
Specifying Event/Data-based Systems

Alexander Knapp
Universität Augsburg

Joint work with Rolf Hennicker and Alexandre Madeira

Specifying Event/Data-based Systems

Event/Data-based systems

I behaviour controlled by events

I data states may change in reaction to events

Specification of event/data-based systems
I Model-oriented approaches (constructive specification)

I Event-B, symbolic transition systems, CSP with data, UML
behavioural/protocol state machines

I Property-oriented approaches (abstract specification)
I modal (temporal, dynamic) logics, TLA

I Checking whether a concrete model satisfies certain abstract properties

I Refining abstract models to concrete implementations

A. Knapp: Specifying Event/Data-based Systems 2/34

Example: Specifying an ATM

Events {insertCard, enterPIN, ejectCard}, data attributes {chk}

Axiomatic specification using modal logic formulæ, like

I “Whenever a card has been inserted, a correct PIN can eventually be
entered.”

I AG(done(insertCard)→ EF(done(enterPIN) ∧ chk = tt))
I [E∗; insertCard]〈E∗; (enterPIN(chk′ = tt)〉true

I “Whenever a correct PIN has been entered, the card can eventually be
ejected.”

I AG(chk = tt→ EF enabled(ejectCard))
I [E∗; (enterPIN(chk′ = tt)]〈E∗; ejectCard〉true

I “A card cannot be ejected if it has not been inserted before.”
I ¬enabled(ejectCard) W done(insertCard)
I [(−insertCard)∗; ejectCard]false

A. Knapp: Specifying Event/Data-based Systems 3/34

Temporal Logic of Actions (1)

Leslie Lamport. Specifying Systems. Addison Wesley, 2002

I linear temporal logic for describing transition systems

I data from general set theory, no special notions of states or events

InitATM ≡ st = Card ∧ chk ∈ B ∧ trls ∈ N
InsertCard ≡ st = Card ∧ chk′ = ff ∧ trls′ = 0 ∧ st′ = PIN

EnterPIN1 ≡ st = PIN ∧ trls < 2 ∧ chk′ = ff ∧ trls′ = trls + 1 ∧ st′ = PIN

EnterPIN2 ≡ st = PIN ∧ trls = 2 ∧ chk′ = ff ∧ trls′ = trls + 1 ∧ st′ = Card

EnterPIN3 ≡ st = PIN ∧ trls ≤ 2 ∧ chk′ = tt ∧ trls′ = trls + 1 ∧ st′ = Return

EnterPIN ≡ EnterPIN1 ∨ EnterPIN2 ∨ EnterPIN3
Cancel ≡ st = PIN ∧ chk′ = ff ∧ trls′ = trls ∧ st = Return

EjectCard ≡ st = Return ∧ chk′ = chk ∧ trls′ = trls ∧ st = Card

NextATM ≡ InsertCard ∨ EnterPIN ∨ Cancel ∨ EjectCard

ATM ≡ InitATM ∧�[NextATM]st,chk,trls ∧WFst,chk,trls(NextATM)

A. Knapp: Specifying Event/Data-based Systems 4/34

Temporal Logic of Actions (2)

General TLA system specification format

Init ∧�[Next]~v ∧ L

I Init state predicate for initial states
I Next disjunction of transition predicates (actions)

I involving primed and unprimed variables

I tuple~v of variables that can be changed by the system
I [A]v1,...,vn ≡ A ∨ (v1 = v′1 ∧ . . . ∧ vn = v′n)

I L conjunction of action fairness conditions (weak, strong)

TLA stutter-invariant

I stuttering steps without changes to system variables

I parallel composition (mainly) by conjunction, trace refinement as
implication

I property specifications in LTL

A. Knapp: Specifying Event/Data-based Systems 5/34

UML State Machines (1)

Object Managment Group. Unified Modeling Language 2.5.1.
formal/2017-12-05, 2017

I protocol and behaviour state machines (like Harel state charts)

I data from contextual static structure, dedicated support for (hierarchical)
states and (signal, call, &c.) events

Card PIN

Return

insertCard/
[chk = ff ∧ trls = 0]

[trls < 2]enterPIN/
[chk = ff ∧ trls = trls@pre + 1]

[trls ≤ 2]enterPIN/
[chk = tt ∧ trls = trls@pre + 1]

cancel/
[chk = ff ∧ trls = trls@pre]

[trls = 2]enterPIN/
[chk = ff ∧ trls = trls@pre + 1]

ejectCard/
[chk = chk@pre ∧ trls = trls@pre]

A. Knapp: Specifying Event/Data-based Systems 6/34

UML State Machines (2)

Protocol state machines for describing legal sequences of event occurrences

A B[pre]evt/[post]

Behaviour state machines for operational specifications

A Bevt[guard]/effect

UML notorious for lack of semantics

I parallel composition “synchronously” by orthogonal regions (same
machine), or “asynchronously” (different machines) via event queues

I refinement (“redefinition”) rather unclear

I property specifications in OCL (oclInState)

A. Knapp: Specifying Event/Data-based Systems 7/34

Symbolic Transition Systems (1)
Pascal Poizat, Jean-Claude Royer. A Formal Architectural Description
Language based on Symbolic Transition Systems and Modal Logic. J. Univ.
Comp. Sci. 12(12), 2006, pp. 1741–1782

I symbolic analysis by unfolding

I data from underlying abstract data type, explicit states and events

Card

/new

PIN

Return

insertCard?/insertCard(self)

[lt2(self)] enterPIN?/
enterPIN1(self)

[leq2(self)] enterPIN?/
enterPIN3(self)

cancel?/cancel(self)

[eq2(self)] enterPIN?/enterPIN2(self)

ejectCard?/ejectCard(self)

insertCard(newATM(chk, trls)) = newATM(ff , 0)
lt2(newATM(chk, trls)) = trls < 2

A. Knapp: Specifying Event/Data-based Systems 8/34

Symbolic Transition Systems (2)

General form of transitions

T ⊆ S× Tm(ΣBool,X)× Evt(L)× Tm(ΣDt,X)× S

I source (control) state, guard term, event (input/output),
action term, target (control) state

I Unfolding into symbolic state set S′: if v ∈ Tm(ΣDt), (s, v) ∈ S′,
(s, g, e, a, t) ∈ T , and g(v)↓, then (t, a(v)↓) ∈ S′

I initial semantics of abstract data type

Used for specifying software architectures

I parallel composition by synchronous product

I property specifications in modal logic over events with (control) state test

@s and state binding
@
∃ x . ϕ

A. Knapp: Specifying Event/Data-based Systems 9/34

Communicating Sequential Processes (1)

Andrew W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1998

I process algebra (like CCS, LOTOS, µCRL)

I data from set theory, process terms as states, labels as events

Card(chk, trls) = insertCard→ PIN(ff , 0)

PIN(chk, trls) = (trls < 2 & enterPIN→ PIN(ff , trls + 1)
u Return(tt, trls + 1))

� (trls = 2 & enterPIN→ Card(ff , trls + 1)
u Return(tt, trls + 1))

� (cancel→ Return(ff , trls))

Return(chk, trls) = ejectCard→ Card(chk, trls)

ATM = u(chk,trls)∈B×N Card(chk, trls)

A. Knapp: Specifying Event/Data-based Systems 10/34

Communicating Sequential Processes (2)

Semantics based on traces, failures, and divergences

tr(a→ P) = {〈〉} ∪ {〈a〉_ s | s ∈ tr(P)}

tr(c & P) =

{
tr(P) if c evaluates to true

{〈〉} otherwise

tr(P� Q) = tr(P) ∪ tr(Q)

tr(P u Q) = tr(P) ∪ tr(Q)

I (synchronous) parallel composition integral part of the language

I property specifications also given by CSP processes

I combination with algebraic specification language CASL for loose
semantics of data

A. Knapp: Specifying Event/Data-based Systems 11/34

Synchronous Languages (1)

Rajeev Alur. Principles of Cyber-Physical Systems. MIT Press, 2015

I tick-based, synchronous execution (like Lustre, Esterel)

I events given by status of signals (present or absent)

Card PIN

Return

insertCard?→
chk′ = ff ∧ trls′ = 0

trls < 2 ∧ enterPIN?→
chk′ = ff ∧ trls′ = trls + 1

trls ≤ 2 ∧ enterPIN?→
chk′ = tt ∧ trls′ = trls + 1

cancel?→
chk′ = ff ∧ trls′ = trls

trls = 2 ∧ enterPIN?→
chk′ = ff ∧ trls′ = trls + 1

ejectCard?→
chk′ = chk ∧ trls′ = trls

bool chk, nat trls

event
insertCard

event
enterPIN

event
cancel

event
ejectCard

A. Knapp: Specifying Event/Data-based Systems 12/34

Synchronous Languages (2)

Synchrony hypothesis
I Model of computation: In each tick, read inputs, compute, produce outputs

I synchronous and instanteneous over all tasks
I dependency checks over tasks

I Semantics: s1
i1/o1−−−→ s2

i2/o2−−−→ · · ·

Status (and values) of all signals form a single event

I parallel composition by task union

I asynchronous variant based on channels (similar to Promela)

A. Knapp: Specifying Event/Data-based Systems 13/34

Event-B (1)

Jean-Raymond Abrial. Modeling in Event-B. Cambridge University Press, 2010

I abstract state machine approach (like Z, B)

I events as transitions, state and data from set theory

invariant st ∈ {Card,PIN,Return} ∧ chk ∈ B ∧ tlrs ∈ N
events init =̂ then st := Card end

insertCard =̂ when st = Card then chk := ff ; trls := 0; st := PIN end
enterPIN =̂ when st = PIN then chk, trls, st :|

(trls < 2 ∧ chk′ = ff ∧ trls′ = trls + 1 ∧ st′ = PIN) ∨
(trls = 2 ∧ chk′ = ff ∧ trls′ = trls + 1 ∧ st′ = Card) ∨
(trls ≤ 2 ∧ chk′ = tt ∧ trls′ = trls + 1 ∧ st′ = Return)

end
cancel =̂ when st = PIN then chk := ff ; st := Return end
ejectCard =̂ when st = Return then st := Card end

A. Knapp: Specifying Event/Data-based Systems 14/34

Event-B (2)

General event format

e =̂ status σ when G(~v) then~v :| H(~v,~v′)

I guard G, before-after predicate H (or assignments)

I status ‘ordinary’ or ‘convergent’ (internal: decreasing variant) or
‘anticipated’ (not increasing variant)

Focus on (data) refinement (proof obligations)

I traces based on weakest precondition semantics

I introducing new events by refining skip

I Parallel (de-)composition can be added (M. Butler 2009)

I Combination with CSP for explicit control (S. Schneider, H. Treharne 2010)

A. Knapp: Specifying Event/Data-based Systems 15/34

Specifying Event/Data-based Systems Revisited

Goals

I Common logical formalism for specifying event/data-based systems on
various levels of abstraction

I Program development by stepwise refinement (“correct by construction”)
I from axiomatic to operational specifications
I based on rigorous formal semantics

Approach — E↓
I Integrate dynamic and hybrid logic features

I Dynamic logic for abstract requirements (safety, liveness, . . .)
I Hybrid logic for concrete process structure

I Apply Sannella & Tarlecki’s refinement methodology in the context of
event/data-based systems

Rolf Hennicker, Alexandre Madeira. A. K. A Hybrid Dynamic Logic for
Event/Data-based Systems. FASE 2019.

A. Knapp: Specifying Event/Data-based Systems 16/34

Syntax: Event/Data Actions and Formulæ (1)

Ed signature Σ = (E,A) with events E and data attributes A
I data state ω ∈ Ω(Σ) = A→ D
I state predicates ϕ ∈ Φ(Σ) with ω |=DA ϕ

I transition predicates ψ ∈ Ψ(Σ) with (ω, ω′) |=DA ψ

Σ-ed actions λ ∈ Λ(Σ)

λ ::= e(ψ | λ1 + λ2 | λ1;λ2 | λ∗

I transition specification e(ψ for event e and effect specification ψ
I abbreviate e1(true + . . .+ ek(true by {e1, . . . , ek}, E(Σ) by E, . . .

I complex actions with “or” +, “sequence” ;, and “iteration” ∗

Example: E∗; enterPIN(chk′ = tt
“a finite sequence of events with arbitrary effects followed by event enterPIN
such that afterwards attribute chk is tt”

A. Knapp: Specifying Event/Data-based Systems 17/34

Syntax: Event/Data Actions and Formulæ (2)

Σ-ed formulæ % ∈ FrmE
↓
(Σ)

% ::= ϕ | x | ↓x . % | (@x)% | 〈λ〉% | [λ]% | true | ¬% | %1 ∨ %2

I state predicates ϕ

I control state variables x ∈ X
I hybrid logic “bind” ↓x and “jump” @x
I dynamic logic “diamond” 〈λ〉 and “box” [λ]

I usual propositional connectives

Example: ↓x0 . [E∗; (enterPIN(chk′ = tt) + cancel]〈E∗; ejectCard〉x0
“Whenever a correct PIN has been entered or the transaction has been
cancelled, the card can eventually be ejected and the ATM starts from the
beginning.”

A. Knapp: Specifying Event/Data-based Systems 18/34

Semantics: Event/Data Transition Systems

Σ-edts M = (Γ,R,Γ0) ∈ EdtsE
↓
(Σ)

I configurations Γ ⊆ C × Ω(Σ) of control states C and data states Ω(Σ)

I transition relations R ⊆ (Re ⊆ Γ× Γ)e∈E(Σ)

I initial configurations Γ0 ⊆ {c0} × Ω0 with Ω0 ⊆ Ω(Σ)
I all configurations required to be reachable

Interpretation of Σ-ed actions over M as (Rλ ⊆ Γ× Γ)λ∈Λ(Σ) defined by

I Re(ψ = {((c, ω), (c′, ω′)) ∈ Re | (ω, ω′) |=DA(Σ) ψ}
I Rλ1+λ2 = Rλ1 ∪ Rλ2

I Rλ1;λ2 = Rλ1 ; Rλ2

I Rλ∗ = (Rλ)∗

A. Knapp: Specifying Event/Data-based Systems 19/34

Semantics: Event/Data Satisfaction Relation

Given Σ-edts M, valuation v : X → C(M), configuration γ ∈ Γ(M)

M, v, γ |=E↓Σ ϕ iff ω(γ) |=DA(Σ) ϕ

M, v, γ |=E↓Σ x iff c(γ) = v(x)

M, v, γ |=E↓Σ ↓x . % iff M, v{x 7→ c(γ)}, γ |=E↓Σ %

M, v, γ |=E↓Σ (@x)% iff M, v, γ′ |=E↓Σ % for all γ′ ∈ Γ(M) with c(γ′) = v(x)

M, v, γ |=E↓Σ 〈λ〉% iff M, v, γ′ |=E↓Σ % for some γ′ ∈ Γ(M) with (γ, γ′) ∈ R(M)λ

. . .

M |=E↓Σ % for Σ-ed sentences if M, v, γ0 |=E
↓

Σ % for all γ0 ∈ Γ0(M)

A. Knapp: Specifying Event/Data-based Systems 20/34

Axiomatic Event/Data Specifications

Axiomatic ed specification Sp = (Σ,Ax) over ed signature Σ

I set of Σ-ed sentences Ax as axioms

(Loose) semantics of Sp given by model class Mod(Sp) of edts

I Mod(Sp) = {M ∈ EdtsE
↓
(Σ) | M |=E↓Σ Ax}

Example: Specification ATM0 with Σ0 = ({insertCard, . . .}, {chk}) and Ax0:

[E∗; (enterPIN(chk′ = tt) + cancel]〈E∗; ejectCard〉true , . . .

Example: Specification ATM1 with Σ1 = Σ0 and Ax1:

↓x0 . [E∗; (enterPIN(chk′ = tt) + cancel]〈E∗; ejectCard〉x0

↓x0 . 〈insertCard(chk′ = ff 〉true ∧
[insertCard(¬(chk′ = ff)]false ∧ [−insertCard]false , . . .

Stepwise refinement in E↓: ATM0 ATM1 . . .

A. Knapp: Specifying Event/Data-based Systems 21/34

Refining E↓-Specifications (1)

Simple refinement (or implementation) relation for specifications

Sp Sp′ if Σ(Sp) = Σ(Sp′) and Mod(Sp) ⊇ Mod(Sp′)

I no signature changes, no construction of an implementation

Constructor κ from (Σ′1, . . . ,Σ
′
n) to Σ

I (total) function κ : EdtsE
↓
(Σ′1)× . . .× EdtsE

↓
(Σ′n)→ EdtsE

↓
(Σ)

I constructor composition by usual function composition

〈Sp′1, . . . , Sp′n〉 constructor implementation via κ of Sp
I Sp κ 〈Sp′1, . . . , Sp′n〉 if κ(M′1, . . . ,M

′
n) ∈ Mod(Sp) for all M′i ∈ Mod(Sp′i)

(Sannella, Tarlecki 1988)

A. Knapp: Specifying Event/Data-based Systems 22/34

Refining E↓-Specifications (2)

Refinement chain

Sp1 κ1 Sp2 κ2 . . . κn−1 Spn

Constructors for E↓-specifications
I relabelling κρ

I ρ-reduct of edts for a bijective ed signature morphism ρ

I restriction κι
I ι-reduct of edts for an injective

ed signature morphism ι

I event refinement κα
I α-reduct of edts for an ed signature

morphism α to composite events

θ ::= e | θ + θ | θ; θ | θ∗

I parallel composition κ⊗
I binary constructor: Sp κ⊗ 〈Sp′1, Sp′2〉
I synchronous product of edts with composable signatures

A. Knapp: Specifying Event/Data-based Systems 23/34

ι : {a} ↪→ {a, b}7→|ι
a

a b

α(a) = a′

α(b) = b′; c′7→|α
a b

a′ b′ c′

Operational Event/Data Specifications (1)
More constructive specification style

I graphical representation (like STS, UML protocol state machines)

I can be faithfully expressed in E↓

Example: Specification ATM2 with Σ2 = ({insertCard, . . .}, {chk, trls})

Card

true

PIN

Return

insertCard(
chk′ = ff ∧ trls′ = 0

trls < 2→ enterPIN(
chk′ = ff ∧ trls′ = trls + 1

trls ≤ 2→ enterPIN(
chk′ = tt ∧ trls′ = trls + 1

cancel(
chk′ = ff ∧ trls′ = trls

trls = 2→ enterPIN(
chk′ = ff ∧ trls′ = trls + 1

ejectCard(
chk′ = chk ∧ trls′ = trls

Stepwise refinement in E↓: ATM0 ATM1
?
 ATM2

A. Knapp: Specifying Event/Data-based Systems 24/34

Operational Event/Data Specifications (2)

Operational ed specification O = (Σ,C,T, (c0, ϕ0)) over ed signature Σ

I control states C
I transition relation specification T ⊆ C × Φ(Σ)× E(Σ)×Ψ(Σ)× C

I separate precondition in Φ(Σ) and transition predicate in Ψ(Σ)

I initial control state c0 ∈ C, initial state predicate ϕ0 ∈ Φ(Σ)
I all control states syntactically reachable from c0

(Loose) semantics of O given by model class of edts with M ∈ Mod(O) if
I R(M) only shows transitions allowed by T

I for all ((c, ω), (c′, ω′)) ∈ R(M)e there is a
(c, ϕ, e, ψ, c′) ∈ T with ω |=DA(Σ) ϕ and (ω, ω′) |=DA(Σ) ψ

I R(M) realises T for satisfied preconditions
I for all (c, ϕ, e, ψ, c′) ∈ T and ω |=DA(Σ) ϕ, there is a

((c, ω), (c′, ω′)) ∈ R(M)e with (ω, ω′) |=DA(Σ) ψ

A. Knapp: Specifying Event/Data-based Systems 25/34

Expressiveness of E↓

Theorem For every operational ed specification O with finitely many control
states there is an ed sentence %O such that

M ∈ Mod(O) ⇐⇒ M |=E↓Σ(O) %O

Example

Card

true

PIN

Return

insertCard(
chk′ = ff ∧ trls′ = 0

trls < 2→ enterPIN(
chk′ = ff ∧ trls′ = trls + 1

trls ≤ 2→ enterPIN(
chk′ = tt ∧ trls′ = trls + 1

cancel(
chk′ = ff ∧ trls′ = trls

trls = 2→ enterPIN(
chk′ = ff ∧ trls′ = trls + 1

ejectCard(
chk′ = chk ∧ trls′ = trls↓Card . 〈insertCard(chk′ = ff ∧ trls′ = 0〉

↓PIN . (@Card)[insertCard(chk′ = ff ∧ trls′ = 0]PIN ∧
[insertCard(chk′ = tt ∨ trls′ 6= 0]false ∧
[{enterPIN, cancel, ejectCard}]false ∧ . . .

A. Knapp: Specifying Event/Data-based Systems 26/34

ATM-Example: Refinement in E↓ (1)

Refinement chain for ATM specification

ATM0 ATM1 κι ATM2 κ⊗;κα 〈ATM3,CC〉

For ATM1 κι ATM2

I restriction constructor with ι : Σ1 ↪→ Σ2 injective

For ATM2 κ⊗;κα 〈ATM3,CC〉
I event refinement constructor κα
I parallel composition constructor κ⊗ to two components

A. Knapp: Specifying Event/Data-based Systems 27/34

ATM-Example: Components

Cardtrue PIN

Return

Verifying PINEntered

insertCard(
chk′ = ff ∧ trls′ = 0

cancel(
chk′ = ff∧
trls′ = trls

trls ≤ 2→
enterPIN(
chk′ = chk ∧
trls′ = trls

trls ≤ 2→ verifyPIN(
chk′ = chk ∧ trls′ = trls

trls < 2→
wrongPIN(
chk′ = ff ∧
trls′ = trls + 1

trls ≤ 2→
correctPIN(
chk′ = tt ∧
trls′ = trls + 1

trls = 2→
wrongPIN(
chk′ = ff ∧
trls′ = trls + 1

ejectCard(
chk′ = chk ∧
trls′ = trls

ATM3

Idlecnt = 0 Busy

verifyPIN(cnt′ = cnt

correctPIN(cnt′ = cnt + 1

wrongPIN(cnt′ = cnt + 1

CC

A. Knapp: Specifying Event/Data-based Systems 28/34

ATM-Example: Refinement in E↓ (2)

Refinement chain for ATM specification

ATM0 ATM1 κι ATM2 κ⊗;κα 〈ATM3,CC〉

Replace ATM2 κ⊗;κα 〈ATM3,CC〉 by

ATM2 κα ATM3 ‖ CC κ⊗ 〈ATM3,CC〉
I syntactic parallel composition of operational ed specifications

A. Knapp: Specifying Event/Data-based Systems 29/34

ATM-Example: Syntactic Parallel Composition

Card, Idlecnt = 0 PIN, Idle

Return, Idle

Verifying,Busy PINEntered, Idle

insertCard(
chk′ = ff ∧ trls′ = 0 ∧ cnt = cnt′

cancel(
chk′ = ff∧
trls′ = trls
cnt′ = cnt

trls ≤ 2→
enterPIN(
chk′ = chk ∧
trls′ = trls ∧
cnt′ = cnt

trls ≤ 2→ verifyPIN(
chk′ = chk ∧ trls′ = trls ∧ cnt = cnt′

trls < 2→
wrongPIN(
chk′ = ff ∧
trls′ = trls + 1 ∧
cnt′ = cnt + 1

trls ≤ 2→
correctPIN(
chk′ = tt ∧
trls′ = trls + 1 ∧
cnt′ = cnt + 1

trls = 2→
wrongPIN(
chk′ = ff ∧
trls′ = trls + 1 ∧
cnt′ = cnt + 1

ejectCard(
chk′ = chk ∧
trls′ = trls ∧
cnt′ = cnt

ATM3 ‖ CC

A. Knapp: Specifying Event/Data-based Systems 30/34

ATM-Example: Event Refinement

Card

true

PIN

Return

insertCard(
chk′ = ff ∧ trls′ = 0

trls < 2→ enterPIN(
chk′ = ff ∧ trls′ = trls + 1

trls ≤ 2→ enterPIN(
chk′ = tt ∧ trls′ = trls + 1

cancel(
chk′ = ff ∧ trls′ = trls

trls = 2→ enterPIN(
chk′ = ff ∧ trls′ = trls + 1

ejectCard(
chk′ = chk ∧ trls′ = trls

ATM2

ATM2 κα ATM3 ‖ CC
I {chk, trls} ⊆ {chk, trls, cnt}
I α(enterPIN) = (enterPIN; verifyPIN; (correctPIN + wrongPIN))

A. Knapp: Specifying Event/Data-based Systems 31/34

ATM-Example: Refinement in E↓ (3)

ATM0 ATM1 ATM2 〈ATM3,CC〉

ATM3 ‖ CC

κι κ⊗;κα

κα κ⊗

Proposition Let O1,O2 be operational ed specifications with composable
signatures. Then

Mod(O1)⊗Mod(O2) ⊆ Mod(O1 ‖ O2)

(Converse inclusion does not hold.)

Theorem Let Sp be an (axiomatic or operational) ed specification, O1,O2
operational ed specifications with composable signatures, and κ a constructor
from Σ(O1)⊗ Σ(O2) to Σ(Sp). Then

if Sp κ O1 ‖ O2, then Sp κ⊗;κ 〈O1,O2〉

A. Knapp: Specifying Event/Data-based Systems 32/34

Further Developments

Institutional formulation of E↓

I institution E↓(~D) over an underlying data institution D
I change of data institution (like propositional to first-order logic) as further

refinement step
Rolf Hennicker, A. K., Alexandre Madeira. Hybrid Dynamic Logic Institutions for
Event/Data-based Systems. Formal Aspect. Comp., 2021.

Encoding of (simple) UML state machines

I Parameterised events

I Theoroidal institution comorphism to CASL for theorem proving
Tobias Rosenberger, Saddek Bensalem, A. K., Markus Roggenbach. Institution-based
Encoding and Verification of Simple UML State Machines in CASL/SPASS. WADT
2020.

A. Knapp: Specifying Event/Data-based Systems 33/34

Conclusions and Future Work

Specifying event/data-based systems in E↓

I Expressive logic through combination of dynamic and hybrid features

I Support for both abstract requirements specifications and concrete
implementations

I Support for stepwise refinement through constructor implementations

I Integrate other formalisms into E↓-development process
I TLA; similar to operational specifications: Event-B, UML state machines
I communication compatibility for input/output

I Beyond bisimulation invariance for hybrid-free sentences

I Proof system for E↓, including data states

A. Knapp: Specifying Event/Data-based Systems 34/34

