasing variant)
Focus on (data) refinement (proof obligations)
» traces based on weakest precondition semantics
» introducing new events by refining skip

» Parallel (de-)composition can be added (M. Butler 2009)
» Combination with CSP for explicit control (S. Schneider, H. Treharne 2010)

A. Knapp: Specifying Event/Data-based Systems 15/34

Specifying Event/Data-based Systems Revisited

Goals
» Common logical formalism for specifying event/data-based systems on
various levels of abstraction
» Program development by stepwise refinement (“correct by construction”)
» from axiomatic to operational specifications
» based on rigorous formal semantics
Approach — £+
» Integrate dynamic and hybrid logic features

» Dynamic logic for abstract requirements (safety, liveness, ...)
» Hybrid logic for concrete process structure

» Apply Sannella & Tarlecki’s refinement methodology in the context of
event/data-based systems

Rolf Hennicker, Alexandre Madeira. A. K. A Hybrid Dynamic Logic for
Event/Data-based Systems. FASE 2019.

A. Knapp: Specifying Event/Data-based Systems 16/34

Syntax: Event/Data Actions and Formulae (1)

Ed signature ¥ = (E, A) with events E and data attributes A
» datastatew € Q(X¥)=A— D
> state predicates ¢ € ®(X) withw =L ¢
» transition predicates ¢ € V(X)) with (w,w’) =L ¥

Y-ed actions A € A(Y)
/\::Zeiw ‘ A+ ‘ AL A ‘ A*

» transition specification e//1) for event e and effect specification
» abbreviate e; J/true + ... + e Jtrue by {ey,..., e}, E(X) by E, ...

» complex actions with “or” +, “sequence” ;, and “iteration” *

Example: E*; enterPIN/chk’ =

“a finite sequence of events with arbitrary effects followed by event enterPIN
such that afterwards attribute chk is #”

A. Knapp: Specifying Event/Data-based Systems

17/34

Syntax: Event/Data Actions and Formulae (2)

S-ed formulze o € Frm€' (%)

ex=¢ [x| lx.o| (@x)o | (Ne | [Me | true | ~o | o1V
state predicates ¢

control state variables x € X

hybrid logic “bind” |x and “jump” @Qx

dynamic logic “diamond” (\) and “box” [A]

vV V. v. v Y

usual propositional connectives

Example: |xo . [E*; (enterPIN//chk’ = 1) + cancel](E*; ejectCard)xo
“Whenever a correct PIN has been entered or the transaction has been
cancelled, the card can eventually be ejected and the ATM starts from the
beginning.”

A. Knapp: Specifying Event/Data-based Systems

18/34

Semantics: Event/Data Transition Systems

S-edis M = (T',R,Ty) € Edtst (%)
» configurations I' C C x Q(X) of control states C and data states ()
» transition relations R C (R, C ' x I'),cp(x)
» initial configurations Ty C {co} x Qp with Qp C Q(X)

» all configurations required to be reachable

Interpretation of ¥-ed actions over M as (Ry C I' x T') e p(x) defined by
> Ropy = {((c.w). (¢.&)) € Re | (w,0) FRy) 9}
> Ry 4+ = Ry URy,
> Rain, = Ry Ry,

A. Knapp: Specifying Event/Data-based Systems 19/34

Semantics: Event/Data Satisfaction Relation

Given X-edts M, valuation v : X — C(M), configuration v € I'(M)
My ES e iftw(y) Bl ¢
M,v,~y):‘gx iff () = v(x)
M.v.y 5 L oiff Movix o e()}7 5 o
M,v,~):g (Qx)oiff M, v,):‘g oforally' € T'(M) with c(y") = v(x)
M, v,y =5 (N oift M,v,~' =& o for some 4/ € T(M) with (7,7') € R(M),

M £ g for S-ed sentences if M, v, vy =5 g for all yg € To(M)

A. Knapp: Specifying Event/Data-based Systems 20/34

Axiomatic Event/Data Specifications

Axiomatic ed specification Sp = (X, Ax) over ed signature ¥
» set of X-ed sentences Ax as axioms
(Loose) semantics of Sp given by model class Mod(Sp) of edts
» Mod(Sp) = {M € Edis® () | M |=£" Ax}
Example: Specification ATM with ¥y = ({insertCard, ...}, {chk}) and Axy:
[E*; (enterPINJchk’ =) + cancel](E*; ejectCard)true ,
Example: Specification ATM | with X1 = ¥ and Ax;:
Ixo . [E*; (enterPIN/chk’ = #t) + cancel](E*; ejectCard)xq

1xo . (insertCard Jchk’ = ff)true A
[insertCard/—(chk’ = ff)]false A [—insertCard|false ,

Stepwise refinement in EV ATMy ~ ATM | ~~ . ..

A. Knapp: Specifying Event/Data-based Systems 21/34

Refining £+-Specifications (1)

Simple refinement (or implementation) relation for specifications
Sp ~ Sp’ it £(Sp) = X(Sp’) and Mod(Sp) 2 Mod(Sp’)

» no signature changes, no construction of an implementation

Constructor from (X/,...,%)) to &
> (total) function « : Edist (S}) x ... x Edis® () — Edis®* (%)

» constructor composition by usual function composition

(Sp, ..., Sp,) constructor implementation via x of Sp
> Sp~=p (Spl, ..., Spy) ifs(MY, ..., M],) € Mod(Sp) for all M! € Mod(Sp’)

(Sannella, Tarlecki 1988)

A. Knapp: Specifying Event/Data-based Systems 22/34

Refining £-Specifications (2)
Refinement chain
Spl MR sz MRy s YRy Spn

Constructors for Ei-specifications
» relabelling x,
» p-reduct of edts for a bijective ed signature morphism p

» restriction k, a
» -reduct of edts for an injective e v:{a} = {a,b}
ed signature morphism ¢ Q%%
» event refinement K,
» «-reduct of edts for an ed signature o000 a(a) =@
morphism « to composite events TI|04 , , a(b) = b';c’
Ou=e|0+0]0,0|0° O-50-50-50

» parallel composition kg
> binary constructor: Sp ~. (Sp}, Sp3)
» synchronous product of edts with composable signatures

A. Knapp: Specifying Event/Data-based Systems 23/34

Operational Event/Data Specifications (1)

More constructive specification style
» graphical representation (like STS, UML protocol state machines)
» can be faithfully expressed in £+

Example: Specification ATM, with ¥, = ({insertCard, ...}, {chk, trls})

trls < 2 — enterPIN//

true insertCard // chk’ FAts = trls + 1

chk/ = ff Atrls’ =0

trls =2 — enterPINﬂ
chk’ = ff Atrls’ = trls + 1

cancel//
ejectCard // chk’ = ff Atrls’ = trls

chk’ = chk A trls’ = trls

trls < 2 — enterPIN//
chk’ =t Atrls’ = trls + 1

Stepwise refinement in E¥: ATMy ~ ATM, RS ATM,

A. Knapp: Specifying Event/Data-based Systems

24/34

Operational Event/Data Specifications (2)

Operational ed specification O = (X, C, T, (co, o)) over ed signature X

» control states C

» transition relation specification 7 C C x (%) x E(X) x ¥(X) x C
» separate precondition in ®(X) and transition predicate in ¥(X)

» initial control state ¢y € C, initial state predicate ¢y € ®(X)
» all control states syntactically reachable from cq

(Loose) semantics of O given by model class of edts with M € Mod(O) if
» R(M) only shows transitions allowed by T
» forall ((c,w), (c’,w’)) € R(M), there is a
(c,p,e,1,c") € T with w \:EE) pand (w,w’)

LD s
~am) ¥
» R(M) realises T for satisfied preconditions

> forall (c,p,e,1),¢') € Tandw =1y, @, thereis a

((e,w), (¢, ")) € R(M), with (w,w) ED s, ¥

A. Knapp: Specifying Event/Data-based Systems 25/34

Expressiveness of £+

Theorem For every operational ed specification O with finitely many control
states there is an ed sentence gp such that

M € Mod(0) <= M £, 00

Example
true insertCard / trls < 2 enteerNi

f chk =ff Atrls’ =trls + 1
chk/ = ff Atrls’ =0

T trls = 2 — enterPIN//

chk’ = ff Atrls’ = trls + 1 / .
rancal /7

1Card . {insertCard Jchk’ = ff A trls’ = 0)

LPIN . (QCard)[insertCard Jchk’ = ff A trls’ = O]PIN A
[insertCard /chk’ = # V trls’ # O]false A
[{enterPIN, cancel, ejectCard}]false A . ..

A. Knapp: Specifying Event/Data-based Systems 26/34

ATM-Example: Refinement in £+ (1)

Refinement chain for ATM specification
ATMo ~ ATM | ~,, ATM ~> .., (ATM3, CC)

For ATM| ~-,, ATM,
» restriction constructor with ¢ : 3| < ¥, injective

For ATM ~ g k. (ATM35, CC)
» event refinement constructor k,,

» parallel composition constructor kg to two components

A. Knapp: Specifying Event/Data-based Systems 27/34

ATM-Example: Components

ATM, insertCard //
7 chk! = ff Atrls’ =0

true PIN
ejectCard// zﬁ:?e:liﬁc A
chk’ = chk A trls’ = trls
trls” = trls
trls =2 — trls <2 —
wrongPIN// enterPIN//
chk’ = ff A chk’ = chk A
trls’ = trls + 1 trls <2 — trls’ = trls
correctPIN//
chk’ =1 A trls <2 —
trls’ = trls 4 1 wrongPIN//
chk’ = ff A
trls” = trls + 1
Verifying PINEntered

trls < 2 — verifyPIN//
chk’ = chk A trls’ = trls

verifyPIN/ent’ = cnt

“
cnt =0) correctPIN//ent’ = cnt + 1

wrongPIN//ent’ = ent + 1

A. Knapp: Specifying Event/Data-based Systems 28/34

ATM-Example: Refinement in £+ (2)

Refinement chain for ATM specification
ATMq ~» ATM | ~> ., ATM> ~> ., (ATM3,CC)

Replace ATM ~> .., (ATM3,CC) by
ATMy ~=, ATM3 || CC ~» ., (ATM3,CC)
» syntactic parallel composition of operational ed specifications

A. Knapp: Specifying Event/Data-based Systems

29/34

ATM-Example: Syntactic Parallel Composition

ATM || cC insertCard //
- chk’ = ff Atrls’ =0 A cnt = ent’
cnt=10 Card, Idle PIN, Idle
cancel//
ejectCard// chk’ = fFA
chk’ = chk A trls’ = trls
trls’ = trls A cnt’ = cnt
cnt’ = cnt
trls =2 — trls <2 —
wrongPIN /7 Return, Idle enterPIN/
chk’ = ff A chk’ = chk A
trls’ =trls + 1 A trls’ = trls A
cnt’ =cnt+ 1 trls <2 — cnt’ = cnt
correctPIN// trls < 2 —
chk’ = 1t A wrongPIN//
trls’ =trls + 1 A chk' = ff A
!/ B
ont’ = cnt + 1 trls’ = irls + 1 A
ent’ = cnt + 1

PINEntered, Idle

Verifying, Busy
' trls < 2 — verifyPIN//

chk’ = chk A trls’ = trls A cnt = cnt’

A. Knapp: Specifying Event/Data-based Systems 30/34

ATM-Example: Event Refinement

trls < 2 — enterPIN//

insertCard/ chk' = ff Atrls’ = trls + 1

chk’ = ff Atrls’ =0

ATM,

trls = 2 — enterPIN//
chk’ = ff Atrls’ = trls + 1

cancel//
ejectCard// chk’ = ff Atrls’ = trls

chk’ = chk A trls’ = trls

trls <2 — enterPIN//

Return chk/ =t Atrls’ = trls + 1

ATM, ~,. ATM; || CC
» {chk,trls} C {chk,trls, cnt}
» a(enterPIN) = (enterPIN; verifyPIN; (correctPIN + wrongPIN))

A. Knapp: Specifying Event/Data-based Systems 31/34

ATM-Example: Refinement in £ (3)

ATM ~~nns ATM |~ ATM ~~onies (ATM3, CC)

oty R

ATM; || €C

Proposition Let O1, O, be operational ed specifications with composable
signatures. Then

Mod(0;) ® Mod(02) € Mod (O || 07)
(Converse inclusion does not hold.)
Theorem Let Sp be an (axiomatic or operational) ed specification, Oy, O,

operational ed specifications with composable signatures, and « a constructor
from X(01) ® 3(0,) to 2(Sp). Then

if Sp ~», O H 0,, then Sp Mgk <01,02>

A. Knapp: Specifying Event/Data-based Systems 32/34

Further Developments

Institutional formulation of £
» institution £4(D) over an underlying data institution D
» change of data institution (like propositional to first-order logic) as further
refinement step

Rolf Hennicker, A. K., Alexandre Madeira. Hybrid Dynamic Logic Institutions for
Event/Data-based Systems. Formal Aspect. Comp., 2021.

Encoding of (simple) UML state machines
» Parameterised events
» Theoroidal institution comorphism to CASL for theorem proving

Tobias Rosenberger, Saddek Bensalem, A. K., Markus Roggenbach. Institution-based
Encoding and Verification of Simple UML State Machines in CASL/SPASS. WADT
2020.

A. Knapp: Specifying Event/Data-based Systems 33/34

Conclusions and Future Work

Specifying event/data-based systems in £+
» Expressive logic through combination of dynamic and hybrid features

» Support for both abstract requirements specifications and concrete
implementations

» Support for stepwise refinement through constructor implementations

» Integrate other formalisms into £+-development process
» TLA; similar to operational specifications: Event-B, UML state machines
» communication compatibility for input/output

» Beyond bisimulation invariance for hybrid-free sentences
» Proof system for £4, including data states

A. Knapp: Specifying Event/Data-based Systems 34/34

