
Proceedings of the

29th International Workshop on
Concurrency, Specification and

Programming (CS&P 2021)

Berlin, September 27-28, 2021

Holger Schlingloff, Thomas Vogel (Eds.)

Preface of the 29th International Workshop on
Concurrency, Specification and Programming
(CS&P 2021)
Holger Schlingloff1, Thomas Vogel1

1Humboldt Universität zu Berlin, Germany

The 29th International Workshop on Concurrency, Specification, and Programming 2021
(CS&P’21) is one of a series of seminars formerly organized every even year by Humboldt
Universität zu Berlin and every odd year by Warsaw University. Due to the corona pandemic,
this order has now been inverted. CS&P deals with the formal specification of concurrent and
parallel systems, mathematical models for describing such systems, and programming and
verification concepts for their implementation.

The workshop has a tradition dating back to the mid-seventies; since 1993 it was named
CS&P. During almost 30 years, CS&P has become an important forum for researchers from
European and Asian countries.

In 2020, the tradition was interrupted; there was no CS&P conference, and CS&P’20 was
postponed to September 2021 and renamed to be CS&P’21. The event was held hybrid, both as
an online event and as an on-site conference with physical meeting of the participants. The
on-site meeting took place at GFaI e.V., the society for the advancement of applied informatics
(Gesellschaft zur Förderung der angewandten Informatik), in Berlin-Adlershof, Germany.

This volume contains the 16 talks selected by the program committee, plus abstracts of the
two invited talks of the workshop. The program of CS&P’21 reflects the current trends in its field:
there are “classical” contributions on the theory of concurrency, specification and programming
such as event/data-based systems, cause-effect structures, granular computing, and time Petri
nets. However, more and more papers are also concerned with artificial intelligence and machine
learning techniques, e.g., in the set of pairs of objects, or with sparse neural networks. Moreover,
application areas such as the prediction of football games results, the classification of dry beans,
or the care for honeybees are in the focus of attention. Furthermore, this volume contains
several papers on software quality assurance, e.g., fault localization and automated testing of
software-based systems. Altogether, we hope that you will find the collection to constitute an
interesting read and to offer many connecting factors for further research.

Berlin, in September 2021
Holger Schlingloff and Thomas Vogel

29th International Workshop on Concurrency, Specification and Programming (CS&P’21)
$ hs@informatik.hu-berlin.de (H. Schlingloff); thomas.vogel@informatik.hu-berlin.de (T. Vogel)
� http://www.informatik.hu-berlin.de/~hs (H. Schlingloff); https://thomas-vogel.github.io/ (T. Vogel)
� 0000-0002-7127-352X (T. Vogel)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

i

Table of Contents

Specifying Event/Data-based Systems (keynote) 1
Alexander Knapp

Evaluating Fault Localization Techniques with Bug Signatures and Joined
Predicates 2
Roman Milewski, Simon Heiden, Lars Grunske

NLP-Based Requirements Formalization for Automatic Test Case Generation 18
Robin Gröpler, Viju Sudhi, Emilio José Calleja Garćıa, Andre Bergmann

Cause-Effect Structures Behaving like Reaction Systems 31
Ludwik Czaja

Interactive Granular Computing Connecting Abstract and Physical Worlds:
An Example 46
Soma Dutta, Andrzej Skowron

On Semantics for Testing in Time Petri Nets 60
Elena Bozhenkova, Irina Virbitskaite

Left Recursion by Recursive Ascent 72
Roman R. Redziejowski

Process Opacity and Insertion Functions 83
Damas P. Gruska, M. Carmen Ruiz

Attack Trees with Time Constraints 93
Aliyu Tanko Ali, Damas Gruska

Extended Abstract: Simulation of Interactions between Beehives 106
Volha Taliaronak, Heinrich Mellmann, Verena V. Hafner

Extended Abstract: A Novel Mobile App for the Next Generation of Beekeepers 113
Eugen Puzynin, Heinrich Mellmann, Verena V. Hafner

Efficient Machine Learning Methods over Pairwise Space (keynote) 117
Hung Son Nguyen

Influence of Data Dimension Reduction, Feature Scaling and Activation
Function on Machine Learning Performance (short paper) 120
Grzegorz S lowiński

Sorting by Decision Trees with Hypotheses (extended abstract) 126
Mohammad Azad, Igor Chikalov, Shahid Hussain, Mikhail Moshkov

On Reliable Wireless Streaming of Real-time Sensor Data 131
Agnieszka Boruta, Pawel Gburzynski, Ewa Kuznicka

Graph-based Sparse Neural Networks for Traffic Signal Optimization 145
Lukasz Skowronek, Pawel Gora, Marcin Mozejko, Arkadiusz Klemenko

Prediction of Football Games Results 156
Roman Nestoruk, Grzegorz S lowiński

Dry Beans Classification Using Machine Learning (short paper) 166
Grzegorz S lowiński

ii

Specifying Event/Data-based Systems (keynote)
Alexander Knapp

Augsburg University, Germany

Abstract
Event/data-based systems are controlled by events, their local data state may change in reaction to events.
Numerous methods and notations for specifying such reactive systems have been designed, though
with varying focus on the different development steps and their refinement relations. We first briefly
review some of such methods, like temporal/modal logic, TLA, UML state machines, symbolic transition
systems, CSP, synchronous languages, and Event-B with their support for parallel composition and
refinement. We then present E↓-logic for covering a broad range of abstraction levels of event/data-based
systems from abstract requirements to constructive specifications in a uniform foundation. E↓-logic uses
diamond and box modalities over structured events adopted from dynamic logic, for recursive process
specifications it offers (control) state variables and binders from hybrid logic. The semantic interpretation
relies on event/data transition systems; specification refinement is defined by model class inclusion.
Constructive operational specifications given by state transition graphs can be characterised by a single
E↓-sentence. Also a variety of implementation constructors is available in E↓-logic to support, among
others, event refinement and parallel composition. Thus the whole development process can rely on
E↓-logic and its semantics as a common basis.

Acknowledgments: Joint work with Rolf Hennicker and Alexandre Madeira.

29th International Workshop on Concurrency, Specification and Programming (CS&P’21)
$ knapp@informatik.uni-augsburg.de (A. Knapp)
� https://www.uni-augsburg.de/de/fakultaet/fai/informatik/prof/swtsse/ (A. Knapp)
� 0000-0002-4050-3249 (A. Knapp)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

Evaluating Fault Localization Techniques with Bug
Signatures and Joined Predicates
Roman Milewski1, Simon Heiden1 and Lars Grunske1

1Software Engineering, Humboldt-Universität zu Berlin, Germany

Abstract
Predicate-based fault localization techniques have an advantage over other approaches by not only
determining the location of a fault but also potentially giving the developer additional information to
understand it. In this paper, we evaluate the accuracy of predicate-based bug signatures based on the
Defects4J benchmark. Additionally, we try to improve the predicate-based approach by extending it
with joined predicates, a technique for combining multiple predicates, to extract even more information.
To validate our results, we compare our approaches with established spectrum-based fault localization
methods.

Keywords
SBFL, predicate-based fault localization, bug signatures

1. Introduction

Searching for bugs, debugging, and fixing bugs are important parts of the software development
cycle. A lot of time and effort is spent on minimizing the amount of bugs in a program, but this
is usually a costly and difficult process [1].

While some bugs can be found by static analysis, e.g., compilers fail to compile a program, a
lot of bugs only manifest under special conditions or are simply not detectable at all by compilers
or static analysis [2]. For those bugs, the only detection approach is dynamic analysis, e.g.,
extracting information about the program during execution. Basic methods for findings bugs
include the usage of print statements to extract information about the state of variables or
the path taken through the program. More advanced methods include using a debugger or
slicing [3]. All these methods give the programmer more information about the program states
which lead to the bug, or reduce the amount of code that needs to be examined, thus helping
the programmer to identify the faulty code.

There have been multiple approaches to automate parts of the fault localization process.
A popular approach, shared by most techniques, is collecting data during correct and faulty
executions of the program code and then analyzing it to produce information about the possible
bug locations [4]. Tarantula, one of the first automated fault localization techniques, compares
the executed lines in failed and successful program executions and assigns lines executed by
more failed runs a higher score [5]. There exist more advanced statistics-based approaches

29th international Workshop on Concurrency, Specification and Programming (CS&P’21)
" milewskr@hu-berlin.de (R. Milewski); heiden@informatik.hu-berlin.de (S. Heiden);
grunske@informatik.hu-berlin.de (L. Grunske)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

2

that use, e.g., path spectra [6, 7], def-use pairs [8, 9], information-flow pairs [9], dependence
chains [10], (potential) invariants [11, 12, 13, 14, 15, 16], predicates [17, 18, 19, 20], predicate
pairs [21] or method call sequences [22]. Many of these techniques provide the user with more
information than only the potential locations of the bug and, thus, provide more context to help
the user understand the cause of the bug.

One leading the way to providing this context is statistical debugging, a technique introduced
by Liblit et al. [17], to isolate bugs by profiling several runs of the buggy program and then using
statistical analysis to pinpoint the likely cause of failure. It uses predicates to provide extra
information, as each predicate can hold information about a state of the program or information
about the control flow of the program. Predicates can be used to generate bug signatures [23],
which are sets of said predicates, providing information about the cause or effect of a bug or
other information helpful for debugging. This provides the context for where and how the bug
occurs and, thus, can be used to understand and locate the bug itself.

As an example, when confronted with a bug which leads to a program crash, the usual entry
point for the programmer is the stack trace (a report of the active stack frames) and, thus, the
location the program failed in. Often, the programmer is now presented with a scenario, in
which it is obvious why the code failed at this location (e.g., a null-reference) but not how the
program managed to arrive at this state. The programmer now has to work backwards through
the stack trace, trying to find the location of the bug that caused the failure. However, often
the bug is not directly part of the stack-trace. It may be in a function that manipulated some
variables but already returned or – in a multi-threaded scenario – had happened in another
thread.

A bug signature tries to explain a bug by showing the programmer a set of relevant predicates
that have been observed during the execution of the program prior to the crash. These sets are
extracted by comparing failed program executions to normal executions (i.e., without a crash)
and have a high chance of being correlated to the cause of the program failure [23]. This gives
the programmer additional entry points into the code, at locations with some relevance to the
bug, and may thus expedite the process of identifying the bug. Additionally, the bug signatures
proposed by Hsu et al. [23] consist of predicates which provide information about either the
state of the program, its control flow or its data flow prior to the crash. This is additional
information that the programmer can use to reconstruct the program execution more easily
and which may help them locate the bug.

In this paper, we want to explore the usage of predicates in a java environment. We imple-
mented a tool for instrumenting the java bytecode to collect the predicate data during execution,
a mining algorithm that can find the top-k bug signatures from this data and, finally, compare
the bug localization performance of our approaches with a state-of-the-art bug localization
approach. Additionally, we explore the idea of joined predicates, i.e., predicate chains consisting
of one or more predicates, as an improvement for predicated bug signatures.

RQ1: Can a bug signature based approach be used for bug localization?

RQ2: Can a bug signature based approach be enhanced by using joined predicates?

3

2. Background

In this section, we explain important concepts of predicates, itemsets and generators used in
this work.

2.1. Predicates

Predicates are part of an approach developed by Liblit et al. [17]. Here, a program is instrumented
at prior defined instrumentation sites. At each of these sites, one or multiple predicates are
evaluated (as true or false) and the evaluation results are tracked. Liblit et al. [17] used the
following instrumentations:

branches: At each conditional statement, one predicate tracks whether the true branch
is taken at runtime, and one predicate tracks the false branch.

returns: Sometimes, function return values are used to track success or failure (either
directly as boolean or with a numeric value). At each scalar returning method call, six
predicates are used: < 0, ≤ 0, = 0 ̸= 0, ≥ 0, > 0.

scalar pairs: At each assignment to a scalar variable 𝑥, for each other in scope scalar
variable 𝑦𝑖 the following six predicates are possible: 𝑥 < 𝑦𝑖, 𝑥 ≤ 𝑦𝑖, 𝑥 = 𝑦𝑖, 𝑥 ̸= 𝑦𝑖,
𝑥 ≥ 𝑦𝑖 and 𝑥 > 𝑦𝑖.

Additionally, we define and track the following predicates:

nullness: At each assignment of an object to a variable, we track whether the object
equals null.

2.2. Itemsets, Generators and Gr-Tree

In this work, we will use the following terminology for itemsets and generators:

• An itemset 𝐼 is an unordered set of distinct items 𝐼 = {𝑖1, 𝑖2, ..., 𝑖𝑚}.

• A transaction 𝑡 is a set of items, and 𝑡 ⊆ 𝐼 .

• A transaction database 𝑇 is a set of transactions 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}.

• A frequent itemset is an itemset that appears in at least 𝑥 transactions from a transaction
database.

• The support of an itemset is the number of transactions in a transaction database that
contain the itemset.

• A generator is an itemset 𝑋 such that there does not exist an itemset 𝑌 strictly included
in 𝑋 that has the same support.

4

Frequent itemset mining algorithms are a data mining technique used to find all frequent
itemsets for a given transaction database. In a naive approach, the search space is exponential
to the number of items in the transaction database. Starting with the Apriori algorithm [24],
better algorithms for finding frequent itemsets have been developed. One important difference
between most frequent itemset mining algorithms and the one used by our approach based
on [25] is the specification of support as positive support and negative support. A transaction
has positive support if it is the result of a successful run, and it has negative support if it is the
result of a failed run.

Gr-trees (generator trees) and a depth-first Gr-growth algorithm for mining frequent gen-
erators were introduced in [26]. A Gr-tree is a typical trie structure, providing a compact
representation of a transaction database. Each Gr-tree has a prefix that is the distinct itemset
prefixing all items in the Gr-tree. In [25] and [27], the authors provide improved algorithms,
albeit still using a Gr-tree as basis. We base our implementation on the work done in [25].

3. Fault Localization with Mined Bug Signatures via Predicates
and Joined Predicates

3.1. Generating Predicates

In this first step, the goal is to modify the existing java code in such a way that we can gather
predicate information during later execution.

3.1.1. Instrumentation with ASM

The ASM library1 [28] is one of the more popular frameworks for instrumenting java code. We
used its ability to manipulate the bytecode of already compiled java classes to instrument java
programs and to generate predicate data if the program is run afterward. The core ASM library
provides an event-based representation of a compiled java class, with each element of the class
being represented by an event. The core ASM library uses the visitor design pattern in which
each class is passed to one (or multiple) ClassVisitors which can modify and transform it.
The same happens for fields and methods. We implement our own visitors, which react to the
events emitted by ASM while parsing the bytecode. Now, when ASM is reading a class and
visits a relevant instruction, we can generate predicates and insert instructions for triggering
the evaluation of those predicates: if the predicate evaluates as true during the execution of the
code, the program saves this information.

3.1.2. Joined Predicates

In addition to the predicates introduced in [17], our approach aims to evaluate the usefulness
of joined predicates. In our context, joined predicates are composed of multiple ”traditional”
predicates and carry information about their order of appearance in the program flow.

As a motivating example, in the buggy code shown in Listing 1, a classical approach would
place predicates in lines 3 and 5, among others. The included bug only manifests if both branches

1https://asm.ow2.io

5

Listing 1: Example code with tests

1 private boolean anyTrue(boolean first, boolean second) {
2 int x = 0;
3 if (first)
4 x++;
5 if (second)
6 x++;
7 return x == 1; // bug, should be: x >= 1
8 }
9 public Test1() { assert(!anyTrue(false,false)); }

10 public Test2() { assert(anyTrue(true,false)); assert(anyTrue(false,true)); }
11 public Test3() { assert(anyTrue(true,true)); } // this fails

at line 3 and 5 are true, but not in any other combination. If we run all example tests from Listing 1,
the predicate database would contain the same predicates L:3[true] and L:5[true] after running
either test 2 or test 3, making them impossible to distinguish based on only this information.
Our approach would now generate 4 additional joined predicates: 1) L:3[true] ≻ L:5[true],
2) L:3[false] ≻ L:5[true], 3) L:3[true] ≻ L:5[false], and 4) L:3[false] ≻ L:5[false].

These joined predicates are different from the two separate predicates, as they additionally
encode the order of execution. For example, L:3[true] ≻ L:5[true] means: the branch at line 3
was evaluated to true, and then, the next branch statement was at line 5 and was true, as well.
This joined predicate is only evaluated to true in the failed test case, allowing us to distinguish
it from the other test cases.

3.2. Gathering execution data

In the next step, we execute the instrumented code to generate the trace data. During execution,
we collect predicate execution data for, e.g, each test in a test suite, while also classifying each
trace as successful or failed, depending on the test outcome. The approach expects multiple
execution profiles and at least one failed execution to work correctly.

The current prototype of our approach uses a simple rule for generating joined predicates:
each pair of two simple predicates is a possible joined predicate. During execution of the
instrumented code, each time a predicate gets evaluated, we dynamically create a new joined
predicate from the last evaluated simple predicate and the currently triggered one and add it
to our list of joined predicates, if it has not been encountered, previously. It is possible to use
more complex rules for the creation of joined predicates, e.g., using the previous two predicates
to create a joined predicate consisting of three simple ones or even only considering specific
types of predicates.

During the execution of tests, all predicates for an instrumented location are directly evaluated
by the executing code, and the results are stored in a list. This list contains all predicates and
joined predicates that got triggered during a run and is exported at the end of the run.

6

3.3. Mining bug signatures

In this step, we try to find the top-k discriminative bug signatures. For this, we use an adaptation
of the mining algorithm presented in [25].

The input is a database of transactions with each transaction containing a single run of
the program and the information if that run was successful. A Gr-tree (see subsection 2.2) is
constructed from the database. The Gr-tree stores all its items in its head table and links them
to their corresponding nodes in the tree structure. The output is a list containing the top-k
discriminative signatures.

Our mining algorithm implements the pseudo code mining algorithm described in [25]. Most
differences stem from the java implementation and do not alter the basic idea. The algorithm
also has some parameters controlling the size of the mined bug signatures, the cutoff point for
significance, and k, the size of the returned list. We used the same default parameters as defined
in [25].

4. Experimental Setup

4.1. Choosing a base for a comparison

The result of bug signature identification is different from other fault localization techniques.
Other fault localization techniques output a list of program elements ordered by suspiciousness,
while a bug signature approach instead returns a ranked list of bug signatures. Each bug
signature consists of one or multiple program elements, describing a supposed bug context.
The advantage of this additional information is difficult to quantify, as each programmer may
process the information from such a bug context in a unique way and most likely different than
a program would. A bug signature can therefore consist of program elements that do not have
an immediately obvious relation to the bug under examination.

We decided to quantitatively compare our approaches to spectrum-based fault localization
(SBFL), a popular fault localization technique. Thus, we compare the following approaches:

SBFL state-of-the-art SBFL as implemented in BugLoRD2, using JaCoCo3to collect ex-
ecution profiles (test coverage data) and using the DStar metric [29] to calculate
suspiciousness scores

Predicates our approach using predicates

Joined Predicates our approach using predicates and joined predicates (see subsubsection 3.1.2)

4.2. The scoring algorithm

The result of our approach, described in section 3, is a ranked list of bug signatures. The result
of SBFL is a ranked list of source code lines. As a bug signature can contain information about
one or more code locations (note that a bug signature may also contain additional information

2https://github.com/hub-se/BugLoRD
3https://www.eclemma.org/jacoco/index.html

7

that has no equivalent in SBFL), we developed an algorithm to calculate suspiciousness scores
for a bug signature. A scoring approach for fault localization experiments is a metric, first
proposed by Renieres and Reiss in [30] and used by others [31, 32], based on static program
dependencies. In the first step, a program dependence graph (PDG), a graph that contains a node
for each expression in the program, is constructed from the source code. Next, nodes in the
PDG get marked ”faulty” for being related to the bug under inspection. Using the results of the
fault localization, for each prediction, one or more nodes can be marked as ”reported” if they
contain the predicted program element. Now, a score can be calculated as the fraction of the
PDG that would need to be examined to get from a ”reported” node to a ”faulty” one by shortest
path.

We used Soot4 [33, 34] to generate intra-procedural PDGs. Soot stores the code for each
method in a Body. Each Body contains a chain of Units which represent the actual code inside
of a method. Each Unit represents a statement in the original source code. We now define a
codelocation as the line of code in the source code and all following lines not belonging to
another Unit.

Definition 1 - codelocation

Given a reference to a line of java source code (e.g., MyClass:7) and a corresponding java method
in a Soot representation, a codelocation is the source code line of a Unit corresponding to
the referenced line and all lines after that, until the next Unit or the end of its method.

The result of our algorithm is a ranked list of bug signatures. Each bug signature contains
one or multiple predicates. Each predicate has a reference to the line of source code, where
it was evaluated. Now, we can generate codelocations from a bug signature by using all
references to lines of source code inside the bug signature. We generate the codelocations

for the bug under examination (using the source code lines associated with the bug) and the
codelocations from the bug signatures reported by our algorithm (or the SBFL results).

Definition 2 - path cost

The path cost is the sum of all edge costs on the shortest path between two codelocations.

In our setting, each edge between two classes weighs 25, each edge between two methods
weighs 10 and each edge between two Units inside a method weighs 1. The higher cost of class
and method transitions represents the additional mental effort while debugging. The numbers
are chosen based on personal experience and can be adjusted.

Both SBFL and our approach rank their output by an internal suspiciousness score (see [25]
for a definition of discriminative significance (DS) and [35] for a definition of the used SBFL
metrics). Often, multiple elements get assigned the exact same score, due to the nature of
the used formulas, the limited availability of diverse enough execution data (i.e., test cases
with diverse execution profile) or simply due to identical execution behavior that is dictated
by the implementation itself. Even worse (from an evaluation approach), a bug signature, by

4https://soot-oss.github.io/soot/

8

definition, usually contains multiple predicates and/or joined predicates and thus contains
multiple codelocations. This means that the actual position of a codelocation in a ranking
is nondeterministic. For each of such cases, we therefore have a best and worst case. In the best
case, the codelocation that will lead to the smallest score is evaluated first, and in the worst
case, it is evaluated last among all codelocations with the same suspiciousness score.

𝑚𝑖𝑛𝐶𝑜𝑑𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑒𝑓𝑜𝑟𝑒(𝑐𝑖) = |{𝑐𝑗 ∈ 𝐶 | 𝑠𝑢𝑠𝑝𝐷𝑆(𝑐𝑗) > 𝑠𝑢𝑠𝑝𝐷𝑆(𝑐𝑖)}|
𝑚𝑎𝑥𝐶𝑜𝑑𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑒𝑓𝑜𝑟𝑒(𝑐𝑖) = |{𝑐𝑗 ∈ 𝐶 | 𝑠𝑢𝑠𝑝𝐷𝑆(𝑐𝑗) ≥ 𝑠𝑢𝑠𝑝𝐷𝑆(𝑐𝑖)}|

An alternative, more correct, definition for 𝑚𝑎𝑥𝐶𝑜𝑑𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑒𝑓𝑜𝑟𝑒(𝑐𝑖) would subtract 1 to
not count 𝑐𝑖 twice. Now, by combining the path cost and codelocation, we can define our
EvaluationScore:

𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 = 𝑚𝑖𝑛𝐶𝑜𝑑𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑒𝑓𝑜𝑟𝑒 +
(︁
𝑝𝑎𝑡ℎ𝐶𝑜𝑠𝑡 *

√︀
𝑚𝑖𝑛𝐶𝑜𝑑𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑒𝑓𝑜𝑟𝑒 + 1

)︁

𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡 = 𝑚𝑎𝑥𝐶𝑜𝑑𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑒𝑓𝑜𝑟𝑒 +
(︁
𝑝𝑎𝑡ℎ𝐶𝑜𝑠𝑡 *

√︀
𝑚𝑎𝑥𝐶𝑜𝑑𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑒𝑓𝑜𝑟𝑒 + 1

)︁

𝑆𝑐𝑜𝑟𝑒𝑎𝑣𝑔 =
1

2
* (𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 + 𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡)

Note that 𝑆𝑐𝑜𝑟𝑒𝑎𝑣𝑔 is just the average of 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 and 𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡. To calculate a real average
EvaluationScore, one would use 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑀𝑖𝑛𝐶𝑜𝑑𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑒𝑓𝑜𝑟𝑒 and path cost. In our
definition, the path cost is also included in the average.

The EvaluationScore is based on the usefulness of a bug prediction to a programmer while
debugging. The EvaluationScore is 0, a perfect score, if the first reported codelocation is
exactly the line of source code associated with the bug. The EvaluationScore grows by one for
every additional codelocation to check. Additionally, the EvaluationScore is scaled with the
number of codelocations already checked, as a programmer checking the first few locations
will be motivated to look deeper, but when having already looked at multiple locations before,
might stop his investigation sooner. So, while there might be an incredibly long path in the
Unit-graph linking the suspected codelocation and the bug location, it is highly unlikely that
this connection would be useful to the programmer. I.e., the more the path cost between code
locations and bug increases, the less likely it is to track down the bug.

4.3. Evaluation Subjects

The Defects4J Benchmark5 [36] is a collection of open source projects with each being available
in multiple buggy versions. Each buggy version consists of the respective source code and a
change set with changes exclusively related to the bug. This omission of other changes (e.g.,
refactorings) in the change set makes it more reliable as a source for the lines of code related to
the bug. Sobreira et al. [37] did an analysis of many Defects4J bugs and showed a method for
linking a bug to lines of code. The big number of real (not artificially created) bugs from many
different projects make this a sensible benchmark choice for our purposes.

We used the bugs in the version 2.0.0 from the projects in Table 1. From the original set of
bugs, we had to exclude 21 bugs from our final results. The most common reasons were problems

5https://github.com/rjust/defects4j

9

Table 1
Used projects from the Defects4J Benchmark

project size[loc] #bugs

jfreechart (Chart) 96k 26

commons-cli (Cli) 2k 39

commons-codec (Codec) 3k 18

commons-csv (Csv) 1k 16

gson (Gson) 6k 18

commons-lang (Lang) 22k 64

commons-math (Math) 84k 106

joda-time (Time) 90k 26

Total 313

Applicable after

Instrumentation 292

Applicable after

Runtime Eval. 162

with compilation of the source code, crashes of the instrumenter and JVM crashes during test
execution. During the runtime evaluation, we encountered some additional problems, because
we could not relate the Unit containing the line of source code to the given bug/prediction, or
because the evaluation produced a time out. This leaves us with 162 bugs which were used for
the following graphs.

5. Results

In Figure 1, we see that 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 (EvaluationScore if the reported location is examined first
among all locations ranked equally; see section 4 for more details) for both joined predicates and
predicates is lower (better) than for SBFL. 𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡 is more similar for all three approaches,
with the joined predicates being significantly worse than simple predicates. If we look at the
included p-values, we can see that the EvaluationScores for both predicate approaches are
significantly different in our data set. The only non significant difference is between the worst
EvaluationScore for joined predicates and SBFL.

In Table 2, we can see the mean values for 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 and 𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡. For a better visualization,
we can look at Figure 3(left), where the total EvaluationScores for each approach are summed
up. Both predicate approaches have significantly lower total EvaluationScores than the SBFL
approach when comparing 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡. When comparing 𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡, the results are more even,
with only simple predicates being significantly different than the other two. If we look at the
median values in Table 2, we can see the very small difference between all three approaches
for 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡. This shows us that a lot of bugs have similar, very small scores and most of the

10

p = 0.01

p = 0.004

p = 5e−05

p = 3.8e−20

p = 0.15

p = 0.0063

0

200

400

Joined Predicates Predicates SBFL

Ev
al

ua
tio

nS
co

re
Score Type

Best
Worst

p−values from Wilcoxon Signed Rank Tests (paired)

Figure 1: Summary of results

differences stem from a few bugs with high (i.e. bad) scores. When comparing the medians for
𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡, the median for joined predicates is nearly double as big as the medians of the other
approaches.

In Figure 3(right), we further split up our results regarding the different Defects4J projects
used. It shows the different mean values for 𝑆𝑐𝑜𝑟𝑒𝑎𝑣𝑔 separated by project. Here, we can see
that both predicate approaches have lower (i.e., better) results for nearly all projects, with only
’cli’ in favor of SBFL.

Because a lot of the scores are close to or equal to 0, i.e., the best result, we additionally
looked at the density of scores. Figure 2 shows the density distribution of 𝑆𝑐𝑜𝑟𝑒𝑎𝑣𝑔 from 0 to
75. The dashed lines show the mean values for each approach. Here, we see that the simple
predicate approach has the highest density in the 0-10-range. This represents a lot of very
low 𝑆𝑐𝑜𝑟𝑒𝑎𝑣𝑔 results – results where the correct codelocation was highly ranked, while not
having too many similarly ranked codelocations. SBFL seems to have both very good scores,
but also a lot of very bad ones, leading to a significantly worse mean value.

Table 2
Mean and median values for 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 and 𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡

Approach 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 ˜︂𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡
˜︂𝑆𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑠𝑡

Joined Predicates 3.97 0 41.25 26.33

Predicates 2.94 0 26.14 12.50

SBFL 18.94 1 48.34 13.50

11

0.00

0.02

0.04

0 20 40 60
Average

Type Joined Predicates SBFLPredicates

D
en

si
ty

Figure 2: Density plot for 𝑆𝑐𝑜𝑟𝑒𝑎𝑣𝑔 with x-axis limited to 75

Best Worst

 Joined
Predicates

Predicates SBFL

0

2000

4000

6000

8000

To
ta

l E
va

lu
at

io
nS

co
re Defects4J

project
chart
cli
codec
csv
gson
lang
math
time

 Joined
Predicates

Predicates SBFL

17.4

17.7

23.7

10.5

18.2

11.4

31.3

30.8

34

2.8

26.5

42.3

28.3

18.7

46.9

51

18.2

10.4

20.6

7

10.4

8.1

17.6

20.9

chart

cli

codec

csv

gson

lang

math

time

Jo
ine

d P
red

ica
tes

Pred
ica

tes
SBFL

10
20
30
40
50

Avg

Figure 3: Left: Best and Worst EvaluationScore, Right: Mean values for 𝑆𝑐𝑜𝑟𝑒𝑎𝑣𝑔 , separated by
Defects4J project

5.1. Spread and Path Cost

Next, we analyze the EvaluationScore in more detail to better understand the differences
between the predicate based and SBFL approaches. For this, we split up the EvaluationScore

into its two main components:

12

• path cost: number of Units in the graph between the reported codelocation and the
buggy codelocation

• penalty: number of codelocations to be examined before finding the reported
codelocation in the ranking

We see in Figure 4(left), that SBFL has a significantly lower path cost than the two predicate
based approaches. This is expected, as SBFL directly outputs a line of code as result, while a bug
signature from a predicate based approach also contains additional information about the state
of the program in a faulty run. The code lines we extract and use are actually the locations of
the instrumentation sites for the predicates that the bug signature consists of. Since not every
executable line is a valid instrumentation site for a predicate, but some of the evaluated bugs
are located on such lines of code, the predicate based approaches can not reach a path cost of
0 in those cases.

0.86

0.0034

0.0026

0

20

40

60

Joined Predicates Predicates SBFL

Pa
th

 c
os

t

p−values from Wilcoxon Signed Rank Tests (paired)

Joined

SBFL
Predicates
Predicates

p < 2.22e−16

0.00039

0.88

0

200

400

600

Joined Predicates Predicates SBFL

Sp
re

ad

p−values from Wilcoxon Signed Rank Tests (paired)

Joined

SBFL
Predicates
Predicates

Figure 4: Left: Comparison of path cost (number of Units in the graph between
the two codelocations) Right: Comparison of spread (𝑚𝑎𝑥𝐶𝑜𝑑𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑒𝑓𝑜𝑟𝑒 −
𝑚𝑖𝑛𝐶𝑜𝑑𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑒𝑓𝑜𝑟𝑒)

Comparing the spread in Figure 4(right), one can see that joined predicates differ significantly
from the other approaches. This leads to the conclusion that joined predicates have more ties in
the ranking of its results which makes sense, as in addition to bug signatures having the same
rank, all predicates in the bug signature will have the same rank as the bug signature, itself.
Additionally, a bug signature consisting of three predicates can have up to three codelocations
, while a bug signature with joined predicates increases this number by one for each joined
predicate that is part of the bug signature. For example, a bug signature consisting of 2 joined
and one simple predicate can have up to five codelocations.

An additional observation we made during our experiments is the partly unfeasibly high run
time of our experiments. Some bug signature mining runs took multiple days of computation

13

time, making the approach in its current form largely unusable in a real world scenario – at
least without further optimization.

6. Conclusions

After having analyzed the data from section 5, we summarize the following conclusions:

RQ1: Can a bug signature based approach be used for bug localization?

Yes, as we have seen in, e.g., Figure 1 and Figure 3(left), a bug signature (predicate) based
approach consistently gets a lower EvaluationScore than SBFL.

These are welcome results, because while we expected it, as bug signature approaches have
been shown as effective in other languages, e.g., [23, 25] showed predicate based approaches in
C, there were multiple additional, java-specific difficulties with regard to the instrumentation.

RQ2: Can a bug signature based approach be enhanced by using joined predicates?

Maybe, but we did not manage to find any significant improvement by using our (rather simple)
joined predicate approach over the single predicate approach. In our studies, we only evaluated
joined predicate with a simple ”two-following” generation rule, and we did not exhaust other
possible rules for generating joined predicates, yet. While a three-following rule might deem
too time-intensive, we have many ideas for more elaborate rules concerning two predicates.
Another factor could be our definition of the EvaluationScore. As we discussed in section 4,
we did not find a way to use an established scoring algorithm to evaluate bug signatures. While
the problems we faced were beyond the scope of this project, most of them could be solved in
the future, allowing for a new evaluation of our results or future results.

We still strongly believe that a bug signature based approach can be enhanced by using joined
predicates, but with other joined predicates beyond a simple combination of two following
predicates into a joined one.

Another point is the differences between SBFL and predicate approaches visible in Fig-
ure 4(left). SBFL has a significantly lower average path cost than the two predicate approaches.
We can explain this with the different output formats used by the two techniques. The fact
that the predicate based approaches still get better overall scores thus must mean they perform
better in the non path cost part of our EvaluationScore.

Furthermore, the bug signature mining algorithm described in [25] which our approaches
are based on, too, actually has a parameter for controlling how many predicates can be part of a
single bug signature. A bigger size limit significantly increases the computation time, which is
why we used a size limit of 3, as recommended in [25]. This could have been chosen too small,
as in the joined predicate approach, the joined predicates now compete with the others for a
spot inside a bug signature. On the one hand, while a bigger bug signature may potentially
be more helpful to a real programmer, it would negatively impact our score, as it does not
differentiate between processing multiple predicates inside one bug signature or multiple small
bug signatures containing the same predicates. Even worse for our evaluation (and likely any

14

other based on lines of source code), just one ”correct” predicate inside a bug signature is all
that is needed to score it positively, while ignoring all the others inside the bug signature. On
the other hand, in [25], the authors noted that increasing the size of the mined bug signatures
increases the predictive power but increases the computation time.

Especially noteworthy is that all the extra information a programmer is supposed to get out
of a bug signature, e.g., it containing a predicate with 𝑣𝑎𝑟 = 𝑛𝑢𝑙𝑙 for a 𝑣𝑎𝑟 where 𝑛𝑢𝑙𝑙 is not
expected, can lead to another investigation path than just the information to investigate that
line. An evaluation method considering those aspects could have completely different results
than ours.

Acknowledgements Lars Grunske would like to thank the intensive care unit of the Achen-
bach hospital in Königs Wusterhausen for the tremendous help during his Covid-19 case.

References

[1] M. Zhivich, R. K. Cunningham, The real cost of software errors, IEEE Security & Privacy
Magazine 7 (2009) 87–90. doi:10.1109/msp.2009.56.

[2] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, J. Penix, Using static analysis to
find bugs, IEEE Software 25 (2008) 22–29. doi:10.1109/ms.2008.130.

[3] M. Perscheid, B. Siegmund, M. Taeumel, R. Hirschfeld, Studying the advancement in
debugging practice of professional software developers, Software Quality Journal 25 (2016)
83–110. doi:10.1007/s11219-015-9294-2.

[4] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, A survey on software fault localization,
IEEE Transactions on Software Engineering 42 (2016) 707–740. doi:10.1109/tse.2016.
2521368.

[5] J. A. Jones, M. J. Harrold, Empirical evaluation of the tarantula automatic fault-localization
technique, in: Proceedings of the 20th IEEE/ACM international Conference on Automated
software engineering - ASE '05, ACM Press, 2005, pp. 273–282. doi:10.1145/1101908.
1101949.

[6] T. Reps, T. Ball, M. Das, J. Larus, The use of program profiling for software maintenance
with applications to the year 2000 problem, ACM SIGSOFT Software Engineering Notes
22 (1997) 432–449. doi:10.1145/267896.267925.

[7] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, K. Vaswani, Holmes: Effective statistical
debugging via efficient path profiling, in: 2009 IEEE 31st International Conference on
Software Engineering, IEEE, IEEE, 2009, pp. 34–44. doi:10.1109/icse.2009.5070506.

[8] R. Santelices, J. A. Jones, Y. Yu, M. J. Harrold, Lightweight fault-localization using multiple
coverage types, in: 2009 IEEE 31st International Conference on Software Engineering,
IEEE, IEEE, 2009, pp. 56–66. doi:10.1109/icse.2009.5070508.

[9] W. Masri, Fault localization based on information flow coverage, Software Testing,
Verification and Reliability 20 (2009) 121–147. doi:10.1002/stvr.409.

[10] R. A. Assi, W. Masri, Identifying Failure-Correlated Dependence Chains, in: 2011 IEEE
Fourth International Conference on Software Testing, Verification and Validation Work-
shops, 2011, pp. 607–616. doi:10.1109/ICSTW.2011.42.

[11] T. B. Le, D. Lo, C. L. Goues, L. Grunske, A learning-to-rank based fault localization

15

approach using likely invariants, in: Proceedings of the 25th International Symposium
on Software Testing and Analysis, ISSTA 2016, ACM, 2016, pp. 177–188. doi:10.1145/
2931037.2931049.

[12] M. D. Ernst, J. Cockrell, W. G. Griswold, D. Notkin, Dynamically discovering likely program
invariants to support program evolution, IEEE Transactions on Software Engineering 27
(2001) 99–123. doi:10.1109/32.908957.

[13] S. Hangal, M. S. Lam, Tracking down software bugs using automatic anomaly detection,
in: Proceedings of the 24th International Conference on Software Engineering, ICSE ’02,
Association for Computing Machinery, New York, NY, USA, 2002, pp. 291–301. doi:10.
1145/581339.581377.

[14] B. Pytlik, M. Renieris, S. Krishnamurthi, S. P. Reiss, Automated fault localization using
potential invariants, CoRR cs.SE/0310040 (2003). arXiv:preprintcs/0310040.

[15] S. K. Sahoo, J. Criswell, C. Geigle, V. Adve, Using likely invariants for automated software
fault localization, in: Proceedings of the eighteenth international conference on Archi-
tectural support for programming languages and operating systems, 2013, pp. 139–152.
doi:10.1145/2451116.2451131.

[16] M. A. Alipour, A. Groce, Extended program invariants: applications in testing and fault
localization, in: Proceedings of the Ninth International Workshop on Dynamic Analysis,
2012, pp. 7–11. doi:10.1145/2338966.2336799.

[17] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, M. I. Jordan, Scalable statistical bug isolation,
ACM SIGPLAN Notices 40 (2005) 15–26. doi:10.1145/1064978.1065014.

[18] C. Liu, X. Yan, L. Fei, J. Han, S. P. Midkiff, Sober: Statistical model-based bug lo-
calization, in: Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Foundations of soft-
ware engineering - ESEC/FSE-13, Proceedings of 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ACM Press, 2005, pp. 286–295.
doi:10.1145/1081706.1081753.

[19] C. Liu, L. Fei, X. Yan, J. Han, S. P. Midkiff, Statistical debugging: A hypothesis testing-based
approach, IEEE Transactions on Software Engineering 32 (2006) 831–848. doi:10.1109/
TSE.2006.105.

[20] P. A. Nainar, T. Chen, J. Rosin, B. Liblit, Statistical debugging using compound boolean
predicates, in: D. S. Rosenblum, S. G. Elbaum (Eds.), Proceedings of the 2007 international
symposium on Software testing and analysis - ISSTA '07, ACM Press, 2007, pp. 5–15.
doi:10.1145/1273463.1273467.

[21] Z. You, Z. Qin, Z. Zheng, Statistical fault localization using execution sequence, in: 2012
International Conference on Machine Learning and Cybernetics, volume 3, IEEE, IEEE,
2012, pp. 899–905. doi:10.1109/icmlc.2012.6359473.

[22] V. Dallmeier, C. Lindig, A. Zeller, Lightweight defect localization for java, in: ECOOP
2005 - Object-Oriented Programming, Springer Berlin Heidelberg, 2005, pp. 528–550.
doi:10.1007/11531142_23.

[23] H.-Y. Hsu, J. A. Jones, A. Orso, Rapid: Identifying bug signatures to support debugging
activities, in: 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering, IEEE, IEEE, 2008, pp. 439–442. doi:10.1109/ase.2008.68.

[24] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large databases,

16

in: VLDB’94, Proceedings of 20th International Conference on Very Large Data Bases,
September 12-15, 1994, Santiago de Chile, Chile, Morgan Kaufmann, 1994, pp. 487–499.
URL: http://www.vldb.org/conf/1994/P487.PDF. doi:10.5555/645920.672836.

[25] C. Sun, S.-C. Khoo, Mining succinct predicated bug signatures, in: Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2013, ACM Press,
2013, pp. 576–586. doi:10.1145/2491411.2491449.

[26] J. Li, H. Li, L. Wong, J. Pei, G. Dong, Minimum description length principle: Generators
are preferable to closed patterns., in: Proceedings of the 21st National Conference on
Artificial Intelligence - Volume 1, volume 1 of AAAI’06, 2006, pp. 409–414.

[27] Z. Zuo, S.-C. Khoo, C. Sun, Efficient predicated bug signature mining via hierarchical
instrumentation, in: Proceedings of the 2014 International Symposium on Software
Testing and Analysis - ISSTA 2014, ACM Press, 2014, pp. 215–224. doi:10.1145/2610384.
2610400.

[28] E. Bruneton, ASM 4.0 A Java bytecode engineering library, 2007.
[29] W. E. Wong, V. Debroy, R. Gao, Y. Li, The DStar method for effective software fault

localization, IEEE Transactions on Reliability 63 (2014) 290–308. doi:10.1109/tr.2013.
2285319.

[30] M. Renieres, S. Reiss, Fault localization with nearest neighbor queries, in: 18th IEEE
International Conference on Automated Software Engineering, 2003. Proceedings., ASE’03,
IEEE Comput. Soc, 2003, pp. 30–39. doi:10.1109/ase.2003.1240292.

[31] H. Cleve, A. Zeller, Locating causes of program failures, in: Proceedings of the 27th
international conference on Software engineering - ICSE '05, ICSE ’05, ACM Press, 2005,
pp. 342–351. doi:10.1145/1062455.1062522.

[32] P. A. Nainar, T. Chen, J. Rosin, B. Liblit, Statistical debugging using compound boolean
predicates, in: D. S. Rosenblum, S. G. Elbaum (Eds.), Proceedings of the 2007 international
symposium on Software testing and analysis - ISSTA '07, ACM Press, 2007, pp. 5–15.
doi:10.1145/1273463.1273467.

[33] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, V. Sundaresan, Soot, in: CASCON
First Decade High Impact Papers on - CASCON '10, ACM Press, Mississauga, Ontario,
Canada, 2010, p. 13. doi:10.1145/1925805.1925818.

[34] P. Lam, E. Bodden, O. Lhoták, L. Hendren, The soot framework for java program analysis:
a retrospective, in: Cetus Users and Compiler Infastructure Workshop (CETUS 2011),
volume 15, 2011, p. 35.

[35] S. Heiden, L. Grunske, T. Kehrer, F. Keller, A. Hoorn, A. Filieri, D. Lo, An evaluation of pure
spectrum-based fault localization techniques for large-scale software systems, Software:
Practice and Experience 49 (2019) 1197–1224. doi:10.1002/spe.2703.

[36] R. Just, D. Jalali, M. D. Ernst, Defects4j: a database of existing faults to enable controlled
testing studies for java programs, in: Proceedings of the 2014 International Symposium on
Software Testing and Analysis - ISSTA 2014, ACM Press, 2014, pp. 437–440. doi:10.1145/
2610384.2628055.

[37] V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, M. de Almeida Maia, Dissection of
a bug dataset: Anatomy of 395 patches from defects4j, in: 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE, 2018, pp.
130–140. doi:10.1109/saner.2018.8330203.

17

NLP-Based Requirements Formalization for
Automatic Test Case Generation
Robin Gröpler1, Viju Sudhi1, Emilio José Calleja García2 and Andre Bergmann2

1ifak Institut für Automation und Kommunikation e.V., 39106 Magdeburg, Germany
2AKKA Germany GmbH, 80807 München, Germany

Abstract
Due to the growing complexity and rapid changes of software systems, the assurance of their quality
becomes increasingly difficult. Model-based testing in agile development is a way to overcome these
difficulties. However, major effort is still required to create specification models from a large set of
functional requirements provided in natural language. This paper presents an approach for a machine-
aided requirements formalization technique based on Natural Language Processing (NLP) to be used for
an automatic test case generation. The goal of the presented method is to automate the process of model
creation from requirements in natural language by utilizing appropriate algorithms, thus reducing cost
and effort. The application of our procedure will be demonstrated using an industry example from the
e-mobility domain. In this example, requirement models are generated for a charging approval system
within a larger vehicle battery charging application. Additionally, existing tools for automated model
synthesis and test case generation are applied to our models to evaluate whether valid test cases can be
generated.

Keywords
Requirements analysis, natural language processing, test generation

1. Introduction

In the life cycle of a device, component or system in industrial use, a rapidly changing and
growing number of requirements and the associated increase in features and feature changes
inevitably lead to an increasing effort for verifying requirements and testing of the implemen-
tation. To manage test complexity and reduce necessary test effort and cost, agile methods
for model-based testing have been developed [1]. The effectiveness of model-based testing
highly depends on the quality of the used specification model. The creation and maintenance
of well-defined specification models is therefore crucial and usually comes with high effort and
cost. This is especially true in agile development, where requirements are subject to frequent
changes.

In this context, an approach for requirements-based testing was developed that enables
efficient test processes, see Fig. 1. Model synthesis and model-based test generation methods are
used to systematically and efficiently create a test suite that contains suitable test cases. This
approach is based on behavioral requirements that serve as input for model synthesis. The only

29th International Workshop on Concurrency, Specification and Programming (CS&P’21)
Envelope-Open robin.groepler@ifak.eu (R. Gröpler); viju.sudhi@ifak.eu (V. Sudhi); emiliojose.calleja@gmail.com (E. J. Calleja
García); andre.bergmann@akka.eu (A. Bergmann)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

18

Requirements

Formalization

(semi-automated)

Model

Synthesis

(automated)

Test Case

Generation

(automated)

ModGen TCG

Sequence

models

Req. 1 Req. 2 Req. n

Specification

model

UML state machine

TC6TC5TC4TC3TC2TC1

Generated

test cases

Abstract test cases

Functional

requirements

Text documents

ReForm

Figure 1: Toolchain for requirements-based test case generation.

time-consuming manual step is the creation of requirement models from textual requirements
documents.

Recent advances in natural language processing show promising results to organize and
identify desired information from raw text. As a result, NLP techniques show a growing interest
in automating various software development activities like test case generation. Several NLP
approaches and tools have been investigated in recent years aiming to generate test cases from
preliminary requirements documents [2, 3, 4]. A major drawback of existing methods is the use
of controlled natural language or templates that force the requirements engineer or designer
not only to concentrate on the content but also on the syntax of the requirement. Furthermore,
those algorithms are in general not applicable to existing requirements.

In this work, we propose a new, semi-automated technique for requirements-based model gen-
eration that reduces human effort and supports frequent requirements changes and extensions.
The aim of our approach is to develop a method that

1) can handle an extended range of domains and formats of requirements, i.e. it is not limited
to a specific template or controlled natural language, and

2) provides enhanced but easily interpretable intermediate results in the form of a textual
and graphical representation of UML sequence diagrams.

Our approach utilizes an existing NLP parser to obtain basic syntactic information about the
words and their relationship to each other. Based upon this information, several rule-based
steps are performed in order to identify relevant syntactic entities which are then mapped to
semantic entities. Finally, these entities are used to form requirement models as UML sequence
diagrams. The main contributions of this work are

1) the development of a rule-based approach based on NLP information that automates the
various steps involved in deriving requirement models, and

2) the evaluation on an industrial use case using meaningful metrics that demonstrates the
good quality of our approach.

The paper is structured as follows. In Section 2, we briefly outline related work on NLP-
based requirements formalization methods. In Section 3, we present the individual steps of our

19

methodology for deriving requirement models from textual descriptions. The method is applied
to the battery charging approval system presented in Section 4. In Section 5, we define several
evaluation metrics and demonstrate the results of the application. Finally, a conclusion and
outlook is given in Section 6.

2. Related work

In order to circumvent the challenges of analyzing highly complex requirements, many authors
restrict their NLP approaches to a specific domain or a prescribed format. In [5], the authors
propose an algorithm creating activity diagrams from requirements following a predefined
structure. They consider the SOPHIST method which performs a refinement and formalization
of structured texts by introducing text templates with a defined syntactical structure [6]. In [7], a
small set of structural rules was developed to address common requirement problems including
ambiguity, complexity and vagueness. In [8], requirements are expected to be written in a
controlled natural language and are supposed to be from Data-Flow Reactive Systems (DFRS).
The approach in [9] is to generate test cases from use cases or user stories, both of which
have to comply with a specified format. In [10], requirements engineers shall be supported
with formalization of use case descriptions by writing pre-conditions and post-conditions in a
predefined format from which test cases can be generated automatically. Likewise [11] aims to
find and complete missing test cases by parsing exceptional behaviors from Javadoc comments
written in natural language, provided the documentation is in a specified template. [12] relies
on the artifacts that the programmers create while developing the product which belong to a
smaller subset of specifications.

Even for simple syntactical structures of requirements it is still necessary to enable the
requirements engineer to review the intermediate results, i.e. the generated model artifacts, and
to adjust them where necessary. The toolchain of [13] involves eliciting requirements according
to Restricted Use Case Modeling (RUCM) specifications. This applies to the work of [14], where
the authors attempt to generate executable test cases from a Restricted Test Case Modeling
(RTCM) language which restricts the style of writing test cases. This becomes an additional
overhead to the requirement engineers who draft formal requirements. Additionally, the users
are expected to inspect the generated OCL constraints before proceeding to test case generation.
Similarly, in [15] the authors explore the possibility of test case generation using Petri Net
simulation; however the interpretability of Colored Petri Nets as proposed in the approach
may vary depending on the user’s level of expertise. These intermediate results may not be
easily understood by the user and it may be cumbersome for him to fine-tune or modify the
predictions before generating reliable test cases.

A notable work from the authors of [16] makes use of recursive dependency matching to
formulate test cases. Though our approach aligns with theirs in this step, we attempt to generate
test cases from a broader set of functional requirements while they restrict themselves with
user stories from which a cause-effect relationship can be learnt.

20

3. Methodology

We utilize an existing NLP parser and use a rule-based algorithm to perform the transformation
from requirements written in natural language to requirement models. Our rule set tries to
conceive all relevant rules that could satisfactorily parse the input behavioral requirement and
extract its semantic content.

3.1. Linguistic pre-processing

The behavioral requirements are, in general, complex by nature. In order to reliably extract the
syntactic and semantic content of these requirements, a thorough linguistic pre-processing is
indispensable. For this stage, we rely on spaCy (v2.1.8) [17] - a free, open-source library for
advanced Natural Language Processing. We follow the basic NLP pipeline including tokenization,
lemmatization, part-of-speech (POS) tagging and dependency parsing in various stages of the
algorithm.

3.1.1. Pronoun resolution

Though the formal requirements tend to avoid first person (I, me, etc.) or second person (you,
your, etc.) pronouns, they may contain third person neutral pronouns (it, they, etc.) [18].
These pronouns are identified and resolved with the farthest subject, inline with the algorithm
proposed in [19] and [20]. Owing to the simplicity of the task, we assume there is no particular
need to use more sophisticated algorithms checking grammatical gender and person while
resolving pronouns. However, we attempt to resolve pronouns only if the grammatical number
of the pronoun agrees with that of the antecedent. Since pleonastic pronouns (pronouns without
a direct antecedent) do not affect the algorithm, they are cited but not replaced.

Example: Consider the requirement ”If the temperature of the battery is below Tmin or it
exceeds Tmax, charging approval has to be withdrawn”. Here, the pronoun it is resolved with
its antecedent the temperature of the battery.

3.1.2. Decomposition

Textual requirements with multiple conditions and conjunctions are hard to be transformed
and mapped to individual relations. This demands decomposition of complex requirements
into simple clauses [21]. Multiple conditions (sentences with multiple if s, whiles, etc.), root
conjunctions (sentences with multiple roots connected with a conjunction) and noun phrase
conjunctions (sentences with multiple subjects and/or objects connected with a conjunction)
are decomposed to simple primitive clauses.

We resort to the syntactic dependencies obtained from the parser to decompose requirements.
The algorithm considers the token(s) with dependency mark to decompose multiple conditions
and dependency conj for decomposing root and noun phrase conjunctions. The span of the
sub-requirement can then be defined by identifying the edges (for e.g. the left-most edge refers
to the token towards the left of the dependency graph with which the parent token holds a
syntactic dependency) of the token of interest.

21

Example: In the requirement ”If the temperature of the battery is below Tmin or the tempera-
ture of the battery exceeds Tmax, charging approval has to be withdrawn”, the root conjunction
(arising from the two roots is and exceeds) and the subsequent multiple conditions (arising
from if) are decomposed to three sub-requirements as ”[if the temperature of the battery is
below Tmin] or [if the temperature of the battery exceeds Tmax], [charging approval has to be
withdrawn]”.

3.2. Syntactic entity identification

Almost all behavioral requirements describe a particular action (linguistically, verb) done by an
agent (linguistically, subject) on the system of interest (linguistically, object). This motivates
the idea of identifying syntactic entities from the requirements. The algorithm identifies these
syntactic entities by checking the dependencies of tokens with the root.

1) Action: The main action verb in the requirement (mostly, with the dependency ROOT)
is identified and called an action. The algorithm particularly distinguishes the type of
actions as: Nominal action which has a noun and a verb together (e.g. send a message),
Boolean action which can take a Boolean constraint (e.g. is withdrawn) and Simple action
which has only an action verb (e.g. send).
In addition, the algorithm also tries to identify the verb type(s) (transitive, dative, preposi-
tional, etc.) as suggested in [21] to supplement the syntactic significance of action types.
This is essential particularly when we rely on action types for relation formulation.

2) Subjects and Objects: The tokens with dependencies subj and obj (and their variants
like nsubj, pobj, dobj, etc.) are identified mostly as Subjects and Objects, respectively.
They can be noun chunks (e.g. temperature of the battery), compound nouns (e.g. battery
temperature) or single tokens (e.g. battery) in the requirement.

Also, we noted that there are several requirements involving a logical comparison (identified as
an adjective or an adverb) between the expressed quantities. In order to identify comparisons
(e.g. greater than, exceeds, etc.) in the requirement, we utilize the exhaustive synonym hyperlinks
from Roget’s Thesaurus [22] and map them to the corresponding equality (=), inequality (!=),
inferiority (<, <=) and superiority (>, >=) symbols.

Example: From the sub-requirements ”[if the temperature of the battery is below Tmin] or
[if the temperature of the battery exceeds Tmax], [charging approval has to be withdrawn]”,
the system identifies Battery_Temperature and Charging_Approval as Subjects, Tmin and Tmax
as Objects and withdrawn as a Boolean Action. Also, the comparison term below is mapped as <
and exceeds is mapped as >.

3.3. Semantic entity identification

Semantic entities are tightly coupled with the end application which translates the parsed
syntactic information to sequence diagrams and then to abstract test cases. The semantic

22

Table 1
Mapping of syntactic to semantic entities

Syntactic entities Semantic entities
Action Signal
Action constraints Attributes
Subject / Object Actor / Component

entities are defined from the perspective of interactions in a sequence diagram and are outlined
below. The algorithm derives these entities from their syntactic counterparts1.

1) Actor or Component: The participants involved in an interaction are defined as actors
and components. To differentiate other participants from the system under test (SUT),
component is always considered as the SUT.

2) Signal: The interaction between different participants is defined as a signal.
3) Attributes: The variables holding the status at different points of interaction are defined

as attributes.
4) State: This refers to the initial, intermediate and final states of an interaction.

Semantic entities demand additional details for completeness. For example, if the value of an
attribute is not given, it can not be initialized in its corresponding test case. Likewise, for each
signal the corresponding actor needs to be identified. For each requirement, the direction of
communication (incoming: towards the system under test or outgoing: from the system under
test) should be identified. In cases where the algorithm lacks the desired ontology information,
user input is demanded to update these values.

It is worth noting that the separation of the entities as syntactic (application independent but
grammar dependent) and semantic (application dependent but grammar independent) gives
more flexibility to the algorithm to be used in parts also in a different environment than the
description language considered here. However, the mapping from the syntactic entities to their
semantic counterparts can be completely automated with stricter rules or can be accomplished
with user intervention and validation.

Example: From the sub-requirements ”[if the temperature of the battery is below Tmin] or
[if the temperature of the battery exceeds Tmax], [charging approval has to be withdrawn]”,
the identified Subjects (Battery_Temperature and Charging_Approval) are mapped as Signals and
the identified Objects (Tmin and Tmax) are mapped as Attributes. Here, the identified Action
withdrawn is also considered as an Attribute owing to the semantics of its corresponding Boolean
Signal. Additionally, we can arrive at the Actor for Battery_Temperature as battery. However,
the Actor of Charging_Approval is ambiguous (or rather unknown). Likewise, Attribute values
should either be passed by the user or they remain uninitialized in the resulting test case.

1Note that the algorithm maps syntactic to semantic entities with more complex rules (including action types
and verb types). In Table 1, we have presented only the most primitive ones for brevity. This difference is also
detailed in the example where an Action is considered as an Attribute and a Subject is mapped to a Signal.

23

3.4. Transformation to requirement model

For the description of the formal requirements a simple text-based domain-specific language
(DSL) is used, the ifak requirements description language (IRDL) [23]. This notation for require-
ment models was developed on the basis of UML sequence diagrams and is specially adapted to
the needs of describing requirements as sequences. The IRDL defines a series of model elements
(e.g. components, messages) with associated attributes (name, description, recipient, sender,
etc.) and special model structures (behavior based on logical operators or time). Functional,
behavior-based requirements are described textually using IRDL and can then be visualized
graphically as sequence diagrams (Fig. 2).

Once the entities are mapped and validated, the algorithm forms IRDL relations for each
clause and then combines them together to form relations for the whole requirement. IRDL
defines mainly two types of relations:

1) Incoming messages: SUT receives these messages provided the guard expression evaluates
to be true and then continues to the next sequence in an interaction. IRDL defines this
class of messages as ’Check’.

2) Outgoing messages: SUT sends these messages to other interaction participants with the
content defined in the signal. In IRDL, these messages are denoted as ’Message’.

Check(Actor->Component): Signal[guard expression];
Message(Component->Actor): Signal(signal content);

As an intermediate result, the user is shown the formulated IRDL relations along with
the sequence diagram corresponding to the requirement and is asked if the IRDL and the
corresponding sequence diagram are correct. In case the user wants to further modify the
relation formulation, the algorithm repeats from the mapping of syntactic entities to semantic
entities. This continues until the user confirms the model is satisfactory.

Example: IRDL relations for the example requirement ”If the temperature of the battery
is below Tmin or it exceeds Tmax, charging approval has to be withdrawn”, after the above-
mentioned steps is shown in Fig. 2.

Textual representation (IRDL) Graphical representation

State iState_001 at system;

Check(battery->system):Battery_Temperature

[msg.value < Tmin || msg.value > Tmax];

Message(system->unknown_actor):

Charging_Approval(false);

State fState_001 at system;

Battery_Temperature

Charging_Approval

iState_001

system battery unknown_actor

fState_001

Figure 2: Visualization of a requirement model in IRDL and as sequence diagram.

24

3.5. Model synthesis and test generation

The formalized requirements of the SUT can be combined to a specification model using existing
methods for model synthesis [23]. The sequence elements described before, are transformed
using a rule-based algorithm into equivalent elements of a UML state machine.

After model synthesis, test cases can be automatically generated from the state machine
using an existing method for model-based test generation [24]. Selecting a specific graph-based
coverage criteria such as ”all paths”, ”all decisions”, ”all places” or ”all transitions”, the state
machine is transformed into a special form of a Petri net from which abstract test cases in the
form of sequence diagrams can be generated. In this way, the approach allows modeling of
even complex system behavior and applying graph-based coverage criteria to the entire system
model.

4. Application

The toolchain for requirements-based model and test case generation presented in the previous
section is applied to an industrial use case from the e-mobility domain. The use case describes
a system for charging approval of an electric vehicle in interaction with a charging station.
The industrial use case was defined by AKKA and aims to provide a typical basic scenario and
development workflow in software development for an automotive electronic control unit (ECU).
It does so by defining requirements, using model-based software development and deploying
the functionality on an ECU.

The use case has to be seen in the context of an electric car battery that is supposed to be
charged. The function “charging approval” implements a simple function, which decides upon
specific input signals, if the charging process of the battery is allowed or not. For example,
charging approval is given or withdrawn depending on the battery temperature, voltage or state
of charge, the requested current is adjusted according to the battery temperature, and error
behavior is handled for certain conditions. This is a continuous process, i.e. the signal values
may change over time. A more detailed technical description of the industrial use case can be
found in [25]. To fulfill the requirement of model-based software development, the module is
implemented in Matlab Simulink. Matlab Simulink Coder is used to generate C/C++ code that
can be compiled and deployed to the target. A Raspberry Pi is used to simulate some but not all
aspects of an ECU. A basic overview of the charging approval system and its interfaces to the
environment is given in Fig. 3.

Environment Velocity

Parking brake

Ignition

Charging

Approval
Environment

Charging Approval

State of Charge

Temperature of Battery

Figure 3: Process overview of charging approval system.

25

5. Results

The battery charging approval system described in the former section is used to evaluate the
proposed method. We first define the used evaluation metrics and then demonstrate the results.
To our knowledge, there are no available tools with similar input and output properties as our
tool that enable a direct comparison.

5.1. Evaluation metrics

Let 𝑅 be the set of textual requirements. For a requirement 𝑟 ∈ 𝑅, let 𝑋𝑟 be the set of expected
artifacts and 𝑌𝑟 be the set of generated artifacts. Here, artifacts refer to all the semantic entities
including the relation indicators. Let 𝑋 = ⋃𝑟∈𝑅 𝑋𝑟 denote the set of expected artifacts in all
requirements and 𝑌 = ⋃𝑟∈𝑅 𝑌𝑟 the set of generated artifacts in all requirements. Then we define
the following metrics to measure the performance of the method.

1) Completeness: For an individual requirement, this metric denotes the number of ex-
pected artifacts 𝑥 ∈ 𝑋𝑟 for which a corresponding (not necessarily identical) generated
artifact 𝑦 ∈ 𝑌𝑟 exists, in relation to the total number of expected artifacts |𝑋𝑟|.

2) Correctness: For an individual requirement, this metric denotes the number of gener-
ated artifacts 𝑦 ∈ 𝑌𝑟 for which a corresponding, semantically identical (up to naming
conventions) expected artifact 𝑥 ∈ 𝑋𝑟 exists, in relation to the total number of generated
artifacts |𝑌𝑟|.

3) Consistency: This metric denotes the number of generated artifacts 𝑦 ∈ 𝑌 for which a
corresponding expected artifact 𝑥 ∈ 𝑋 exists and is used identically in all requirements
𝑟 ∈ 𝑅, in relation to the total number of generated artifacts |𝑌 |.

The macro average for completeness and correctness, respectively, is then given by the mean
value of all individual percentage values for all 𝑟 ∈ 𝑅. The micro average is given by the sum of
all values in the numerator divided by the sum of all values in the denominator for all 𝑟 ∈ 𝑅.

Example: In order to assert the evaluation metrics in detail, consider the requirement clause
’if the SoC of the battery is below SoC_max’.

Expected: Check(charging_management->system): Battery_SoC[msg.Ialue < SoC_max];

Generated: Check(battery->system): battery_SoC[msg.value < SoC_max];

For the metric completeness, we check if all the expected artifacts (i.e. Check, charging_man-
agement, Battery_SoC, etc.) are generated by the algorithm. In this case, we can see that all
of them were generated. For obtaining the correctness, we check if those generated artifacts
are semantically correct. In this case, though we expect the actor charging_management, the
algorithm generates battery. This reduces the value of correctness. If the algorithm generates
battery_SoC for every occurrence of ’SoC of battery’ across all the requirements, it is considered
consistent for this artifact.

26

Table 2
Evaluation of the algorithm on the charging approval system

without domain knowledge with domain knowledge
macro avg. micro avg. macro avg. micro avg.

Completeness 78.2% 79.8% 81.4% 84.1%
Correctness 74.9% 78.8% 78.3% 82.1%
Consistency 94.1% 96.4%

5.2. Requirements formalization

As part of the demonstrated use case, AKKA has provided functional requirement documents
describing the expected behavior for the relevant SUT. To apply the NLP-based requirements
formalization method, each statement is treated as a separate entity for which a well-defined
requirement model is created. Overall, the charging approval SUT is described by 14 separate
requirement statements.

The results of our evaluation are shown in Table 2. We have determined the individual
correctness and completeness values and calculated the macro and micro average for them.
We avoided double counting of identical entity detections as not to skew the results. As
mentioned above, if an actor or value of an attribute is not explicitly mentioned in the textual
requirement, it cannot be detected by the algorithm. Therefore we also show the results using
domain knowledge, which could be in the form of a predefined list of signals, attributes, etc. or
integrated by direct user interaction from an expert with knowledge about the system.

As one can observe, the method shows good results, most of the signals and other artifacts
were detected correctly and completely. Having a list of artifact declarations in advance
produces even more accurate predictions. Thus, our NLP-based approach shows a good quality
and supports the generation of the formal requirement model to a significant extent.

A comparison of the time for its creation, both with and without the provided tool is not
measured directly. However, from our experience of former and the presented use case it takes
a lot of time for a requirements engineer to get into the description language for sequence
diagrams by reading documentations and having discussions, to create the logical structure
and to add all the details to the model manually. The new semi-automated approach supports
the user in a great manner. It gives a first proposal of the requirement model in a textual and
graphical view and provides options for handeling unclear points. This should therefore save a
lot of time, even though a manual review of the created model is still required.

5.3. Model synthesis and test generation

For the next step, the requirement models of the charging approval system were used as the
input for model synthesis using ifak’s prototypical tool ModGen. Since the NLP-based approach
treats every requirement as a separate entity, it is also necessary to connect each requirement by
modelling the boundaries explicitly. As a result, a graph-based representation of the functionality
as described by the requirements was generated in the form of a UML state machine (Fig. 4).
The generated model contains 6 states and 20 transitions with appropriate signals, guards and
actions. The semantic as well as syntactic validity of the generated UML state machine could

27

Figure 4: UML state machine of charging approval (left) and a test case visualized as a sequence
diagram (right).

be confirmed by a thorough evaluation based on the initial requirement documents and by
checking for deadlocks and livelocks. It could be shown that no further manual editing of the
model is required for a full description of the behavior of the system.

In this evaluation, ifak’s prototypical tool TCG with the coverage criteria “all-paths” was
selected, which ensures that each possible path in the utilized model is covered by at least one
test case. By utilizing the existing algorithm for test generation, a total of 73 test cases were
generated. In Fig. 4, one of the generated test cases is visualized in the form of a sequence
diagram. Here, a test system (TS) interacts with the SUT (charging approval) and provides a
number of parameters, upon which the system decides if charging approval is given.

Overall, it can be shown that valid abstract test cases are generated based on the specification
model. Using an appropriate framework for test case execution and a suitable test adapter, the
generated test cases could be used for validation of the functional behavior of the SUT.

6. Conclusion

In this work, an NLP-based method for machine-aided model generation from textual require-
ments is presented. The method is designed to cover a wide range of requirements formulations
without being restricted to a specific domain or format. Further, the generated requirement
models are given in a user-friendly, comprehensible textual and graphical representation in the
form of sequence diagrams.

We evaluated our approach on the industrial use case of a battery charging approval system
and showed that the algorithm can produce complete, correct and consistent artifacts to a high
degree. We have also shown how these artifacts are then used to create sequence diagrams

28

for each requirement and transformed into a state machine for the entire specification model
to finally generate abstract test cases. With the proposed semi-automated approach, we aim
to reduce the human effort of creating test cases from textual requirements to validating the
generated requirement models. In future versions of this prototypical implementation, we intend
to refine the rule-based approach further, thus reducing the need for manual modifications. One
possible solution to this regard could be training a Named Entity Recognition (NER) algorithm
to identify the semantic entities, however at the cost of intensive labelling work. Another
solution could be to rely on (pre-trained) Semantic Role Labels (SRL).

This study is still research-in-progress, since even more complex textual requirements have
to be considered for future applications. The use of the methodology is also conceivable in
other domains, such as in rail, industrial communication and automotive. In future work, we
therefore intend to analyze how we can improve the method to cover more application domains.

Acknowledgments

This research was funded by the German Federal Ministry of Education and Research (BMBF)
within the ITEA 3 projects TESTOMAT under grant no. 01IS17026G and XIVT under grant
no. 01IS18059E. We thank our former colleague Martin Reider and our research assistant Libin
Kutty from ifak for the valuable contributions to this paper. We also thank AKKA Germany
GmbH for providing an industrial use case for the evaluation of the presented method.

References

[1] P. Ammann, J. Offutt, Introduction to Software Testing, 2nd ed., Cambridge University
Press, 2017.

[2] M. J. Escalona, J. J. Gutierrez, M. Mejías, G. Aragón, I. Ramos, J. Torres, F. J. Domínguez,
An overview on test generation from functional requirements, Journal of Systems and
Software 84 (2011) 1379–1393.

[3] I. Ahsan, W. H. Butt, M. A. Ahmed, M. W. Anwar, A comprehensive investigation of
natural language processing techniques and tools to generate automated test cases, in:
ICC, 2017, pp. 1–10.

[4] V. Garousi, S. Bauer, M. Felderer, NLP-assisted software testing: A systematic mapping of
the literature, Information and Software Technology 126 (2020).

[5] M. Riebisch, M. Hubner, Traceability-Driven Model Refinement for Test Case Generation,
in: ECBS, 2005, pp. 113–120.

[6] C. Rupp, Requirements-Engineering und -Management: Aus der Praxis von klassisch bis
agil, 6th ed., Hanser, 2014.

[7] A. Mavin, P. Wilkinson, A. Harwood, M. Novak, Easy Approach to Requirements Syntax
(EARS), in: RE, 2009, pp. 317–322.

[8] G. Carvalho, F. Barros, A. Carvalho, A. Cavalcanti, A. Mota, A. Sampaio, NAT2TEST Tool:
From Natural Language Requirements to Test Cases Based on CSP, in: SEFM, 2015, pp.
283–290.

29

[9] S. C. Allala, J. P. Sotomayor, D. Santiago, T. M. King, P. J. Clarke, Towards Transforming
User Requirements to Test Cases Using MDE and NLP, in: COMPSAC, 2019, pp. 350–355.

[10] C. Nebut, F. Fleurey, Y. Le Traon, J.-M. Jezequel, Automatic test generation: A use case
driven approach, IEEE Transactions on Software Engineering 32 (2006) 140–155.

[11] A. Goffi, A. Gorla, M. D. Ernst, M. Pezzè, Automatic generation of oracles for exceptional
behaviors, in: ISSTA, 2016, pp. 213–224.

[12] A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè, S. D. Castellanos, Trans-
lating code comments to procedure specifications, in: ISSTA, 2018, pp. 242–253.

[13] C. Wang, F. Pastore, A. Goknil, L. Briand, Automatic Generation of Acceptance Test Cases
from Use Case Specifications: an NLP-based Approach, IEEE Transactions on Software
Engineering (2020) 1–38.

[14] T. Yue, S. Ali, M. Zhang, RTCM: a natural language based, automated, and practical test
case generation framework, in: ISSTA, 2015, pp. 397–408.

[15] B. C. F. Silva, G. Carvalho, A. Sampaio, Test Case Generation from Natural Language
Requirements Using CPN Simulation, in: SBMF, 2015, pp. 178–193.

[16] J. Fischbach, A. Vogelsang, D. Spies, A. Wehrle, M. Junker, D. Freudenstein, Specmate:
Automated creation of test cases from acceptance criteria, in: ICST, 2020, pp. 321–331.

[17] spaCy, Industrial-strength Natural Language Processing in Python, 2020. URL: https:
//spacy.io/.

[18] H. Yang, A. de Roeck, V. Gervasi, A. Willis, B. Nuseibeh, Analysing anaphoric ambiguity
in natural language requirements, Requirements Engineering 16 (2011) 163–189.

[19] S. Lappin, H. J. Leass, An algorithm for pronominal anaphora resolution, Computational
Linguistics 20 (1994) 535–561.

[20] L. Qiu, M.-Y. Kan, T.-S. Chua, A Public Reference Implementation of the RAP Anaphora
Resolution Algorithm, in: LREC, 2004, pp. 291–294.

[21] D. K. Deeptimahanti, R. Sanyal, An Innovative Approach for Generating Static UML
Models from Natural Language Requirements, in: ASEA, 2008, pp. 147–163.

[22] Roget’s Hyperlinked Thesaurus, Categories of notions, 2020. URL: http://www.roget.org/
scripts/hier.php/?class=I&division=0§ion=III.

[23] S. Magnus, T. Ruß, J. Krause, C. Diedrich, Modellsynthese für die Testfallgenerierung
sowie Testdurchführung unter Nutzung von Methoden zur Netzwerkanalyse, at - Automa-
tisierungstechnik 65 (2017) 73–86.

[24] J. Krause, Testfallgenerierung aus modellbasierten Systemspezifikationen auf der Basis
von Petrinetzentfaltungen, Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, 2012.

[25] D. Grujic, T. Henning, E. J. C. García, A. Bergmann, Testing a Battery Management System
via Criticality-based Rare Event Simulation, preprint, arXiv:2107.00530 [cs.SE], 2021.

30

Cause-Effect Structures Behaving like Reaction
Systems
Ludwik Czaja1,2

1Vistula University, Warsaw, Poland
2Institute of Informatics, The University of Warsaw, Poland

Abstract
Cause-effect (c-e) structures, a net-like algebraic formalism for describing and analysing systems, pri-
marily parallel, may be adapted to work as Reaction Systems. This is acquired by a simple modification
of the c-e structures’ semantics

Keywords
cause-effect structure, reaction system, quasi semiring

1. Summary of elementary cause-effect structures

Cause-effect structures (c-e) are objects of an algebraic calculus called a quasi-semiring1, for
describing and analysing systems built up as nets. Among a number of similarities to Petri nets,
the noticeable is graphic presentation of systems’ dynamics. The complete presentation of c-e
structures is in [Cza 2019].

Definition 1.1 (set F [X], quasi-semiring of formal polynomials)

Let X be a non-empty enumerable set. Its elements, called nodes, are counterparts of places in
Petri nets. 𝜃 /∈ X is a symbol called neutral. It plays role of neutral element for operations on
terms, called formal polynomials over X. The names of nodes, symbol 𝜃, operators +, ∙, called
addition and multiplication, and parentheses are symbols out of which formal polynomials
are formed. A node’s name and 𝜃 is a formal polynomial; if 𝐾 and 𝐿 are formal polynomials,
then (𝐾 + 𝐿) and (𝐾 ∙ 𝐿) are too. Their set is denoted by F [X]. Assume stronger binding of ∙
than +, which allows for dropping some parentheses. Addition and multiplication of formal
polynomials is defined as follows: 𝐾 ⊕𝐿 = (𝐾 +𝐿), 𝐾 ⊙𝐿 = (𝐾 ∙𝐿). To simplify notation,
let us use + and ∙ instead of ⊕ and ⊙. It is required that the system ⟨F [X],+, ∙, 𝜃⟩ obeys the
following equality axioms for all 𝐾,𝐿,𝑀 ∈ F [X], 𝑥 ∈ X:
(+) 𝜃 + 𝐾 = 𝐾 + 𝜃 = 𝐾 (∙) 𝜃 ∙𝐾 = 𝐾 ∙ 𝜃 = 𝐾

29th International Workshop on Concurrency, Specification and Programming (CS&P’21)
" lczaja@mimuw.edu.pl (L. Czaja)
� 0000-0003-4675-816X (L. Czaja)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1This calculus differs from the standard semiring by restricted distributivity law: 𝑎 · (𝑏 + 𝑐) = 𝑎 · 𝑏 + 𝑎 · 𝑐
satisfied provided that 𝑏 ̸= 𝜃 if and only if 𝑐 ̸= 𝜃 where 𝜃 is a neutral element for both operations (simultaneity
and nondeterministic choice). Hence the preposition "quasi". Note that due to the conditional distributivity, the
calculus neither reduces to the single element 𝜃, nor makes both operations coincide.

31

(++) 𝐾 + 𝐾 = 𝐾 (∙∙) 𝑥 ∙ 𝑥 = 𝑥
(+++) 𝐾 + 𝐿 = 𝐿 + 𝐾 (∙ ∙ ∙) 𝐾 ∙ 𝐿 = 𝐿 ∙𝐾
(++++) 𝐾 + (𝐿 + 𝑀) = (𝐾 + 𝐿) + 𝑀 (∙ ∙ ∙∙) 𝐾 ∙ (𝐿 ∙𝑀) = (𝐾 ∙ 𝐿) ∙𝑀
(+∙) If 𝐿 ̸= 𝜃 ⇔𝑀 ̸= 𝜃 then 𝐾 ∙ (𝐿 + 𝑀) = 𝐾 ∙ 𝐿 + 𝐾 ∙𝑀

Algebraic system which obeys these axioms will be referred to as a quasi-semiring of formal
polynomials. □

Definition 1.2 (cause-effect structure, carrier, set CE[X])

A cause-effect structure (c-e structure) over X is a pair 𝑈 = ⟨𝐶,𝐸⟩ of total functions:

𝐶 : X→ F [X] (cause function; nodes occuring in 𝐶(𝑥) are causes of 𝑥)
𝐸: X→ F [X] (effect function; nodes occuring in 𝐸(𝑥) are effects of 𝑥)

such that 𝑥 occurs in the formal polynomial 𝐶(𝑦) iff 𝑦 occurs in 𝐸(𝑥). Carrier of 𝑈 is the
set 𝑐𝑎𝑟(𝑈) = {𝑥 ∈ X : 𝐶(𝑥) ̸= 𝜃∨ 𝐸(𝑥) ̸= 𝜃}. 𝑈 is of finite carrier iff |𝑐𝑎𝑟(𝑈)| < ∞ (|...|
denotes cardinality). The set of all c-e structures over X is denoted by CE[X]. Since X is fixed,
we write just CE. □

𝐶 and 𝐸 are total, thus each c-e structure comprises all nodes from X, also the isolated ones
- those from outside of its carrier. In presenting c-e structures graphically, only their carriers
are drawn. A representation of a c-e structure 𝑈 = ⟨𝐶,𝐸⟩ as a set of annotated nodes is
{𝑥𝐶(𝑥)

𝐸(𝑥) : 𝑥 ∈ 𝑐𝑎𝑟(𝑈)}. 𝑈 is also presented as a directed graph with 𝑐𝑎𝑟(𝑈) as set of vertices

labelled with objects of the form 𝑥
𝐶(𝑥)
𝐸(𝑥) (𝑥 ∈ 𝑐𝑎𝑟(𝑈)); there is an edge from 𝑥 to 𝑦 iff 𝑦 occurs

in the polynomial 𝐸(𝑥). Fig. 1 (a) and (b) depict two graphical presentations of the same c-e
structure with carrier {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ}; in (a) the encircled nodes comprise groups making
products in formal polynomials in (b), where the sums of the products create families of the
groups. This c-e structure is the set {𝑎𝜃𝑒, 𝑏𝜃𝑒, 𝑐𝜃𝑒, 𝑑𝜃𝑒, 𝑒𝑎+𝑏·𝑐+𝑐·𝑑

𝑓 ·𝑔+ℎ , 𝑓𝑒
𝜃 , 𝑔

𝑒
𝜃, ℎ

𝑒
𝜃}. Sometimes the empty

subscript/superscript 𝜃 by node names is omitted.

Figure 1: (a) Predecessors and successors of the node 𝑒, grouped into families:
{{𝑎}, {𝑏, 𝑐}, {𝑐, 𝑑}} and {{𝑓, 𝑔}, {ℎ}}. (b) Notation by means of polynomials; the arrows are redun-
dant: used only for graphic presentation of c-e structures.

32

Definition 1.3 (addition and multiplication, monomial c-e structure)

For c-e structures 𝑈 = ⟨𝐶𝑈 , 𝐸𝑈 ⟩, 𝑉 = ⟨𝐶𝑉 , 𝐸𝑉 ⟩ define:
𝑈 + 𝑉 = ⟨𝐶𝑈+𝑉 , 𝐸𝑈+𝑉 ⟩ = ⟨𝐶𝑈 + 𝐶𝑉 , 𝐸𝑈 + 𝐸𝑉 ⟩ where
(𝐶𝑈 + 𝐶𝑉)(𝑥) = 𝐶𝑈 (𝑥) + 𝐶𝑉 (𝑥) and similarly for 𝐸
𝑈 ∙ 𝑉 = (𝐶𝑈∙𝑉 , 𝐸𝑈∙𝑉) = (𝐶𝑈 ∙ 𝐶𝑉 , 𝐸𝑈 ∙ 𝐸𝑉) where
(𝐶𝑈 ∙ 𝐶𝑉)(𝑥) = 𝐶𝑈 (𝑥) ∙ 𝐶𝑉 (𝑥) and similarly for 𝐸

(The same symbols "+" and "∙" are used for operations on c-e structures and formal polynomials).
𝑈 is a monomial c-e structure iff each polynomial 𝐶𝑈 (𝑥) and 𝐸𝑈 (𝑥) is a monomial, i.e. does
not comprise non-reducible (relative to equations in Definition 1.1) operation “+“. □

Apart from the representation of c-e structures as a set
{𝑥𝐶(𝑥)

𝐸(𝑥) : 𝑥 ∈ 𝑐𝑎𝑟(𝑈)}, their linear notation is used as the so-called "arrow-expressions":

{𝑥𝜃𝑦, 𝑦𝑥𝜃 } is an arrow, denoted as 𝑥→ 𝑦 and, consequently, {𝑥𝜃𝑦, 𝑦𝑥𝜃 }∙{𝑦𝜃𝑧 , 𝑧
𝑦
𝜃}∙{𝑧𝜃𝑢, 𝑢𝑧𝜃}..... =

{𝑥𝜃𝑦, 𝑦𝑥𝑧 , 𝑧𝑦𝑢, 𝑢𝑧.........} is a chain, denoted as 𝑥→ 𝑦 → 𝑧 → 𝑢.... . Bidirectional arrow 𝑥↔ 𝑦
denotes 𝑥 → 𝑦 → 𝑥 (equivalent to 𝑦 → 𝑥 → 𝑦), that is, the close cycle {𝑥𝑦𝑦, 𝑦𝑥𝑥}. Chains
and arrows in particular, may be combined into “arrow expressions” representing some c-e
structures. For instance c-e structure {𝑎𝜃𝑥+𝑦, 𝑏

𝜃
𝑥∙𝑦, 𝑥

𝑎∙𝑏
𝜃 , 𝑦𝑎∙𝑏𝜃 } may be written as

(𝑎→ 𝑥 + 𝑎→ 𝑦) ∙ (𝑏→ 𝑥) ∙ (𝑏→ 𝑦).

The set CE with addition, multiplication and a distinguished element denoted also by 𝜃 and
understood as the empty c-e structure (𝜃, 𝜃), where 𝜃 is a constant function 𝜃(𝑥) = 𝜃 for all
𝑥 ∈ X, makes an algebraic system similar to that in Definition 1.1, the quasi-semiring of c-e
structures. Therefore the Proposition 1.1:

Proposition 1.1 The system ⟨CE[X],+, ∙, 𝜃⟩ obeys the following equations for all 𝑈, 𝑉,𝑊 ∈
CE[X], 𝑥, 𝑦 ∈ X:

(+) 𝜃 + 𝑈 = 𝑈 + 𝜃 = 𝑈 (∙) 𝜃 ∙ 𝑈 = 𝑈 ∙ 𝜃 = 𝑈
(++) 𝑈 + 𝑈 = 𝑈 (∙∙) (𝑥→ 𝑦) ∙ (𝑥→ 𝑦) = 𝑥→ 𝑦
(+++) 𝑈 + 𝑉 = 𝑈 + 𝑉 (∙ ∙ ∙) 𝑈 ∙ 𝑉 = 𝑉 ∙ 𝑈
(++++) 𝑈 + (𝑉 + 𝑊) = (𝑈 + 𝑉) + 𝑊 (∙ ∙ ∙∙) 𝑈 ∙ (𝑉 ∙𝑊) = (𝑈 ∙ 𝑉) ∙𝑊
(+∙) If 𝐶𝑉 (𝑥) ̸= 𝜃 ⇔ 𝐶𝑊 (𝑥) ̸= 𝜃 and 𝐸𝑉 (𝑥) ̸= 𝜃 ⇔ 𝐸𝑊 (𝑥) ̸= 𝜃 then

𝑈 ∙ (𝑉 + 𝑊) = 𝑈 ∙ 𝑉 + 𝑈 ∙𝑊 □

Definition 1.4 (partial order ≤; substructure, set SUB[𝑉], firing component, set FC, pre-set
and post-set)

For 𝑈, 𝑉 ∈ CE let 𝑈 ≤ 𝑉 ⇔ 𝑉 = 𝑈 + 𝑉 ; ≤ is a partial order in CE. If 𝑈 ≤ 𝑉 then 𝑈 is a
substructure of 𝑉 ; SUB[𝑉]= {𝑈 : 𝑈 ≤ 𝑉 } is the set of all substructures of 𝑉 . For 𝐴 ⊆CE:
𝑉 ∈ 𝐴 is minimal (wrt ≤) in 𝐴 iff ∀𝑊 ∈ 𝐴: (𝑊 ≤ 𝑉 ⇒𝑊 = 𝑉).
A minimal in CE∖{𝜃} c-e structure 𝑄 = ⟨𝐶𝑄, 𝐸𝑄⟩ is a firing component iff 𝑄 is a monomial c-e
structure and 𝐶𝑄(𝑥) = 𝜃 ⇔ 𝐸𝑄(𝑥) ̸= 𝜃 for any 𝑥 ∈ 𝑐𝑎𝑟(𝑄). The set of all firing components

33

is denoted by FC, thus the set of all firing components of 𝑈 ∈CE is FC[𝑈] = SUB[𝑈] ∩ FC.
Let for 𝑄 ∈ FC and 𝐺 ⊆ FC:

∙𝑄 = {𝑥 ∈ 𝑐𝑎𝑟(𝑄) : 𝐶𝑄(𝑥) = 𝜃} (pre-set or causes of 𝑄)
𝑄∙ = {𝑥 ∈ 𝑐𝑎𝑟(𝑄) : 𝐸𝑄(𝑥) = 𝜃} (post-set or effects of 𝑄)
∙𝑄∙ = ∙𝑄 ∪𝑄∙
∙𝐺 =

⋃︀
𝑄∈𝐺

∙𝑄 (pre-set or causes of 𝐺)

𝐺∙ =
⋃︀

𝑄∈𝐺
𝑄∙ (post-set or effects of 𝐺)

∙𝐺∙ = ∙𝐺 ∪𝐺∙ □

Thus, the firing component is a connected graph, due to the required minimality. Elements of
the pre-set are its causes and elements of the post-set are its effects.

Definition 1.5 (salvo - pairwise detached firing components; family FCS)

Firing components 𝑄 and 𝑃 are detached if and only if ∙𝑄∙∩ ∙𝑃 ∙ = ∅. Any set 𝐺 ⊆FC of
pairwise detached firing components is called their salvo. The family of salvos is denoted by
FCS. So, if 𝐺 ⊆FC[𝑈] then FCS[𝑈] ⊆ 2FC[𝑈] for a c-e structure 𝑈 , denotes a collection of
salvos in 𝑈 . The intention is that firing components in a salvo are capable of acting ("firing")
simultaneously. This notion will be used in definition of parallel semantics of c-e structures.□

Definition 1.6 (state of elementary c-e structures)

A state is a subset of the set of nodes: 𝑠 ⊆ X. The set of all states: S = 2X. A node 𝑥 is
active in the state 𝑠 iff 𝑥 ∈ 𝑠 and passive otherwise. As in case of Petri nets, we say ”𝑥 holds a
token” when 𝑥 is active. Obviously, the state might be defined equivalently as a two-valued
function 𝑠: X→{0, 1}. □

Definition 1.7 (sequential and parallel semantics of elementary c-e structures)

Sequential. For 𝑄 ∈FC[𝑈] , 𝑠 ∈ S, let [[𝑄]] ⊆ S× S be a binary relation defined as:
(𝑠, 𝑡) ∈ [[𝑄]] iff ∙𝑄 ⊆ 𝑠 ∧ 𝑄∙ ∩ 𝑠 = ∅ ∧ 𝑡 = (𝑠∖∙𝑄) ∪ 𝑄∙ (𝑄 transforms state 𝑠 into 𝑡).
Semantics [[𝑈]] of 𝑈 ∈CE is: [[𝑈]] =

⋃︀
𝑄∈FC [𝑈]

[[𝑄]]. [[𝑈]]* is its reflexive and transitive

closure, that is (𝑠, 𝑡) ∈ [[𝑈]]* if and only if 𝑠 = 𝑡 or there exists a sequence of states
𝑠0, 𝑠1, ..., 𝑠𝑛 with 𝑠 = 𝑠0, 𝑡 = 𝑠𝑛 and (𝑠𝑗 , 𝑠𝑗+1) ∈ [[𝑈]] for 𝑗 = 0, 1, ..., 𝑛− 1. State 𝑡 is
reachable from 𝑠 in semantics [[]] and the sequence 𝑠0, 𝑠1, ..., 𝑠𝑛 is a computation performed
by 𝑈 .
Parallel. For a salvo 𝐺 ∈FCS[𝑈], 𝐺 ̸= ∅, relations [[𝐺]] and [[𝑈]]𝑝𝑎𝑟 are defined in the
same way as [[𝑄]] and [[𝑈]] in the sequential case but with 𝑄 replaced with 𝐺 and FC[𝑈]
replaced with FCS[𝑈]. Closure [[𝑈]]*𝑝𝑎𝑟, reachability and computation are defined as in the
sequential case. □

Note that [[𝑈]] = ∅ iff FC[𝑈] = ∅. Behaviour of elementary c-e structures may be thought
of as a token game: if each node in a firing component’s pre-set holds a token and none in

34

its post-set does, then remove tokens from the pre-set and put them in the post-set. This is
illustrated in Fig. 2. Properties inferred from above definitions are proved in [Cza 2019].

Figure 2: Example of activity (successive transformations) of elementary c-e structure. Its linear nota-
tion as an "arrow expression" is the following:
(𝑎→ 𝑏) + (𝑏→ 𝑐) ∙ (𝑏→ 𝑑) + (𝑏→ 𝑒) + (𝑐→ 𝑒) + (𝑐→ 𝑑) + (𝑒→ 𝑑) + (𝑒→ 𝑎).

2. Summary of extended cause-effect structures

The structure of extended c-e structures, their firing component in particular, is the same
as in Definitions 1.1 - 1.4. The extensions consist in redefining the state, treating the pre and
post sets of firing components as multisets, and redefining semantics. It is assumed that with a
given c-e structure 𝑈 ∈CE[X] (i.e. already constructed by operations introduced in Definition
1.3) and the set of its firing components FC[𝑈] = SUB[𝑈]∩FC, some additional information is
associated. The following extensions of elementary c-e structures with this information will be
obtained: multi-valued nodes, capacity of nodes and coefficients of monomials in polynomials
annotating nodes (counterparts of weight of arrows in Petri nets), in particular a coefficient 𝜔
which represents inhibiting. To this end, a notation for multisets is convenient: let N be the set
of natural numbers including 0 and N𝜔 = N ∪ {𝜔}, where the value 𝜔 means infinity, that
is 𝜔 > 𝑛 for each 𝑛 ∈ N. A multiset over a base set 𝑋 is a (total) function 𝑓 : 𝑋 → N𝜔 . If
the set {𝑥: 𝑓(𝑥) ̸= 0} is finite then the linear-form notation is adopted for multisets , e.g.
𝑋 𝑎 𝑏 𝑐 𝑑 𝑒

𝑓(𝑋) 2 0 3 1 𝜔
is denoted by 2 ⊗ 𝑎 + 3 ⊗ 𝑐 + 𝑑 + 𝜔 ⊗ 𝑒. A multiset is zero

O, when O(𝑥) = 0 for all 𝑥. Addition, subtraction and multiplication on multisets is defined:
(𝑓+𝑔)(𝑥) = 𝑓(𝑥)+𝑔(𝑥), (𝑓−𝑔)(𝑥) = 𝑓(𝑥)−𝑔(𝑥) for 𝑓(𝑥) ≥ 𝑔(𝑥), (𝑓 ·𝑔)(𝑥) = 𝑓(𝑥)·𝑔(𝑥),
comparison of multisets: 𝑓 ≤ 𝑔 iff 𝑓(𝑥) ≤ 𝑔(𝑥) for all 𝑥. Assume the customary arithmetic
of 𝜔: 𝜔 + 𝑛 = 𝜔, 𝜔 − 𝑛 = 𝜔, 𝜔 + 𝜔 = 𝜔 and additionally 0− 𝜔 = 0.

Definition 2.1 (state of extended c-e structures)

A state of extended c-e structure 𝑈 is a total function 𝑠 : 𝑐𝑎𝑟(𝑈)→ N, thus a multiset over
𝑐𝑎𝑟(𝑈). The set of all states of 𝑈 is denoted by S. □

Definition 2.2. (weights of monomials and capacity of nodes)

For a c-e structure 𝑈 = ⟨𝐶,𝐸⟩ and its firing component 𝑄 ∈FC[𝑈], let with the pre-set ∙𝑄
and post-set 𝑄∙ of 𝑄, some multisets ∙𝑄: ∙𝑄→ N𝜔 and 𝑄∙: 𝑄∙ → N𝜔 be given as additional
information. The value ∙𝑄(𝑥) is a weight (or multiplicity) of monomial 𝐸𝑄(𝑥) and the value

35

𝑄∙(𝑥) - a weight (or multiplicity) of monomial 𝐶𝑄(𝑥). For 𝐸𝑄(𝑥) = 𝜃 or 𝐶𝑄(𝑥) = 𝜃
assume respectively ∙𝑄(𝑥) = 0 or 𝑄∙(𝑥) = 0 and additionally let ∙𝑄(𝑥) = 0 for 𝑥 /∈ ∙𝑄
and 𝑄∙(𝑥) = 0 for 𝑥 /∈ 𝑄∙. Let 𝑐𝑎𝑝(𝑈) be a total function 𝑐𝑎𝑝(𝑈) : 𝑐𝑎𝑟(𝑈) → N𝜔∖{0},
assigning a capacity to nodes in the set 𝑐𝑎𝑟(𝑈). A c-e structure endowed with such information
is a c-e structure-with-weighted monomials and capacity of nodes. Note that this definition
extends directly from the firing components onto their salvos. Indeed, For any non-empty salvo
𝐺 ∈FCS[𝑈] and any 𝑥 ∈ ∙𝐺∙ there exists exactly one firing component 𝑄 ∈ 𝐺, with 𝑥 ∈
∙𝑄∙ (because firing components in 𝐺 are pairwise detached). Thus one may define ∙𝐺 = ∙𝑄
and 𝐺∙ = 𝑄∙. It should also be noticed that weights of cause or effect monomials in identical
firing components appearing in different c-e structures, may be different. □

An effect monomial 𝐸𝑄(𝑎) of a node 𝑎 ∈ ∙𝑄, with weight ∙𝑄(𝑎), is denoted by ∙𝑄(𝑎)⊗𝐸𝑄(𝑎).
Similarly for a cause monomial 𝐶𝑄(𝑥) of a node 𝑥 ∈ 𝑄∙ with weight 𝑄∙(𝑥): 𝑄∙(𝑥)⊗ 𝐶𝑄(𝑥).
The coefficient representing weights will be abandoned if they are 1.

Definition 2.3 (inhibitors)

For a firing component 𝑄 ∈FC[𝑈], let 𝑖𝑛ℎ[𝑄] = {𝑥 ∈ ∙𝑄 : ∙𝑄(𝑥) = 𝜔}, thus a set of nodes
in the pre-set of 𝑄, whose effect monomials 𝐸𝑄(𝑥) are of weight 𝜔. The nodes in 𝑖𝑛ℎ[𝑄] will
play role of inhibiting nodes of firing component 𝑄. In accordance with the note in Definition
1.5 (pairwise detached firing components in salvos), the concept of inhibiting nodes extends
directly onto the salvos: 𝑖𝑛ℎ[𝐺] = {𝑥 ∈ ∙𝐺 : ∙𝐺(𝑥) = 𝜔} where 𝐺 ∈FCS[𝑈]. The inhibiting
nodes will be called inhibitors. □

Definition 2.4. (enabled firing components and enabled salvos)

For a firing component 𝑄 ∈FC[𝑈] and state 𝑠 let us define the formula: 𝑒𝑛𝑎𝑏𝑙𝑒𝑑[𝑄](𝑠) if and
only if:

∀𝑥 ∈ 𝑖𝑛ℎ[𝑄] : 𝑠(𝑥) = 0∧
∀𝑥 ∈ ∙𝑄∖𝑖𝑛ℎ[𝑄] : 𝑠(𝑥) > 0 ∧ ∙𝑄(𝑥) ≤ 𝑠(𝑥) ≤ 𝑐𝑎𝑝(𝑈)(𝑥)∧
∀𝑥 ∈ 𝑄∙ : 𝑄∙(𝑥) + 𝑠(𝑥) ≤ 𝑐𝑎𝑝(𝑈)(𝑥)

So, 𝑄 is enabled in the state 𝑠 iff none of inhibiting nodes 𝑥 ∈ ∙𝑄 contains a token and each
remaining node in ∙𝑄 contains, with no fewer tokens than is the weight of its effect monomial
𝐸𝑄(𝑥) and no more than capacity of each 𝑥 ∈ ∙𝑄. Moreover, none of 𝑥 ∈ 𝑄∙ holds more
tokens than their number when increased by the weight of the cause monomial 𝐶𝑄(𝑥), exceeds
capacity of 𝑥. Evidently, for a salvo 𝐺 ∈FCS[𝑈], the formula 𝑒𝑛𝑎𝑏𝑙𝑒𝑑[𝐺](𝑠) is defined as
above by replacing 𝑄 with 𝐺 and FC[𝑈] with FCS[𝑈]. □

Definition 2.5. (Sequential and parallel semantics of extended c-e structures)

Sequential. For 𝑄 ∈FC[𝑈] , let [[𝑄]] ⊆ S× S be a binary relation defined as:

36

(𝑠, 𝑡) ∈ [[𝑄]] iff 𝑒𝑛𝑎𝑏𝑙𝑒𝑑[𝑄](𝑠) ∧ 𝑡 = (𝑠 − ∙𝑄) + 𝑄∙ ≤ 𝑐𝑎𝑝(𝑈) (𝑄 transforms state 𝑠 into
𝑡). Semantics [[𝑈]] of 𝑈 ∈CE is [[𝑈]] =

⋃︀
𝑄∈FC[𝑈]

[[𝑄]]. Closure [[𝑈]]* and reachability and

computation are defined as in Definition 1.7.
Parallel. For a salvo 𝐺 ∈FCS[𝑈], 𝐺 ̸= ∅, the relations [[𝐺]] and [[𝑈]]𝑝𝑎𝑟 are defined in
the same way as [[𝑄]] and [[𝑈]] in the sequential case, but with 𝑄 replaced with 𝐺 and FC[𝑈]
replaced with FCS[𝑈]. Closure [[𝑈]]*𝑝𝑎𝑟, reachability and computation are defined as in the
sequential case. □

An example of using inhibitor is in Fig. 3. The weight of one effect (i.e. subscript) monomial
𝜔 ⊗ 𝑧 of the node 𝑇 is 𝜔, thus traversing arrow from 𝑇 to 𝑧 would require infinite number
of tokens at 𝑇 , which is impossible. Thus, 𝑇 is the inhibiting node in firing component 𝑄0

and ordinary - in firing component 𝑄1. In accordance with aforesaid notation of multisets, the
weighted monomials are denoted by 𝑤 ⊗𝑀 , where 𝑤 is the weight of 𝑀 - an unweighted
monomial. The weight is skipped if 𝑤 = 1. The corresponding arrows are dashed in the figures
if 𝑤 = 𝜔. In all graphic presentations of c-e structures, nodes of unbounded capacity 𝜔, for
storing data (sets of tokens), will be drawn as bigger circles with double edge. Remaining nodes,
the "control", are of capacity 1 and drawn as smaller circles.

Figure 3: Construction of c-e structure 𝑄0 +𝑄1 implementing "test zero". A token at the node 𝑖 starts
testing contents of 𝑇 ; on termination, the token appears at 𝑧 (zero) if 𝑇 is empty and at 𝑛 (not zero)
otherwise. The tested node 𝑇 plays two roles: inhibiting in 𝑄0 and ordinary in 𝑄1. Capacity of 𝑇 is
infinite, whereas of remaining nodes is 1. The empty subscript/superscript 𝜃 is skipped. In the Petri net
counterpart, the inhibiting arrow enters the left transition.

3. Basic notions of reaction systems

This outline of reaction systems [Ehr 2007], [Ehr 2017] is limited to the primary definitions,
not their extensions, generalizations and properties established in this theory. The outline
serves only as a reference base for the next section concerned with a translation of reaction
systems into a version of cause-effect structures. That is why the original (in the literature)
denotation of certain constituents of reaction systems, has been somewhat changed, in order to
avoid naming collision with the cause-effect structures. But the new presentation is completely
equivalent to original and only tailored to the purpose of the next section. The reaction systems
will be referred to as RE. The reaction systems as well as cause-effect structures, though devised
to describe interactions or cooperation in a network of active objects, both are certain models

37

of computing - in the broadest meaning of this word. Reaction systems are very inspiring new
model of computing, if "computing" is to encompass interaction, not only "number crunching".
That is why a certain attempt to translate the reaction systems into c-e structures is undertaken,
though for a price of modifying semantics of the latter, but retaining their structure. There have
been also other endeavours to relate reaction systems with some formal models, for instance
[Kle 2011], [Dut 2018], [Bar 2018], [Gor 2018].

Definition 3.1 (reaction system)

A reaction system 𝐴 is created of two sets: 𝐴 = (B,R) where B is a set called a background
(intended to comprise the so-called entities), R is a set of reactions, each reaction 𝑟 ∈ R
created of three sets 𝑟 = (𝑅𝑟, 𝐼𝑟, 𝑃𝑟) where 𝑅𝑟 ⊆ B is a set of reactants, 𝐼𝑟 ⊆ B is a set
of inhibitors with 𝑅𝑟 ∩ 𝐼𝑟 = ∅ and 𝑃𝑟 ⊆ B is a set of products. The initial state of the
system 𝐴 is a set S0 ⊆ B. □

In the literature, all the sets in Definition 3.1 are required to be finite. Though the concept of
"entity" has not been formally adopted in the definitions, for the purpose of this section it will be
understood as an object associated in a given state with an element of the background, likewise
a "token", an abstract object, of intuitive, informal status in the c-e structures or Petri nets.
Hence, the set phrase "entity present in..." in writings on the reaction systems. Since the notion
of "state" of reaction systems is analogous to that in elementary Petri nets (and elementary c-e
structures), meaning of the word "entity" may be thought of as an element of state.

Definition 3.2 (state and enabled reactions)

A state S of reaction system 𝐴 is a subset of its background: S ⊆ B. The intention is that S be
the set of those background’s members, which comprise entities. A reaction 𝑟 = (𝑅𝑟, 𝐼𝑟, 𝑃𝑟)
is enabled in a state S iff 𝑅𝑟 ⊆ S and 𝐼𝑟 ∩ S = ∅. □

Definition 3.3 (semantics of reaction systems - change of state)

The result of a reaction 𝑟 in a state S is the set 𝑃𝑟 if 𝑟 is enabled at S and the empty set ∅
otherwise. This result is denoted by 𝑟𝑒𝑠𝑟(S). The result of the reaction system 𝐴 in a state S
is the union of all its reactions in this state:

𝑟𝑒𝑠𝐴(S) =
⋃︀
𝑟∈R

𝑟𝑒𝑠𝑟(S)

□

Note that on completion (if it exists) of reaction system work, the entities in the difference of sets
S∖𝑟𝑒𝑠𝐴(S) disappear. Note also two features differing the reaction systems from cause-effect
structures (or Petri nets): the lack of conflicts and possible absorption of reactants by products.

38

These features will be taken into account in definition of semantics of reaction c-e structures in
the next section.

Example 3.1 (test zero)

The "test zero" task (Fig. 3) may be realized in the reaction system 𝐴 = (B,R) with B ={𝑖, 𝑧, 𝑛, 𝑇},
R ={𝑟1, 𝑟2} where 𝑟1 = ({𝑖}, {𝑇}, {𝑧}), 𝑟2 = ({𝑖, 𝑇},∅, {𝑛}). Result of this system’s
work depends on the initial state S0 (i.e. what the environment supplies): if S0 = {𝑖, 𝑇}
then the result is {𝑛} ("not zero" - presence of entity at 𝑇), if S0 = {𝑖} then the result is {𝑧}
("zero" - absence of entity at 𝑇). Reactant 𝑖 initiates work of the system, while 𝑇 is tested for
presence/absence of entity. Evolution of the system 𝐴 = ({𝑖, 𝑧, 𝑛, 𝑇}, {𝑟1, 𝑟2}) with initial
state {𝑖, 𝑇} is the following:

𝑟𝑒𝑠𝑟1({𝑖, 𝑇}) = ∅ (because {𝑖} ⊆ {𝑖, 𝑇} and {𝑇} ∩ {𝑖, 𝑇} ≠ ∅)
𝑟𝑒𝑠𝑟2({𝑖, 𝑇}) = {𝑛} (because {𝑖, 𝑇} ⊆ {𝑖, 𝑇} and ∅ ∩ {𝑖, 𝑇} = ∅) thus
𝑟𝑒𝑠𝐴({𝑖, 𝑇}) = 𝑟𝑒𝑠𝑟1({𝑖, 𝑇}) ∪ 𝑟𝑒𝑠𝑟2({𝑖, 𝑇}) = {𝑛} ("not zero")

Evolution of the system 𝐴 with initial state {𝑖} is the following:

𝑟𝑒𝑠𝑟1({𝑖}) = {𝑧} (because {𝑖} ⊆ {𝑖} and {𝑇} ∩ {𝑖} = ∅)
𝑟𝑒𝑠𝑟2({𝑖}) = ∅ (because {𝑖, 𝑇} ⊈ {𝑖} and ∅ ∩ {𝑖} = ∅) thus
𝑟𝑒𝑠𝐴({𝑖}) = 𝑟𝑒𝑠𝑟1({𝑖}) ∪ 𝑟𝑒𝑠𝑟2({𝑖}) = {𝑧} ("zero")

More complex example of evolution of a reaction system, that is its consecutive state changes,
is in section 4.

4. Cause-effect structures working similarly to reaction systems

The objective is to build a system structurally identical with c-e structures but working like
reaction systems. Let us call them "reaction c-e structures" and denote by RECE. The evident
counterparts of some objects in reaction c-e structures and reaction systems are the following:

nodes←→elements of background,
firing components←→reactions,
causes in a firing component←→reactants in a reaction,
effects in a firing component←→products in a reaction,
inhibitors in a firing component←→inhibitors in a reaction,
tokens←→entities.

The state of reaction c-e structures is a restriction of the state introduced in Definition 2.1 with
added "𝜔" to the range (codomain).

Definition 4.1 (state)

A state of reaction c-e structure 𝑈 is a total function 𝑠 : 𝑐𝑎𝑟(𝑈) → {0,1,𝜔}. The set of all
states of 𝑈 is denoted by S. In the following, symbols 0 and 1 will be treated as logical values

39

of false and true respectively and operations of propositional calculus on them will be applied.
Moreover, operations ∨, ∧ on 𝜔, are defined as: 0 ∨ 𝜔 = 𝜔 ∨ 0 = 𝜔, 0 ∧ 𝜔 = 𝜔 ∧ 0 = 0,
1∨𝜔 = 𝜔 ∨ 1 = 𝜔, 1∧𝜔 = 𝜔 ∧ 1 = 1, 𝜔 ∨𝜔 = 𝜔 ∧𝜔 = 𝜔, ¬𝜔 = 0. As formerly, 𝜔 will be
used for inhibiting actions. Interpretation of 0 and 1 as false and true is justified by absorption
property of entities in reaction systems and will be made formal in Definition 4.6. □

The lack of conflicts requires introducing for reaction c-e structures concept called here "volley",
to differ it from "salvo" for c-e structures introduced in Definition 1.5.

Definition 4.2 (weights of monomials and inconsistent firing components)

Given a c-e structure 𝑈 = ⟨𝐶,𝐸⟩ and its firing component 𝑄 ∈FC[𝑈], let along with the
pre-set ∙𝑄 and post-set 𝑄∙ of 𝑄, some functions
∙𝑄: ∙𝑄 → {0,1,𝜔} and 𝑄∙: 𝑄∙ → {0,1,𝜔} be given as additional information. The value
∙𝑄(𝑥) is called a weight of monomial 𝐸𝑄(𝑥) and the value 𝑄∙(𝑥) - a weight of monomial
𝐶𝑄(𝑥). For 𝐸𝑄(𝑥) = 𝜃 or 𝐶𝑄(𝑥) = 𝜃 assume respectively ∙𝑄(𝑥) = 0 or 𝑄∙(𝑥) = 0.
Additionally, ∙𝑄(𝑥) = 0 for 𝑥 /∈ ∙𝑄 and 𝑄∙(𝑥) = 0 for 𝑥 /∈ 𝑄∙. As formerly, 𝜔 is
interpreted as a "disable signal" and used for defining inhibiting nodes. Firing components 𝑄
and 𝑃 are inconsistent if for a certain 𝑥 ∈ ∙𝑄∙ ∩ ∙𝑃 ∙, weights ∙𝑄(𝑥) and ∙𝑃 (𝑥) or 𝑄∙(𝑥)
and 𝑃 ∙(𝑥) are different: ∙𝑄(𝑥) ̸= ∙𝑃 (𝑥) or 𝑄∙(𝑥) ̸= 𝑃 ∙(𝑥). Note that detached 𝑄 and 𝑃
(Definition 1.5) are not inconsistent. □

Remark. Inconsistency of firing components must be avoided so that to obtain free of conflicts
behaviour of the reaction c-e structures. The inconsistency is exemplified by the following c-e
structure: 𝑈 = {𝑥0⊗𝑦+𝑧, 𝑦

𝑥, 𝑧𝑥} containing two firing components: 𝑄 = {𝑥0⊗𝑦, 𝑦
𝑥}, 𝑃 =

{𝑥𝑧 𝑧𝑥}, thus ∙𝑄(𝑥) = 0, ∙𝑃 (𝑥) = 1. In the initial state 𝑠 with 𝑠(𝑥) = 1, 𝑠(𝑦) = 𝑠(𝑧) = 0
the parallel execution of the set of firing components 𝐺 = {𝑄,𝑃} yields undetermined
state of node 𝑥: it might be either 1 or 0. 𝑈 is a direct translation of the reaction system
({𝑥, 𝑦, 𝑧}, {𝑄,𝑃}, {𝑥}) with 𝑄 = ({𝑥},∅, {𝑥, 𝑦}), 𝑃 = ({𝑥},∅, {𝑧}), which performs
state transformation {𝑥} → {𝑥, 𝑦, 𝑧}. The same transformation of state is performed by the
reaction c-e structure 𝑉 = {𝑥0⊗𝑦+0⊗𝑧, 𝑦

𝑥, 𝑧𝑥}, leading to 𝑡(𝑥) = 𝑡(𝑦) = 𝑡(𝑧) = 1.

Definition 4.3 (volley - simultaneous firing, family FCV, extension of weight functions)

Any set 𝐺 ⊆FC without inconsistent firing components is called their volley. The family of
volleys is denoted by FCV. So, if 𝐺 ⊆FC[𝑈] then FCV [𝑈] ⊆ 2FC[𝑈] for a c-e structure 𝑈 ,
denotes a collection of volleys in 𝑈 . The pre-set ∙𝐺 and post-set 𝐺∙ of a volley 𝐺 are defined as
in Definition 1.4. Extension of the weight functions ∙𝑄 and 𝑄∙ onto the volley 𝐺 are defined
as follows:

∙𝐺(𝑥) =

{︂ ∙𝑄(𝑥) for arbitrary 𝑄 if it belongs to 𝐺
0 else

𝐺∙(𝑥) =

{︂
𝑄∙(𝑥) for arbitrary 𝑄 if it belongs to 𝐺
0 else

40

This is a correct definition, since for any firing components 𝑄 and 𝑃 in 𝐺: ∙𝑄(𝑥) = ∙𝑃 (𝑥) if
𝑥 ∈ ∙𝐺 and 𝑄∙(𝑥) = 𝑃 ∙(𝑥) if 𝑥 ∈ 𝐺∙. Functions ∙𝐺 and 𝐺∙ will be used in definition of
reaction c-e structures semantics. □

Definition 4.4 (inhibitors)

As in Definition 2.3, for a firing component 𝑄 ∈FC[𝑈], the set 𝑖𝑛ℎ[𝑄] = {𝑥 ∈ ∙𝑄 : ∙𝑄(𝑥) =
𝜔} comprises all nodes in the pre-set of 𝑄, whose effect monomials 𝐸𝑄(𝑥) are of weight 𝜔.
This also extends onto the volleys: 𝑖𝑛ℎ[𝐺] = {𝑥 ∈ ∙𝐺 : ∙𝐺(𝑥) = 𝜔} where 𝐺 ∈FCV [𝑈]. □

Definition 4.5 (enabled firing components and enabled volleys)

For a firing component 𝑄 ∈ FC[𝑈] and state 𝑠 let the formula 𝑒𝑛𝑎𝑏𝑙𝑒𝑑[𝑄](s) be defined as:

∀𝑥 ∈ 𝑖𝑛ℎ[𝑄] : 𝑠(𝑥) = 0 ∧ ∀𝑥 ∈ ∙𝑄∖𝑖𝑛ℎ[𝑄] : 𝑠(𝑥) = 1

For a volley 𝐺 ∈FCV [𝑈], the formula 𝑒𝑛𝑎𝑏𝑙𝑒𝑑[𝐺](𝑠) is defined as above by replacing 𝑄 with
𝐺 and FC[𝑈] with FCV [𝑈].

In the "token game" metaphor, 𝑄 (or 𝐺) is enabled in the state 𝑠 iff none of inhibiting nodes
𝑥 ∈ ∙𝑄 (or 𝑥 ∈ ∙𝐺) contains a token and each remaining node contains. As formerly, the
inhibiting nodes will be called inhibitors. □

Definition 4.6 (semantics [[]] of reaction c-e structures)

For a volley 𝐺 ∈FCV [𝑈], 𝐺 ̸= ∅ let [[𝐺]] ⊆ S× S be a binary relation defined as:
(𝑠, 𝑡) ∈ [[𝐺]] iff 𝑒𝑛𝑎𝑏𝑙𝑒𝑑[𝐺](𝑠) ∧ ∀𝑥 ∈ 𝑐𝑎𝑟(𝑈) : 𝑡(𝑥) = (𝑠(𝑥) ∧ ¬∙𝐺(𝑥)) ∨𝐺∙(𝑥)
(say: 𝐺 transforms state 𝑠 into 𝑡). Semantics [[𝑈]] of 𝑈 ∈RECE is

⋃︀
𝐺∈FCV [𝑈]

[[𝐺]], for any

maximal volley 𝐺, i.e. if 𝐺 ⊆ 𝐺′∈FCV [𝑈] and
(𝑠, 𝑡) ∈ [[𝐺′]] then 𝐺 = 𝐺′. Closure [[𝑈]]* and reachability and computation are defined as
in Definition 1.7. □

In Definition 4.6, if 𝑥 ∈ ∙𝐺 then ∙𝐺(𝑥) ̸= 𝜔, because the volley 𝐺 is enabled in the state 𝑠
thus ∙𝐺(𝑥) is 0 or 1. If 𝑥 /∈ ∙𝐺∙ then ∙𝐺(𝑥) = 0 and 𝐺∙(𝑥) = 0 hence ¬∙𝐺(𝑥) = 1, thus
𝑡(𝑥) = 𝑠(𝑥) (strictly, "=" means equivalence). Evidently, formula (𝑠(𝑥) ∧ ¬∙𝐺(𝑥)) ∨𝐺∙(𝑥)
is equivalent to (𝑠(𝑥)⇒ ∙𝐺(𝑥))⇒ 𝐺∙(𝑥). Note also that description of semantics by means
of this propositional formula is justified by the property of reaction systems: presence of token
("entity") at a node absorbs another token arriving in this node. Another property of reaction
systems, the lack of conflicts between different reactions, takes place in reaction c-e structures
due to the lack of inconsistent firing components in 𝐺 ∈FCV [𝑈].

Example 4.1 (reaction c-e structure assembling a chemical molecule)

41

A description of creating some chemical molecules presents the reaction system

𝐴 = ({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌, 𝑍}, {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6}),

starting with initial state {𝐶,𝐻,𝑂} and with reactions defined as follows:

𝑟1 = ({𝐶,𝐻},∅, {𝑈}) 𝑈 contains molecule 𝐶𝐻 (methylidyne)
𝑟2 = ({𝑈,𝐶,𝐻},∅, {𝑉 }) 𝑉 contains molecule 𝐶2𝐻2 (acetylene)
𝑟3 = ({𝑉,𝐻},∅, {𝑊}) 𝑊 contains molecule 𝐶2𝐻3 (ethylenyl)
𝑟4 = ({𝑊,𝐻},∅, {𝑋}) 𝑋 contains molecule 𝐶2𝐻4 (ethylene)
𝑟5 = ({𝑋,𝐻,𝑂},∅, {𝑌 }) 𝑌 contains molecule 𝐶2𝐻5𝑂 (ethoxide)
𝑟6 = ({𝑌,𝐻},∅, {𝑍}) 𝑍 contains molecule 𝐶2𝐻5𝑂𝐻 (ethanol)

A diagram of the final result, that is the ethanol molecule, is in Fig. 4 and a certain translation
of this reaction system into a reaction c-e structure is depicted in Fig. 5. Successive steps of the
reaction system evolution are the following:

𝑟𝑒𝑠𝑟1({𝐶,𝐻,𝑂}) = {𝑈} (since {𝐶,𝐻} ⊆ {𝐶,𝐻,𝑂} and ∅ ∩ {𝐶,𝐻,𝑂} = ∅)
𝑟𝑒𝑠𝑟2({𝐶,𝐻,𝑂}) = 𝑟𝑒𝑠𝑟3({𝐶,𝐻,𝑂}) = 𝑟𝑒𝑠𝑟4({𝐶,𝐻,𝑂}) = 𝑟𝑒𝑠𝑟5({𝐶,𝐻,𝑂}) =
𝑟𝑒𝑠𝑟6({𝐶,𝐻,𝑂}) = ∅ thus
𝑟𝑒𝑠𝐴({𝐶,𝐻,𝑂}) = {𝑈}

𝑟𝑒𝑠𝑟1({𝐶,𝐻,𝑂,𝑈}) = {𝑈} (since {𝐶,𝐻} ⊆ {𝐶,𝐻,𝑂,𝑈} and
∅ ∩ {𝐶,𝐻,𝑂,𝑈} = ∅)
𝑟𝑒𝑠𝑟2({𝐶,𝐻,𝑂,𝑈}) = {𝑉 } (since {𝐶,𝐻,𝑈} ⊆ {𝐶,𝐻,𝑂,𝑈} and
∅ ∩ {𝐶,𝐻,𝑂,𝑈} = ∅)
𝑟𝑒𝑠𝑟3({𝐶,𝐻,𝑂,𝑈}) = 𝑟𝑒𝑠𝑟4({𝐶,𝐻,𝑈}) = 𝑟𝑒𝑠𝑟5({𝐶,𝐻,𝑂,𝑈}) =
𝑟𝑒𝑠𝑟6({𝐶,𝐻,𝑂,𝑈}) = ∅ thus
𝑟𝑒𝑠𝐴({𝐶,𝐻,𝑂,𝑈}) = {𝑈, 𝑉 }

𝑟𝑒𝑠𝑟1({𝐶,𝐻,𝑂,𝑈, 𝑉 }) = {𝑈} (since {𝐶,𝐻} ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉 } and
∅ ∩ {𝐶,𝐻,𝑂,𝑈, 𝑉 } = ∅)
𝑟𝑒𝑠𝑟2({𝐶,𝐻,𝑂,𝑈, 𝑉 }) = {𝑉 } (since {𝐶,𝐻,𝑈} ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉 } and
∅ ∩ {𝐶,𝐻,𝑂,𝑈, 𝑉 } = ∅)
𝑟𝑒𝑠𝑟3({𝐶,𝐻,𝑂,𝑈, 𝑉 }) = {𝑊} (since {𝐻,𝑉 } ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉 } and
∅ ∩ {𝐶,𝐻,𝑂,𝑈, 𝑉 } = ∅)
𝑟𝑒𝑠𝑟4({𝐶,𝐻,𝑂,𝑈, 𝑉 }) = 𝑟𝑒𝑠𝑟5({𝐶,𝐻,𝑂,𝑈, 𝑉 }) = 𝑟𝑒𝑠𝑟6({𝐶,𝐻,𝑂,𝑈, 𝑉 }) = ∅ thus
𝑟𝑒𝑠𝐴({𝐶,𝐻,𝑂,𝑈, 𝑉 }) = {𝑈, 𝑉,𝑊}

𝑟𝑒𝑠𝑟1({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊}) = {𝑈} (since {𝐶,𝐻} ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊} and ∅∩{𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊} =
∅)
𝑟𝑒𝑠𝑟2({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊}) = {𝑉 } (since {𝐶,𝐻,𝑈} ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊} and ∅ ∩
{𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊} = ∅)

42

𝑟𝑒𝑠𝑟3({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊}) = {𝑊} (since {𝐻,𝑉 } ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊} and ∅∩{𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊} =
∅)
𝑟𝑒𝑠𝑟4({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊}) = {𝑋} (since {𝐻,𝑊} ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊} and ∅∩{𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊} =
∅)
𝑟𝑒𝑠𝑟5({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊}) = 𝑟𝑒𝑠𝑟6({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊}) = ∅ thus
𝑟𝑒𝑠𝐴({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊}) = {𝑈, 𝑉,𝑊,𝑋}

𝑟𝑒𝑠𝑟1({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋}) = {𝑈} (since {𝐶,𝐻} ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋} and ∅ ∩
{𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋} = ∅)
𝑟𝑒𝑠𝑟2({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋}) = {𝑉 } (since {𝐶,𝐻,𝑈} ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋} and ∅ ∩
{𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋} = ∅)
𝑟𝑒𝑠𝑟3({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋}) = {𝑊} (since {𝐻,𝑉 } ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋} and ∅ ∩
{𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋} = ∅)
𝑟𝑒𝑠𝑟4({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋}) = {𝑋} (since {𝐻,𝑊} ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋} and ∅ ∩
{𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋} = ∅)
𝑟𝑒𝑠𝑟5({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋}) = {𝑌 } (since {𝐻,𝑂,𝑋} ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋} and ∅ ∩
{𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋} = ∅)
𝑟𝑒𝑠𝑟6({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋}) = ∅) thus
𝑟𝑒𝑠𝐴({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋}) = {𝑈, 𝑉,𝑊,𝑋, 𝑌 }

𝑟𝑒𝑠𝑟1({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 }) = {𝑈} (since {𝐶,𝐻} ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 } and ∅ ∩
{𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 } = ∅)
𝑟𝑒𝑠𝑟2({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 }) = {𝑉 } (since {𝐶,𝐻,𝑈} ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 } and
∅ ∩ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 } = ∅)
𝑟𝑒𝑠𝑟3({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 }) = {𝑊} (since {𝐻,𝑉 } ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 } and ∅∩
{𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 } = ∅)
𝑟𝑒𝑠𝑟4({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 }) = {𝑋} (since {𝐻,𝑊} ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 } and
∅ ∩ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 } = ∅)
𝑟𝑒𝑠𝑟5({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 }) = {𝑌 } (since {𝐻,𝑂,𝑋} ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 } and
∅ ∩ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 } = ∅)
𝑟𝑒𝑠𝑟6({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 }) = {𝑍} (since {𝐻,𝑌 } ⊆ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 } and
∅ ∩ {𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 } = ∅) thus
𝑟𝑒𝑠𝐴({𝐶,𝐻,𝑂,𝑈, 𝑉,𝑊,𝑋, 𝑌 }) = {𝑈, 𝑉,𝑊,𝑋, 𝑌, 𝑍}

Figure 4: Diagram of ethanol. C, H, O - symbols of Carbon, Hydrogen and Oxygen atoms.

43

Figure 5: A c-e structure with initial state 𝑠(𝐶) = 𝑠(𝐻) = 𝑠(𝑂) = 1 (and empty remaining nodes)
imitating behaviour of reaction system 𝐴 specified in Example 4.1. Regarding it as a translation of 𝐴,
note that nodes 𝑐1, 𝑐2, ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6 are some "artifacts" of this fairly liberal translation and
have no counterparts in 𝐴. Intuitively, they might be seen as holding single atoms of elements 𝐶 and
𝐻 .

References

[Bar 2018] Barbutti R., Bove P., Gori R., Levi F., Milazzo P., Simulating Gene Regulatory Networks
using Reaction Systems, Proceedings of Concurrency, Specification and Programming 2018, pp.
119-132

[Cza 2019] Czaja L. Cause-Effect Structures. An Algebra of Nets with Examples of Application,
Lecture Notes in Networks and Systems 45, Springer 2019

[Dut 2018] Dutta S., Jankowski A., Rozenberg G., Skowron A., Linking Reaction Systems with
Rough Sets. Fundamenta Informaticae 165(3-4): 283-302 (2019)

[Ehr 2007] Ehrenfeucht A., Rozenberg G.: Reaction systems. Fundamenta Informaticae 75 (2007),
pp. 263-280

[Ehr 2017] Ehrenfeucht A, Petre I., Rozenberg G., Reaction Systems: A Model of Computation
Inspired by the Functioning of the Living Cell, in: The Role of Theory in Computer Science, Essays
Dedicated to Janusz Brzozowski, edited by Stavros Konstantinidis, Nelma Moreira, Rogério Reis
and Jeffrey Shallit, World Scientific 2017, pp.1-32

[Gor 2018] Gori R., Gruska D., Milazzo P., Hidden States in Reaction Systems, Proceedings of
Concurrency, Specification and Programming 2018, pp. 133-144

44

[Kle 2011] Kleijn J., Kountny M., Rozenberg G., Modelling Reaction Systems with Petri Nets, in:
Proc. of the International Workshop on Biological Processes & Petri Nets (BioPPN 2011), pp.
36–52

45

Interactive Granular Computing Connecting
Abstract and Physical Worlds: An Example
Soma Dutta1, Andrzej Skowron2,3

1University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710 Olsztyn, Poland
2Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland
3Digital Science and Technology Centre, UKSW, Wóycickiego 1/3; b. 21, 01-938 Warsaw, Poland

Abstract
This short paper is an attempt to clarify the role of Interactive Granular Computing (IGrC) as a com-
putation model which respects that a real cognition about a real physical complex phenomenon and
making decisions based on that cannot be formalized only being in the language of mathematics. In this
regard, the paper focuses on presenting a real life example of computation where in order to move for-
ward, without stumbling over the obstacles, a blind person needs to explore and learn the surrounding
environment through interactions with the environment. The paper simply describes different compo-
nents and features of IGrC model in the light of the concerned example and explains how this computing
model has the potential to handle the grounding problem by bridging a connection between the abstract
mathematical modeling and the real physical semantics.

Keywords
interactions, granular computing, perception, knowledge specification, implementational language, com-
plex granule, informational granule, grounding problem, dynamic transition relation

1. Introduction

In a few of our previous papers [8, 9, 19] we already put forward our arguments in favour of a
need to develop a model for computing and reasoning which is not purely mathematical and
isolated from its real physical semantics, and which has the possibility to learn from the real
physical environment through real physical interactions. That such an endeavour is necessary
for building an intelligent system, dealing with complex phenomenon, is supported by several
opinions of different researchers from different fields of research [1, 2, 3, 4, 6, 7, 10, 11, 12, 13,
16, 18]. Without repeating many such inspiring thoughts of different researchers let us start
with citing one from [18].

[. . .] the often implicit stand one takes with regard to the question of the bridge
between physical and symbolic descriptions determines in a fundamental way how
one views the problems of cognition. A primary question here is, Exactly what kind
of function is carried out by that part of the organism which is variously called the

29th International Workshop on Concurrency, Specification and Programming (CS&P’21)
" soma.dutta@matman.uwm.edu.pl (S. Dutta); skowron@mimuw.edu.pl (A. Skowron)
� 0000-0002-7670-3154 (S. Dutta); 0000-0002-5271-6559 (A. Skowron)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

46

sensor, the transducer, or in the case of Gibson, the “information pickup”? One’s an-
swer to this question determines the shape of any theory of perception and cognition
one subsequently constructs. As I shall argue, unlike the symbolic processes that char-
acterize cognition, the function performed by the transducer cannot be described as
a computation, that is, by a purely symbol-manipulation function. Like all primitive
operations of the functional architecture, the transducer fundamentally is a physical
process; that is, its behavior is explainable (its regularities can be captured) in terms
of its intrinsic properties - physical, chemical, biological, and so on. Thus, typically
it does not come under study by cognitive psychologists who simply presuppose that
an organism is equipped with certain transducer functions. The task of discovering
these mechanisms is left for others, for example, “sensory encoding neurophysiologists,
biophysicists, and engineers.

Let us also cite the opinion concerning the need of a new computing model in Cyber-Physical
Systems (CPS) [5].

The inherent cross-disciplinary nature of CPS requires distinct modelling techniques
to be employed, thus prompting for a common background formalism that enables
communication between all specialities. However, to this date, no such single super-
formalism exists to support the multiple dimensions of the design of a CPS. Indeed, to
effectively design a CPS, engineers (in the role of modellers) either need to be versed
in multiple formalisms, or a fundamentally new modelling approach has to
emerge.

According to the view of Edmund Husserl, the founder of phenomenology [7], non-standard
models of computation such as natural computing, reaction systems, Harel’s algorithmics and
Gurevich’s abstract state machines, or neural network computing are closed in the abstract
space, in the mathematical manifold.

Husserl was frustrated by the idea that science and mathematics were increasingly
conducted on an abstract plane [treating nature itself as a “mathematical mani-
fold"] that was disconnected from human experience and human understanding,
independently of questions of truth and applicability. He felt that the sciences
increasingly dealt with idealized entities and internal abstractions a world apart
from the concrete phenomena of daily life.

Till now, in different works (see, e.g., [8, 9, 14, 19, 20]), we tried to introduce what do we mean
by Interactive Granular Computing (IGrC) and how it is different from other existing theories
from the perspective of modeling computations in a complex system. In a very brief description,
Interactive symbolizes interaction between the abstract world and the real physical world, and
Granular Computing symbolizes computation over imperfect, partial, granulated information
abstracted about the real physical world. Here, once again we take the opportunity to explain
briefly the notion of complex granule (c-granule), the basic building block of IGrC.

A c-granule is composed of three parts, known as soft_suit, link_suit and hard_suit. These
three parts correspond to three sets of physical objects, together which determines the scope of

47

that particular c-granule1. The soft_suit represents the objects from the physical reality which
are directly accessible or about which already some information is obtained. The hard_suit
corresponds to those objects which are in the scope of the c-granule but not yet accessed or
are not in the direct reach at that point of time of the c-granule. The link_suit represents a
chain of objects that creates a communication channel between the soft_suit and the hard_suit.
A c-granule, when associated with an information layer with it, is known as informational
c-granule, in short ic-granule. The information layer of an ic-granule contains different forms
of information, such as specification of the already perceived properties of the objects from its
soft_suit, specifications of the windows describing where and how some specific part from the
scope of the ic-granule can be accessed or reached etc. Based on the purposes and types of the
information specifications of an ic-granule there can be different types of ic-granules, such as
ic-granule representing perception of the objects from the scope (perception based ic-granule), ic-
granule representing domain knowledge (knowledge based ic-granule), ic-granule representing
plan of actions (planner ic-granule), ic-granule representing plan into an implementational
level language (implementational ic-granule) etc. Here to be emphasized that the ic-granule,
responsible for implementation of a plan of actions, serves the task of connecting between the
abstract and the real worlds.

A computation process over a c-granule is described by a network of ic-granules lying
within the scope of the concerned c-granule. The informational layer of all these ic-granules
constitutes the domain knowledge of the control of the c-granule, may be also called control of
the computation process; this informational content is endowed with a reasoning mechanism.
The information content and the reasoning mechanism together designs the control mechanism
of a computation process. More specifically, the whole information layer is clustered based
on the information relevant to different sub-scopes of the whole scope of the c-granule. For
example, in the ic-granules representing the domain knowledge, there can be different sub-
clusters in the informational layer corresponding to different aspects of the domain knowledge.
That is, an ic-granule may contain several other ic-granules inside its scope. On the other
hand the reasoning mechanism of the control of a c-granule is responsible for aggregating,
deleting, or generating information from the existing clustered of information layers. Thus new
information layers are generated over time based on (i) initial (partial) perception and domain
knowledge of the concerned fragment of the environment (ii) initiation of interactions through
already accessible objects to access the information about the not directly reachable objects
(iii) perception of the physical world after interactions and (iv) verification of the perceived
properties of the newly obtained configuration with the expected specifications of the target
environment.

Having this much of preliminary relevant details about a computation process over a c-
granule, in this paper our target is to present a real life example through which different aspects
of computation over a c-granule can be visualised.

In this regard, Section 2 presents an example of computing along with an explanation of how
such a real life computation can be modeled in the framework of IGrC. Section 3 presents the
concluding remarks explaining how different components and features of IGrC incorporate a

1The scope of a c-granule at a given moment 𝑡 of the local time of the c-granule is the part of the physical space
corresponding to the formal specifications of all spatio-temporal windows active at 𝑡.

48

possibility of building a mathematical model which is not a simplified static image of its real
physical semantics; rather it is grounded in the real physical world.

2. Example of a computation over c-granule

The example described in [15] goes well with the idea of how a computation process, based on
perception and interactions, should look like according to IGrC model.

perceiving is a way of acting. [. . .] Think of a blind person tap-tapping his or her
way around a cluttered space, perceiving that space by touch, not all at once, but
through time, by skillful probing and movement. This is or ought to be, our paradigm
of what perceiving is.

Let us consider the above cited example as an example of a computation over a c-granule,
where the c-granule has in its scope a blind person2 and its surrounding. More precisely, the
person and the top part of the stick are directly accessible part of this environment, and hence
belongs to the soft_suit. The part of the stick, which is distant from the direct touch of the
person, belongs to the link_suit as a partial information about the end of the stick can be derived
based on the part belonging to the soft_suit, and it creates a link to the not directly accessible
objects, such as holes or stones lying in the surrounding environment, that is to the hard_suit.
The goal of the computation is to have a successful forward movement of the blind person by
deriving information about the unseen objects based on the already available knowledge and
the perceived information about the directly accessible objects. The whole computation process,
leading to the goal, is conducted by the control of the mentioned c-granule. The behaviour of
the control is based on transformations of collections (finite families) of the actual ic-granules,
or more exactly the actual networks of ic-granules, into the new ones.

All the information layers corresponding to different of ic-granules involved in a computation
is clustered in the control of the computation; using this information the reasoning mechanism
of the control makes the computation process to happen and dynamically move from one layer
to another layer. Below a step-by-step process of the computation is described in the context of
this example.

Layer:0

1. We assume 𝑔𝑠 to be an ic-granule having in its scope a blind person or robot with a
stick and the objects lying in the surrounding. At 𝑡0, the beginning of the control’s cycle,
𝑔𝑠 is labelled with the perceived information of the directly accessible objects from its
soft_suit. Here the directly accessible objects can be the blind person himself and the
part of the stick directly in contact with the person (see Figure 1). To be remembered that
here 𝑔𝑠 represents a perception based ic-granule. The informational layer of 𝑔𝑠 contains,
in particular information concerning perception of the current perceived situation; in
more complex situations it may also contain link to the domain knowledge related to
general perception of the environment, formal specifications of the transformations of

2One can even consider a robot instead of a human being.

49

informational
objects

physical
objects

L

S

H

informational
label

A blind person or robot
with directly accessible
stick in the soft_suit (S)

A link created in the link_suit (L)
through the stick interacting

with other objects connecting
the hole.

A hole in the hard_suit (H)

Part of real
physical

objects and
their dynamics
are captured

in ic-granule gs.
The information
layer at the top
consists of the

perceived
properties in the

scope of gs.

gs

Figure 1: ic-granule operating on a particular scope of the physical world.

the ic-granules within its scope, database with rules for selection of transformation of ic-
granules for realisation, etc. In our illustrative example we discuss only a very simplified
version of 𝑔𝑠.

2. Let the description of the general goal of the computation be attached as the information
layer of a planner ic-granule 𝑔0. So, here 𝑔0 corresponds to those particular cells of a
human brain where the goal description is set. So, for 𝑔0 the soft_suit, link_suit and the
hard_suit can be like different layers of those brain cells where the reachability to more
deeper layer in the hard_suit happens through the directly reachable layer in the soft_suit
and reactions of the brain cells propagating from the soft_suit to the hard_suit.

3. The role of the knowledge base is represented by another ic-granule 𝑔𝑘𝑏. Here, 𝑔𝑘𝑏 can be
considered as the brain parts related to the memory locations. The information layer of
𝑔𝑘𝑏 is labelled with the addresses of different relevant properties of different fragments
of the c-granule. The soft_suit of 𝑔𝑘𝑏 consists of the objects which form the outer box
of the memory location whose address is attached to the information layer; in order
to access the detailed information about some fragments some more inner boxes, lying
in the hard_suit, are to be opened. Such ic-granules representing knowledge base may
be called information granules. Their physical parts create local memories for storing
and transmitting information. One may also look on 𝑔𝑘𝑏 as on a compound ic-granule
representing a network of ic-granules determining the structure of 𝑔𝑘𝑏.

4. Now based on the information gathered from the informational layers of 𝑔𝑠, 𝑔0 and
𝑔𝑘𝑏, the control with its reasoning mechanism aims to better understand the perceived
situation necessary for decomposition; this leads to construction of a more detailed plan
of actions. This detailed plan is represented in informational layer of the ic-granule 𝑔1 at
the next time point 𝑡1. For a visual representation the readers are referred to Figure 2.

In our simplified illustrative example, we mention only one mechanism for enriching the

50

label
of ic-granule

I: informational
objects

P: physical
objects

S

L

H

Layer:0

g0 gkb g s

Layer:1

g1 gkb gs
1

gi

info expansion info translation

Figure 2: Computation over ic-granules passing from layer-0 to layer-1.
(i) 𝑔𝑠: Current perception of some objects of P at time 𝑡0, indicating the scope. S contains directly
perceivable objects, L contains objects creating communication channel to the objects in H where
some actions are to be performed.
(ii) 𝑔𝑘𝑏: Relevant information about general laws related to objects in 𝑔𝑠 and specifications of
where this information is stored. Here S contains directly accessible part of the storage memory
and L contains the objects linking to the directory at H.
(iii) 𝑔0: Relevant information regarding a goal that to be implemented in the H part of 𝑔𝑠. This
specification of goal is stored in some object in the H of 𝑔0, and is accessible by some object lying
in the S of 𝑔0.
(iv) info expansion denotes decomposition of the plan available at 𝑔0 to a more detailed plan.

informational layer of 𝑔𝑠. In a more realistic example, one should consider other mechanisms, e.g.,
measuring different parameters by sensors (e.g., stick in our example), recording the perceived
results of measurements in the corresponding informational layers of ic-granules etc. In a more
general case, a sequence of steps of reasoning is realised, which are based on transformations
of ic-granules, leading to better understanding of the currently perceived situation. It should
be also noted that in general decomposition problems are challenging and they are related, in
particular to the idea of information granulations and computing with words [23, 24, 25, 26].

Layer:1

1. From the perspective of the example, at 𝑡0 the information attached to 𝑔0 encodes the
general goal of the blind person that primarily gets registered in his brain, i.e., in the
soft_suit of 𝑔0. At time 𝑡0 the hard_suit of 𝑔0, such as more deep analytical brain cells,
remains still unaccessed. Based on the collected information of 𝑔𝑠 and 𝑔𝑘𝑏, at time 𝑡1 the
person ponders more analytically; this in a sense activates interaction with the previously
unaccessed part of 𝑔0. This gradually gives access to the hard_suit of 𝑔0, and thus at time

51

𝑡1 the hard_suit of 𝑔0 becomes the soft_suit of 𝑔1, labelled with a more detailed plan for
the person.

2. Now in order to implement the abstract description of the plan available at 𝑔1 through
real physical actions, the plan needs to be transformed from the abstract level to an
implementational level language. From the perspective of our example, this can be a
translation of the plan from the person’s analytical brain cells to a language of actuators,
like hands, legs, and the stick of the person. So, a new ic-granule is manifested at this layer.
We call it as 𝑔𝑖1 , an implementational ic-granule. To be noted that 𝑔𝑖1 does not concern
about the actual actuators; rather it is like another hard-drive in the brain of the person
where the action plan can be stored in the language of actuators. The information layer of
𝑔𝑖1 also contains the specification of the conditions for initiating the implementation plan
through a real actuator. Figure 3 presents the computation process described in layer-1.

Layer:0

g0 gkb gs

Layer:1

g1 gkb gs 1i
g

info expansion info translation

Layer:2

g2

gs 2i
g

info embedding

Figure 3: Computation over ic-granules passing from layer-1 to layer-2.
(i) 𝑔1: at time 𝑡1 specification of the plan of 𝑔0 is expanded. Detailed specification is generated
based on 𝑔𝑠, 𝑔𝑘𝑏 and 𝑔0 of Layer:0. In particular the H part of 𝑔0 can be now the S of 𝑔1 which is
gradually reached through the L part of 𝑔0.
(ii) 𝑔𝑖1 : Specification of how the abstract plan of 𝑔1 can be implemented in 𝑔𝑠, that is the specifi-
cation of the plan in a lower level language which can be implemented via physical objects. This
lower level language is also a built-in language of a hardware lying at the H part of 𝑔𝑖1 .
(iii) info translation denotes translation of the plan from the level of abstract description to the
level of implementational language.
(iv) 𝑔2: Specification in lower level language is embedded to a physical object lying in the S part
of 𝑔2, which prepares the ground to run the plan via a physical object in H part of 𝑔2.
(v) info embedding represents embedding the plan of actions on a real physical object.

Layer:2
1. The specification of the plan of implementation of 𝑔𝑖1 is now realized through a physical

object at time 𝑡2. Let this object belong to the scope of the ic-granule 𝑔2. In case of the

52

example, it can be the stick of the blind person on which the abstract implementation
plan is embedded, and 𝑔2 represents the ic-granule containing the stick in its scope. The
physical interaction of the stick with other objects in 𝑔2 is encoded in the information
layer of 𝑔2. If this information matches to a significant level to the condition for initiating
implementation plan stored at 𝑔𝑖1 then an action compilation signal is passed to the next
implementation granule, may be named as 𝑔𝑖2 .

2. With the action compilation specification of 𝑔𝑖2 the objects lying in its link_suit and
hard_suit propagate actions to realize a desired configuration in the hard_suit of 𝑔𝑠. In
the context of our example, 𝑔𝑖2 represents the ic-granule which specifies how to move
the stick forward until it touches a stone on its way. This chain of objects between the
stick and a stone creates a communication channel.

3. Through this communication channel the computation process enters into the hard_suit
of 𝑔𝑠, which was inaccessible at time 𝑡0. The initiation of the action compilation via 𝑔𝑖2
creates a link to the hard_suit of 𝑔𝑠. This new interaction gives access to the hard_suit of
𝑔𝑠 which was previously inaccessible.

4. A new cycle starts by perceiving properties of the newly accessible part of 𝑔𝑠.

Here to be noted, that in the example we only have mentioned about the decomposition of
the plan of actions from the initial stage 𝑔0 to a stage 𝑔1, from where it gets translated to
the implementational level language. But in practice decomposition of the action plan, say
𝛼 : 𝑔0 ⇒ 𝛽 : 𝑔1 available in the information layer of 𝑔0 specifying the target ic-granule 𝑔1 with
property 𝛽 can have several layers of decomposition in between. For a visual representation
the readers are referred to the Figure 4, which will be discussed in Section 3. One should also
consider that some actions are lunched in the process of perception while the other ones are
related to the main decisions.

The above described idea of computation over a c-granule is in the line of the idea that Luc
Steels has characterised in [21]; complex dynamical systems (complex systems, for short) are
considered as systems consisting of a set of interacting elements

[. . .] where the behavior of the total is an indirect, non-hierarchical consequence of
the behavior of the different parts. Complex systems differ in that sense from strictly
hierarchical systems [...] where the total behavior is a hierarchical composition of the
behavior of the parts. In complex systems, global coherence is reached despite purely
local non-linear interactions. There is no central control source. Typically the system
is open.

3. Beyond pure mathematical modeling: a concluding remark

From the above exemplification of the process of computation over a c-granule, moving from a
configuration of ic-granules to another, it is quite clear that the process deals with a set of hunks
of real physical matter associated with their information layers; the information layers indicate
where, when and how they can be touched, or their properties can be achieved or verified. So,
this already clarifies how in the model of IGrC by a c-granule both abstract world, that is the
information layer, and the real physical semantics, that is the three-layered hunk of objects,

53

together are referred to. One more point, that needs to be clarified, is how the model designs its
real physical implementation by lifting the static description of a process to the level of actions.

The implementational ic-granules create a specific interface between the abstract and the
physical world. In particular, at some level of the implementational phase the control of the
c-granule launches actions linking the abstract world associated to the informational layer of
the control of the c-granule with the real physical world. These actions are not from abstract
mathematical space and the model of IGrC keep those action functions free from mathematical
formalizations. Their syntactic descriptions can be formalised in the informational layers of the
control of the c-granule. However, their implementation should be realised in the real physical
world and the model only can mathematically formalize their performance quality by perceiving
the changes in the world after initiation of the actions. Of course, the expected properties of
the real physical environment, after the implementation of the actions, also can be formalized
within the description of the action specification.

Thus the IGrC model keeps the possibility of mismatch between expected and real physical
outcome open as we never can a priori formalize all possible outcomes of an action, which is
supposed to be initiated in the physical world based on an abstract description of the action
specification. We can only expect a desired outcome, specified in the information layer. So,
after each implementational phase of a computation over a c-granule the control starts a new
cycle again by perceiving the properties of the objects lying in its scope. Then those observed
properties are verified with the expected properties. Hence, accordingly there is a need to
modify the induced models based on their comparisons with the recorded data.

In Figure 4 we illustrate the idea of decomposition of the description of the action plan in
order to transform an ic-granule with a given property, say 𝛼, into another one with the property
𝛽. After several levels of decomposition it reaches a level at which the relevant actions are
launched by the control so that the expected realisation of the whole chain of actions can lead
to a situation satisfying, to a satisfactory degree, the property 𝛽. Though the conditions of the
chain of actions and the expected properties after the actions are specified by 𝛼’s and 𝛽’s, the
actual actions 𝑎𝑐1, . . . 𝑎𝑐𝑘 are not in the realm of mathematical formulation. The model of IGrC
keeps this juncture between abstract and physical bridging free from mathematical formulation.
Instead, IGrC proposes to formalize the results of actions by perceiving the properties of outcome
configurations and verifying them with the expected property 𝛽.

Let us outline a scheme of the behaviour of the control of a c-granule.
Often the control aims at achieving its target goal, expressed in the information layer of the

ic-granule 𝑔0, using complex vague concepts, e.g., related to safeness of the perceived situation,
from a natural language. Below, we assume that for a given specification a set of rules for
selection of the relevant transformations of ic-granules was learned by the control or is given a
priori. The pre-condition of each rule is a condition. The degree of matching of this condition
by the current status of the perceived situation determines selection of the transformation of
ic-granules from the post-condition of the rule.3

The outline of the general procedure of a computation in IGrC, realised by the control
of a c-granule, is based on searching for relevant transformations of ic-granules and their

3Note that other learning paradigms such as lazy learning can be used in inducing models of complex vague
concepts different from the discussed here.

54

0
: :

tr
g g

...

...
1

ac k
ac:plan

Transformation specification tr from an
ic-granule with property to an ic-granule with
property available at the planner ic-granule g0

∝: 𝑔𝑜 ⟹𝑡𝑟1 𝛼1: 𝑔1 𝛼1: 𝑔1 ⟹𝑡𝑟2 𝛽: 𝑔

∝: 𝑔𝑜 ⟹𝑡𝑟1 𝛼1: 𝑔1 … 𝛼𝑘−1: 𝑔𝑘−1 ⟹𝑡𝑟𝑘 𝛽: 𝑔

Figure 4: Illustration of a simple case of decomposition of transformation.

implementations; it looks as follows.

perceive accessible parts of the abstract and physical world to understand (up to a
satisfactory degree) the current situation for making decision concerning the selection of
the formal specification of transformation of ic-granules for implementation; the current
status of perception is represented in the informational layer of 𝑔𝑠; this is realised by the

control in several steps and one of them is listed below
⇓

consult domain knowledge and required goal of computation (𝑔𝑘𝑏, 𝑔0) to enrich the
information about the status of currently perceived situation

⇓
. . .

(it may be necessary to perform several steps of reasoning before having a satisfactory
understanding of the perceived situation; it can be achieved by allowing the control to

select the relevant formal specification of transformation of ic-granules for
implementation; some of these steps may be related, e.g., to measurements (by sensors)

of features of the perceived physical objects in the scope of active ic-granules4

. . .

⇓
select (from the proper knowledge base) the relevant formal specification of the

transformation of the ic-granules for implementation5

⇓

4It should be noted that the mentioned steps of reasoning are also realised by transformations of some ic-
granules.

5This step is especially compound; details will be discussed in an extended version of our paper.

55

. . .
the selected formal specification may require several decomposition steps before the

proper level for the direct implementation can be achieved (embedding in the physical
world)

⇓
after reaching the satisfactory level of decomposition generate the formal specification of

the action plan; in the simplest case such a plan is represented by a linear order of
ic-granules which can be implemented by the considered control of the c-granule in the

physical world6

⇓
initiate (in proper order) implementational granules from the plan responsible for

implementation of actions of plan
⇓

during plan realisation, perceive the relevant accessible parts of the physical world
(through the implementational granules) and store the perceived data in informational

layers of the relevant ic-granules
⇓

follow the same loop as above taking, in particular into account the results of matching
the expected results with the perceived ones7.

The discussed above issues of decomposition and implementation should be treated as an
illustrative example only. In the real-life projects one should take into account many other
issues.

Here to be noted that the transition from one configuration of ic-granules to the other,
as described above in the general plan of computation, by creating and accessing different
ic-granules and their information layers is not also purely mathematical. Usually, the state
transition relation is presented by a given family of sets {𝑋𝑖}𝑖∈𝐼 where a transition relation is
represented as a relation 𝑡𝑟𝑖 ⊆ 𝑋𝑖 ×𝑋𝑖. Here, this cannot be purely mathematical as we need
to incorporate the components which can specify (i) how elements of 𝑋𝑖 are perceived in the
real physical environment, and (ii) how the transition relation 𝑡𝑟𝑖 is implemented in the real
physical world. This reasoning mechanism, as described in the Introduction, is conducted by
the control of the c-granule over which the computation process is running.

So, in contrary to a static transition relation, in IGrC the control of a c-granule incorporates
the possibility of dynamic as well as not purely mathematical formulation of a state transition
relation. The structure of a control is designed to have two interacting modules, called the
abstract module (AM) and the physical module (PM) (see Figure 5).

Communication between AM and PM is designed by two mechanisms. The first one provides
a possibility of encoding given information from AM by a relevant state of a set of physical
objects from PM, and the second one provides a possibility of encoding the considered state of

6Plans may be generated on different levels of decomposition, e.g., for better understanding the perceived
situation helping the control to generate the high quality plans for realisation of the target goals.

7In a more compound case of the control of a c-granule, strategies for adaptation of the previously used plan
to the new situation are used. Moreover, the decision about the necessity of plan adaptation may be taken often
during of the actual plan.

56

AM PM

Figure 5: Interacting abstract (AM) and physical (PM) modules in control of c-granules.

a set of physical objects from PM by a relevant information represented in the language of AM.
These two mechanisms can be implemented by atomic actions.

AM module sends to PM a formal specification of a transformation of a ic-granule as well as
formal specifications of some spatio-temporal windows. Some of them are labelled by already
perceived information or properties from the scope of the c-granule and others are labelled by
formal specifications of the required information from PM. In case when the delivered specifica-
tion can be directly embedded by PM in the physical world then PM, by creating a network of
interacting ic-granules, aims to deliver a network of physical pointers matching information,
perceived by AM, with the expected properties, expressed formally in AM. Otherwise, PM sends
to AM a message about the necessity of the specification decomposition.

AM may send to PM messages consisting of formal specification(s) of the required trans-
formation(s) of ic-granules together with the expected results provided by AM. The messages
sent by AM are encoded by the states of some physical objects in PM. In this way, atomic
actions changing states of physical objects to the ones specified by the given information are
implemented. However, it is to be noted that the modeling of the behaviour of AM and commu-
nication of AM with PM can be based on mathematical modeling; whereas PM is composed out
of physical objects which, being from the real world, are outside of the abstract mathematical
modeling. However, partial information about properties of these objects and their interactions
may be communicated to AM through interaction of PM with AM. Thus, IGrC incorporates
both dynamic as well as mathematical modeling grounded in the real physical world.

References

[1] Hyo-Sung Ahn: Formation Control Approaches for Distributed Agents. Studies in Systems,
Decision and Control 205. SpringerHyo-Sung , Cwitzerland (2020) doi:10.1007/978-3-030-
15187-4

[2] Lawrence W. Barsalou: Perceptual symbol systems. Behavioral & Brain Sciences 22 (1999)
577–660 (doi:10.1017/S0140525X99002149)

[3] Franz Brentano: Psychologie vom empirischen Standpunkte. Dunker & Humboldt, Leipzig
(1874) (https://archive.org/details/psychologievome02brengoog/page/n4/mode/2up)

[4] Frederick P. Brooks: The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley, Boston (1975) (extended Anniversary Edition in 1995)

[5] Paulo Carreira, Vasco Amaral, Hans Vangheluwe: Multi-paradigm modelling for cyber-
physical systems: Foundations. In: Paulo Carreira, Vasco Amaral, Hans Vangheluwe (eds.),

57

Foundations of Cyber-Physical Systems Multi-Paradigm Modelling for Cyber-Physical
Systems. Springer, Cham, Switzerland, pp. 1-14 (2020) (doi:10.1007/978-3-030-43946-0)

[6] David Deutsch, Artur Ekert, Rossella Lupacchini: Machines, logic and quantum physics.
Neural Computation 6 (2000) 265–283 (doi:10.2307/421056)

[7] Paul Dourish: Where the Action Is. The Foundations of Embodied Interaction. The MIT
Press Cambridge, MA, London (2004)

[8] Soma Dutta, Andrzej Skowron: Toward a computing model dealing with complex phe-
nomena: Interactive granular computing. In: Ngoc Than Nguyen et al (eds): ICCCI 2021
Proceedings, Springer (2021) (to appear)

[9] Soma Dutta, Andrzej Skowron: Interactive Granular Computing Model for Intelligent
Systems. In: Shi, Z., Chakraborty, M., Kar, S. (eds): Intelligence Science III. 4th IFIP TC
12 International Conference, ICIS 2020, Durgapur, India, February 24-27, 2021, Revised
Selected Papers. IFIP Advances in Information and Communication Technology (IFIPAICT)
book series 623, Springer, Cham, Switzerland, pp. 37-48 (2021) doi:10.1007/978-3-030-
74826-5_4

[10] Sean Gerrish: How Smart Machines Think. MIT Press, Cambridge, MA (2018)
[11] Stevan Harnad: The symbol grounding problem. Physica D42 (1990) 335–346

(doi:10.1016/0167-2789(90)90087-6)
[12] Mark Heller: The Ontology of Physical Objects. Four dimensional hunks of matter. Cam-

bridge Studies in Philosophy , Cambridge University Press, Cambridge, UK (1990)
[13] Andrew Hodges: Alan Turing, Logical and Physical. In: Cooper, S.B., Löwe, B., Sorbi, A.,

New Computational Paradigms. Changing Conceptions of What is Computable. Springer
and Business Media, New York, N.Y., pp. 3-15 (2008) (doi:10.1007/978-0-387-68546-5_1)

[14] Andrzej Jankowski: Interactive Granular Computations in Networks and Systems En-
gineering: A Practical Perspective. Lecture Notes in Networks and Systems. Springer,
Heidelberg (2017) (doi:10.1007/978-3-319-57627-5)

[15] Alva Nöe: Action in perception. MIT Press, Cambridge, MA (2004)
[16] Charles L. Ortiz Jr.: Why we need a physically embodied Turing test and what it might

look like. AI Magazine 37 (2016) 55–62 (doi:10.1609/aimag.v37i1.2645)
[17] Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11

(1982) 341–356 (doi:10.1007/BF01001956)
[18] Zenon W. Pylyshyn: Computation and Cognition. Toward a Foundation for Cognitive

Science. The MIT Press Cambridge, MA (1884)
[19] Andrzej Skowron, Andrzej Jankowski, Soma Dutta: Interactive granular computing.

Granular Computing 1(2) (2016) 95–113 (doi:10.1007/s41066-015-0002-1)
[20] Andrzej Skowron, Andrzej Jankowski: Rough sets and interactive granular computing.

Fundamenta Informaticae 147 (2016) 371–385 (doi:10.3233/FI-2016-1413)
[21] Luc Steels: The synthetic modeling of language origins. Evolution of Communication 1(1)

(1997) 1–34 (doi:10.1075/eoc.1.1.02ste)
[22] Lotfi A. Zadeh: Fuzzy sets. Information and Control 8(3) (1965) 338–353 (doi:10.1016/S0019-

9958(65)90241-X)
[23] Lotfi A. Zadeh: Toward a theory of fuzzy information granulation and its central-

ity in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90 (1997) 111–127
(doi:10.1016/S0165-0114(97)00077-8)

58

[24] Lotfi A. Zadeh: From computing with numbers to computing with words – from
manipulation of measurements to manipulation of perceptions. IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications 45(1) 105–119 (1999)
(doi:10.1109/81.739259)

[25] Lotfi A. Zadeh: Foreword. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.), Rough-
Neuralcomputing: Techniques for Computing with Words, Heidelberg, Springer, pp. ix-xi
(2004) (doi:10.1007/978-3-642-18859-6)

[26] Lotfi A. Zadeh: Computing with Words: Principal Concepts and Ideas. Studies in Fuzziness
and Soft Computing 277, Springer, Heidelberg (2012) (doi:10.1007/978-3-642-27473-2)

59

On Semantics for Testing in Time Petri Nets
Elena Bozhenkova1, Irina Virbitskaite1

1A.P. Ershov Institute of Informatics Systems, SB RAS; 6, Lavrentiev av., Novosibirsk, 630090, Russian Federation

Abstract
Dense-Time Petri Nets (TPNs) are now a well-established model to describe and study real time (quanti-
tative) and functional (qualitative) properties of safety-critical, computer-controlled systems. Testing
equivalences, used to compare systems’ behaviors (processes) and reduce the structure of systems, are
defined in terms of tests that processes may or must pass. The intention of the paper is to establish
the interrelations between various semantics for must-testing equivalences with extended tests, in the
framework of TPNs. This allows for studying in detail the timing behavior in addition to the degree of
relative concurrency of processes generated when systems are functioning.

1. Introduction

Dense-Time Petri Nets (TPNs) are suitable for qualitative and quantitative modelling and verify-
ing of safety-critical, computer-controlled, real-time systems. Several semantics (behaviors) are
explored in the literature for TPNs, that can be classified according to interleaving – partial order
dichotomy. The classical interleaving behavior of the TPN is described by runs — sequences of
changes in states by time elapsings and/or transition firings. The semantics allows for analyzing
some safety and liveness properties of systems, however concurrency between net transitions
is reduced to non-deterministic choice between sequences of transitions firings in any possible
order. Step semantics of TPNs generalizes the interleaving approach by allowing several con-
current transitions (forming a step) to fire simultaneously. Partial order semantics of TPNs is
most often represented by means of the so-called causal net processes which include events
and conditions related by causal dependence (the absence of causality means concurrency)
and equipped with timing information. Causal tree semantics summarizes the interleaving
and partial order approaches by representing the behavior of the TPN in the form of a tree
with nodes corresponding to runs, and edges labeled by actions with their times and causal
predecessors.

Testing equivalences [1] are explicitly based on a framework of extracting information about
the systems’ behaviors (processes) by testing them. Two processes are considered equivalent if
there is no test that can distinguish them. In the realm of untimed models, interleaving testing
was thoroughly investigated and well-understood in the setting of models of transition systems
(see [2, 3] among many others). Interleaving, step and partial order testing equivalences for
elementary net systems (safe Petri nets without loops) were studied in [4]. There, the authors

29th International Workshop on Concurrency, Specification and Programming (CS&P’21)
$ bozhenko@iis.nsk.su (E. Bozhenkova); virb@iis.nsk.su (I. Virbitskaite)
� https://pdb.iis.nsk.su/en/person/220 (E. Bozhenkova); https://persons.iis.nsk.su/en/virbitskaite (I. Virbitskaite)
� 0000-0002-9291-7451 (E. Bozhenkova); 0000-0002-4475-3480 (I. Virbitskaite)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

60

indicated the location of the testings among other behavioral equivalences from linear time –
branching time spectrum, providing their hierarchies for the model under consideration with
and without invisible actions. Partial order and non-deterministic semantics for different classes
of Petri nets are often represented by means of various models of event structures. In the
framework of the models, testing equivalences within interleaving – partial order dichotomy
were developed and compared in the papers [5, 6, 7]. Moreover, in [7] special attention was paid
to the relationships between partial order and causal tree semantics in the context of testing
equivalences. To the best of authors’ knowledge, causal tree semantics in the framework of
Petri nets has not been studied yet.

As safety-critical applications often require verification of real time characteristics, testing
equivalences are expanded in concurrent models with time. In the papers [8, 9, 10, 11], alternative
characterizations of timed testing are provided for timed generalizations of interleaving models.
In [12], the testing relations along with their alternative characterization and discretization
were proposed in the framework of Petri nets with time intervals associated to arcs from places
to transitions. At the same time, to the best of our knowledge, there are only few mentions
of a fusion of timing and partial order semantics, in testing scenario. In this regard, the work
[13] is a welcome exception, where time-sensitive testing is investigated within linear time –
branching time spectrum, in the setting of event structure models with time characteristics.
Also, our origin is the paper [14] the main result of which is the coincidence of poset and causal
tree testing equivalences, with the tests as direct extensions of the experiments, in the setting
of TPNs. In this paper, we expand the results of [14] to step, poset and causal tree semantics
with extended tests1, and demonstrate the discriminating/matching power of the semantics in
the framework of testing equivalences on contact-free TPNs. The results obtained can be useful
in formal verification of systems since partial order semantics allows for reducing the number
of systems’ states to be analyzed.

2. Syntax and Different Semantics of TPNs

In this section, some terminology concerning the model of Petri nets with timing constraints
(time intervals on the firings of transitions) and its concurrent semantics in terms of interleav-
ing/step firing sequences, causal net processes and causal trees are defined.

2.1. Syntax and Interleaving/Step Semantics of TPNs

We start with recalling the definitions of the structure and interleaving/step behavior of time
Petri nets [15, 16]. We use 𝐴𝑐𝑡 as an alphabet of actions and 𝐴𝑐𝑡N as a set of multisets over
𝐴𝑐𝑡. Let the domain T of time values be the set of rational numbers. We denote by [𝜏1, 𝜏2] the
closed interval between two time values 𝜏1, 𝜏2 ∈ T. Infinity is allowed at the upper bounds of
intervals. Let 𝐼𝑛𝑡𝑒𝑟𝑣 be the set of all such intervals.

Definition 1. • A (labeled over 𝐴𝑐𝑡) time Petri net is a pair 𝒯 𝒩 = (𝒩 , 𝐷), where 𝒩 = (𝑃 ,
𝑇 , 𝐹 , 𝑀0, 𝐿) is a (labeled over 𝐴𝑐𝑡) underlying Petri net (with a finite set 𝑃 of places, a

1Testing equivalence with extended tests checks, after the executions of the experiments, the tests that are
continuations of the experiments with steps/posets of actions, not with single actions.

61

finite set 𝑇 of transitions such that 𝑃 ∩ 𝑇 = ∅ and 𝑃 ∪ 𝑇 ̸= ∅, a flow relation 𝐹 ⊆
(𝑃 ×𝑇)∪ (𝑇 ×𝑃), an initial marking ∅ ≠ 𝑀0 ⊆ 𝑃 , a labeling function 𝐿 : 𝑇 → 𝐴𝑐𝑡) and
𝐷 : 𝑇 → 𝐼𝑛𝑡𝑒𝑟𝑣 is a static timing function associating with each transition a time interval.
For a transition 𝑡 ∈ 𝑇 , the boundaries of the interval 𝐷(𝑡) ∈ 𝐼𝑛𝑡𝑒𝑟𝑣 are called the earliest
firing time 𝐸𝑓𝑡 and latest firing time 𝐿𝑓𝑡 of 𝑡. For 𝑥 ∈ 𝑃 ∪ 𝑇 , let ∙𝑥 = {𝑦 | (𝑦, 𝑥) ∈ 𝐹}
and 𝑥∙ = {𝑦 | (𝑥, 𝑦) ∈ 𝐹} be the preset and postset of 𝑥, respectively. For 𝑋 ⊆ 𝑃 ∪ 𝑇 ,
define ∙𝑋 =

⋃︀
𝑥∈𝑋

∙𝑥 and 𝑋∙ =
⋃︀

𝑥∈𝑋 𝑥∙.

• A marking 𝑀 of 𝒯 𝒩 is any subset of 𝑃 . A transition 𝑡 ∈ 𝑇 is enabled at a marking
𝑀 if ∙𝑡 ⊆ 𝑀 . Let 𝐸𝑛(𝑀) be the set of transitions enabled at 𝑀 . A non-empty subset
∅ ̸= 𝑈 ⊆ 𝑇 is a step enabled at a marking 𝑀 , if (∀𝑡 ∈ 𝑈 ◇ 𝑡 ∈ 𝐸𝑛(𝑀)) and (∀𝑡 ̸= 𝑡′ ∈
𝑈 : (∙𝑡 ∪ 𝑡∙) ∩ (∙𝑡′ ∪ 𝑡′∙) = ∅).

A state of 𝒯 𝒩 is a pair (𝑀, 𝐼), where 𝑀 is a marking and 𝐼 : 𝐸𝑛(𝑀) −→ T is a dynamic
timing function. The initial state of 𝒯 𝒩 is a pair 𝑆0 = (𝑀0, 𝐼0), where 𝑀0 is the initial
marking and 𝐼0(𝑡) = 0, for all 𝑡 ∈ 𝐸𝑛(𝑀0).

A step 𝑈 enabled at a marking 𝑀 can fire from a state 𝑆 = (𝑀, 𝐼) after a delay time
𝜃 ∈ T if (𝐸𝑓𝑡(𝑡) ≤ 𝐼(𝑡) + 𝜃), for all 𝑡 ∈ 𝑈 , and (𝐼(𝑡′) + 𝜃 ≤ 𝐿𝑓𝑡(𝑡′)), for all 𝑡′ ∈ 𝐸𝑛(𝑀).

The firing of a step 𝑈 that can fire from a state 𝑆 = (𝑀, 𝐼) after a delay time 𝜃 leads to the

new state 𝑆′ = (𝑀 ′, 𝐼 ′) (denoted 𝑆
(𝑈,𝜃)−→ 𝑆′) given by:

(𝑎) 𝑀
𝑈−→ 𝑀 ′,

(𝑏) ∀𝑡′ ∈ 𝑇 ◇ 𝐼 ′(𝑡′) =

⎧
⎨
⎩

𝐼(𝑡′) + 𝜃, if 𝑡′ ∈ 𝐸𝑛(𝑀 ∖ ∙𝑡),
0, if 𝑡′ ∈ 𝐸𝑛(𝑀 ′) ∖ 𝐸𝑛(𝑀 ∖ ∙𝑡),
undefined, otherwise.

Then, we write 𝑆
(𝐴,𝜃)−→ 𝑆′, if 𝐴 = 𝐿(𝑈) = Σ𝑡∈𝑈𝐿(𝑡) ∈ 𝐴𝑐𝑡N, i.e. 𝐴 is a multiset

over the set {𝑎 ∈ 𝐴𝑐𝑡 | 𝑎 = 𝐿(𝑡) and 𝑡 ∈ 𝑈}. We use the notation 𝑆
𝜎−→ 𝑆′ iff

𝜎 = (𝑈1, 𝜃1) . . . (𝑈𝑘, 𝜃𝑘) and 𝑆 = 𝑆0 (𝑈1,𝜃1)−→ 𝑆1 . . . 𝑆𝑘−1 (𝑈𝑘,𝜃𝑘)−→ 𝑆𝑘 = 𝑆′ (𝑘 ≥ 0). In this
case, 𝜎 is a step firing sequence of 𝒯 𝒩 from 𝑆 (to 𝑆′), and 𝑆′ is a reachable state of 𝒯 𝒩
from 𝑆. Whenever | 𝑈𝑖 |= 1 for all 1 ≤ 𝑖 ≤ 𝑘, we call 𝜎 an interleaving firing sequence
of 𝒯 𝒩 . Let ℱ𝒮𝑠(𝑖)(𝒯 𝒩) be the set of all step (interleaving) firing sequences of 𝒯 𝒩 from
𝑆0, and 𝑅𝑆(𝒯 𝒩) be the set of all reachable states of 𝒯 𝒩 from 𝑆0. For 𝜎 = (𝑈1, 𝜃1) . . .
(𝑈𝑘, 𝜃𝑘) ∈ ℱ𝒮𝑠(𝑖)(𝒯 𝒩), 𝐿(𝜎) = (𝐴1, 𝜃1) . . . (𝐴𝑘, 𝜃𝑘) iff 𝐴𝑖 = 𝐿(𝑈𝑖) for all 1 ≤ 𝑖 ≤ 𝑘.

We call 𝒯 𝒩 𝑇 -restricted iff ∙𝑡 ̸= ∅ ≠ 𝑡∙, for all transitions 𝑡 ∈ 𝑇 ; contact-free iff whenever
a step 𝑈 can fire from the state 𝑆 = (𝑀, 𝐼) after some delay time 𝜃, then (𝑀 ∖∙𝑈)∩𝑈∙ = ∅,
for all 𝑆 ∈ 𝑅𝑆(𝒯 𝒩). In what follows, we shall consider only 𝑇 -restricted and contact-free
time Petri nets.

Example 1. A (labeled over 𝐴𝑐𝑡 = {𝑎, 𝑏, 𝑐}) time Petri net ̃︂𝒯 𝒩 is shown in Figure 1. Here,
the places are represented by circles, and transitions — by bars; the names are depicted near the
net elements, the flow relation is drawn by the arcs, the initial marking is represented as the set
of the places with tokens (bold points), and the values of the labeling and timing functions are

62

𝑝1
𝑝2

𝑝3

𝑝4 𝑝5

𝑏, 𝑡3[1, 3] 𝑎, 𝑡2[1, 3]

𝑎, 𝑡1[0, 1]
𝑎, 𝑡4[0, 2]

𝑐, 𝑡5[0, 2]

Figure 1: The TPN ̃︂𝒯 𝒩 .

printed next to the transitions. It is not difficult to check that 𝑡1, 𝑡2 and 𝑡4 are transitions enabled
at the initial marking 𝑀0 = {𝑝1, 𝑝2}, and, moreover, {𝑡1, 𝑡4} and {𝑡2, 𝑡4} are steps enabled
at 𝑀0. The steps can fire from the initial state 𝑆0 = (𝑀0, 𝐼0) after time delay 𝜃1 = 1, where

𝐼0(𝑡) =

{︂
0, if 𝑡 ∈ {𝑡1, 𝑡2, 𝑡4},
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, otherwise. The sequence 𝜎 = ({𝑡1, 𝑡4}, 0.5) (𝑡3, 1) (𝑡2, 2)

(𝑡5, 2) is a step firing sequence of ̃︂𝒯 𝒩 from 𝑆0. Also, we have 𝐿(𝜎) = (2′𝑎, 0.5) (𝑏, 1) (𝑎, 2)

(𝑐, 2). Furthermore, it is easy to see that ̃︂𝒯 𝒩 is really 𝑇 -restricted and contact-free.

2.2. Causal Net Process Semantics of TPNs

In this subsection, the concept of causality-based net processes is presented in the context of
TPNs.

We start with the definition of time causal nets, whose events and conditions are related by
causal dependence and concurrency (absence of causality), and whose timing function associates
with the events their occurrence times.

Definition 2. A (labeled over 𝐴𝑐𝑡) time causal net is a finite, acyclic net 𝑇𝑁 = (𝐵,𝐸,𝐺, 𝑙, 𝜏)
with a set 𝐵 of conditions; a set 𝐸 of events; a flow relation 𝐺 ⊆ (𝐵 × 𝐸) ∪ (𝐸 ×𝐵) such that
| ∙𝑏 |≤ 1 ≥| 𝑏∙ |, for all 𝑏 ∈ 𝐵, and ∙𝐵 = 𝐸 = 𝐵∙; a labeling function 𝑙 : 𝐸 → 𝐴𝑐𝑡, and a
timing function 𝜏 : 𝐸 → T such that 𝑒 𝐺+ 𝑒′ ⇒ 𝜏(𝑒) ≤ 𝜏(𝑒′).

For a time causal net 𝑇𝑁 = (𝐵, 𝐸, 𝐺, 𝑙, 𝜏) and 𝑒, 𝑒′ ∈ 𝐸, define:

• 𝑇𝑁∙ = {𝑏 ∈ 𝐵 | 𝑏∙ = ∅};

• ≺= 𝐺+, ⪯= 𝐺* (causality);

• 𝑃𝑟𝑒𝑑𝑒𝑐(𝑒) = {𝑒′ ∈ 𝐸 | 𝑒′ ≺ 𝑒} (causal predecessors of 𝑒), 𝐸𝑎𝑟𝑙𝑖𝑒𝑟(𝑒) = {𝑒′ ∈
𝐸 | 𝜏(𝑒′) < 𝜏(𝑒)} (time predecessors of 𝑒), and 𝐶𝑢𝑡(𝑒) = (𝐸𝑎𝑟𝑙𝑖𝑒𝑟(𝑒)∙ ∪ ∙𝑇𝑁) ∖
∙𝐸𝑎𝑟𝑙𝑖𝑒𝑟(𝑒);

• 𝐸′ is a downward-closed subset of 𝐸 iff 𝐸′ ⊂ 𝐸 and 𝑃𝑟𝑒𝑑𝑒𝑐(𝑒′) ⊆ 𝐸′, for all 𝑒′ ∈ 𝐸′; a
timely sound subset of 𝐸 iff 𝐸′ ⊂ 𝐸 and 𝐸𝑎𝑟𝑙𝑖𝑒𝑟(𝑒′) ⊆ 𝐸′, for all 𝑒′ ∈ 𝐸′;

• 𝑒 ⌣ 𝑒′ ⇐⇒ ¬((𝑒 ≺ 𝑒′) ∨ (𝑒′ ≺ 𝑒)) (concurrency); ∅ ≠ 𝑉 ⊆ 𝐸 is a step iff 𝑒 ⌣ 𝑒′

and 𝜏(𝑒) = 𝜏(𝑒′) for all 𝑒 ̸= 𝑒′ ∈ 𝑉 . Let 𝜏(𝑉) = 𝜏(𝑒) for some 𝑒 ∈ 𝑉 (time of 𝑉);

63

• a sequence 𝜌 = 𝑉1 . . . 𝑉𝑘 (𝑘 ≥ 0) of steps of𝑇𝑁 is an s-linearization of𝑇𝑁 iff
⋃︀

1≤𝑖≤𝑘 𝑉𝑖 =
𝐸 and

⋂︀
1≤𝑖≤𝑘>1 𝑉𝑖 = ∅ (i.e. every event of 𝑇𝑁 appears in the sequence exactly once),

and for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 it holds:
⋃︀

1≤𝑙≤𝑖 𝑉𝑙 is a downward-closed and timely sound sub-
set of

⋃︀
1≤𝑚≤𝑗 𝑉𝑚 (i.e. both causal and time order are preserved: for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘,

¬((𝑒′ ≺ 𝑒) ∨ (𝜏(𝑒′) < 𝜏(𝑒))), for all 𝑒 ∈ 𝑉𝑖, 𝑒′ ∈ 𝑉𝑗). Whenever | 𝑉𝑖 | = 1 for all
1 ≤ 𝑖 ≤ 𝑘, 𝜌 is an 𝑖-linearization;

• 𝜂(𝑇𝑁) = (𝐸𝑇𝑁 ,⪯𝑇𝑁 ∩(𝐸𝑇𝑁 × 𝐸𝑇𝑁), 𝑙𝑇𝑁 , 𝜏𝑇𝑁) is a time poset2. For time posets
𝜂 = (𝐸,⪯, 𝑙, 𝜏) and 𝜂′ = (𝐸′,⪯′, 𝑙′, 𝜏 ′), 𝜂 is a pos-extension of 𝜂′ iff 𝐸′ is a downward-
closed and timely sound subset of 𝐸, ⪯′=⪯ ∩𝐸′ × 𝐸′, 𝑙′ = 𝑙 |𝐸′ , and 𝜏 ′ = 𝜏 |𝐸′ .

We are now ready to define the concept of causal net based processes of TPNs, proposed in
[15].

Definition 3. Given a time Petri net 𝒯 𝒩 = ((𝑃 , 𝑇 , 𝐹 , 𝑀0, 𝐿), 𝐷) and a time causal net
𝑇𝑁 = (𝐵,𝐸,𝐺, 𝑙, 𝜏),

• a mapping 𝜙 : 𝐵 ∪ 𝐸 → 𝑃 ∪ 𝑇 is a homomorphism from 𝑇𝑁 to 𝒯 𝒩 iff the following
hold:

– 𝜙(𝐵) ⊆ 𝑃 , 𝜙(𝐸) ⊆ 𝑇 ;

– the restriction of 𝜙 to ∙𝑒 is a bijection between ∙𝑒 and ∙𝜙(𝑒), and the restriction of 𝜙
to 𝑒∙ is a bijection between 𝑒∙ and 𝜙(𝑒)∙, for all 𝑒 ∈ 𝐸;

– the restriction of 𝜙 to ∙𝑇𝑁 is a bijection between ∙𝑇𝑁 and 𝑀0;

– 𝑙(𝑒) = 𝐿(𝜙(𝑒)), for all 𝑒 ∈ 𝐸.

• a pair 𝜋 = (𝑇𝑁,𝜙) is a time process of a time Petri net 𝒯 𝒩 iff 𝑇𝑁 is a time causal net
and 𝜙 is a homomorphism from 𝑇𝑁 to 𝒯 𝒩 ;

• a time process 𝜋 = (𝑇𝑁,𝜙) of 𝒯 𝒩 is correct iff for all 𝑒 ∈ 𝐸 it holds:

(a) 𝜏(𝑒) ≥ TOE𝜋(∙𝑒, 𝜙(𝑒)) + 𝐸𝑓𝑡(𝜙(𝑒)),

(b) ∀𝑡 ∈ 𝐸𝑛(𝜙(𝐶𝑢𝑡(𝑒))) ◇ 𝜏(𝑒) ≤ TOE𝜋(𝐶𝑢𝑡(𝑒), 𝑡) + 𝐿𝑓𝑡(𝑡).

Here, for a subset 𝐵′ ⊆ 𝐵𝑇𝑁 and a transition 𝑡 ∈ 𝐸𝑛(𝜙(𝐵′)), the time of enabling (TOE)
of 𝑡, i.e. the latest global time moment when tokens appear in all input places of 𝑡, is
defined as follows: TOE𝜋(𝐵′, 𝑡) = max

(︁
{𝜏𝑇𝑁 (∙𝑏) | 𝑏 ∈ 𝐵′

[𝑡] ∖ ∙𝑇𝑁} ∪ {0}
)︁

, where
𝐵′

[𝑡] = {𝑏 ∈ 𝐵′ | 𝜙𝑇𝑁 (𝑏) ∈ ∙𝑡}.
Let 𝒞𝒫(𝒯 𝒩) denote the set of correct time processes of 𝒯 𝒩 .

We now present for the time Petri net the relationships between its correct time processes
and its interleaving/step firing sequences from the initial state.

Proposition 1. [15, 16] Let 𝒯 𝒩 be a time Petri net. Then,
2A (labeled over 𝐴𝑐𝑡) time poset (partially ordered set) is a tuple 𝜂 = (𝑋,⪯, 𝜆, 𝜏) consisting of a finite set 𝑋

of elements; a reflexive, antisymmetric and transitive relation ⪯; a labeling function 𝑙 : 𝑋 → 𝐴𝑐𝑡; and a timing
function 𝜏 : 𝑋 → T such that 𝑥 ⪯ 𝑥′ ⇒ 𝜏(𝑥) ≤ 𝜏(𝑥′).

64

(i) for any 𝜋 = (𝑇𝑁,𝜙) ∈ 𝒞𝒫(𝒯 𝒩) with an 𝑠(𝑖)-linearization 𝜌 = 𝑉1 . . . 𝑉𝑘 of 𝑇𝑁 , there
is a unique step (interleaving) firing sequence 𝐹𝑆𝜋(𝜌) = (𝜙(𝑉1), 𝜏(𝑉1) − 0) . . . (𝜙(𝑉𝑘),
𝜏(𝑉𝑘) − 𝜏(𝑉𝑘−1)) ∈ ℱ𝒮𝑠(𝑖)(𝒯 𝒩);

(ii) for any step (interleaving) firing sequence 𝜎 ∈ ℱ𝒮𝑠(𝑖)(𝒯 𝒩), there is a unique (up to
an isomorphism3) correct time process 𝜋𝜎 = (𝑇𝑁,𝜙) ∈ 𝒞𝒫(𝒯 𝒩) with a unique 𝑠(𝑖)-
linearization 𝜌𝜎 of 𝑇𝑁 such that 𝐹𝑆𝜋𝜎(𝜌𝜎) = 𝜎.

For correct time processes 𝜋 = (𝑇𝑁,𝜙), 𝜋′ = (𝑇𝑁 ′, 𝜙′) ∈ 𝒞𝒫(𝒯 𝒩), we say that 𝜋 is a
𝑝𝑜𝑠-extension of 𝜋′ in 𝒯 𝒩 iff 𝜂(𝑇𝑁) is 𝑝𝑜𝑠-extension of 𝜂(𝑇𝑁 ′), 𝐵′ ⊂ 𝐵, 𝐺′ = 𝐺 ∩ (𝐵′ ×
𝐸′ ∪ 𝐸′ ×𝐵′), and 𝜙′ = 𝜙 |𝐵′∪𝐸′ .

We expand the above results to 𝑝𝑜𝑠-extensions of correct time processes of TPNs.

Lemma 1. Given a time Petri net 𝒯 𝒩 , 𝜎 ∈ ℱ𝒮𝑠(𝑖)(𝒯 𝒩), and 𝜋 ∈ 𝒞𝒫(𝒯 𝒩) such that 𝜎 =
𝐹𝑆𝜋(𝜌), where 𝜌 is an 𝑠(𝑖)-linearization of 𝑇𝑁𝜋 ,

(i) if ̃︀𝜋 is a 𝑝𝑜𝑠-extension of 𝜋 in 𝒯 𝒩 , then there is 𝜎𝜎′ ∈ ℱ𝒮𝑠(𝑖)(𝒯 𝒩) such that 𝜎𝜎′ =
𝐹𝑆̃︀𝜋(𝜌𝜌′), where 𝜌𝜌′ is an 𝑠(𝑖)-linearization of 𝑇𝑁̃︀𝜋 ;

(ii) if 𝜎𝜎′ ∈ ℱ𝒮𝑠(𝑖)(𝒯 𝒩), there is ̃︀𝜋 ∈ 𝒞𝒫(𝒯 𝒩) such that ̃︀𝜋 is a 𝑝𝑜𝑠-extension of 𝜋 in 𝒯 𝒩
and 𝜎𝜎′ = 𝐹𝑆̃︀𝜋(𝜌𝜌′), where 𝜌𝜌′ is an 𝑠(𝑖)-linearization of 𝑇𝑁̃︀𝜋 .

2.3. Causal Tree Semantics of TPNs

Causal trees [17] are synchronisation trees which carry in their labels additional information
about causes of actions thus providing us with an interleaving description of concurrent pro-
cesses, which faithfully expresses causality. Time causal trees are generalizations of causal
trees by adding timing. In the time causal tree of the TPN, the nodes are the interleaving firing
sequences of the TPN, and an edge exists between two nodes if the second one is a direct
extension of the first one. The causes in the edge labels are calculated based on the causality
relations in the correct time processes of the TPN corresponding to the nodes (the interleaving
firing sequences).

Definition 4. The time causal tree of the TPN 𝒯 𝒩 , 𝑇𝐶𝑇 (𝒯 𝒩), is a tree (ℱ𝒮𝑖(𝒯 𝒩), 𝐸𝑑, 𝜑),
where ℱ𝒮𝑖(𝒯 𝒩) is the set of nodes with the root 𝜖; 𝐸𝑑 = {(𝜎, 𝜎(𝑡, 𝜃)) | 𝜎, 𝜎(𝑡, 𝜃) ∈ ℱ𝒮(𝒯 𝒩)}
is the set of edges; 𝜑 is the labeling function such that 𝜑(𝜖) = 𝜖 and 𝜑(𝜎, 𝜎(𝑡, 𝜃)) = (𝐿𝒯 𝒩 (𝑡), 𝜃,
𝐾), with 𝜎 = 𝐹𝑆𝜋𝜎(𝜌𝜎 = 𝑒1 . . . 𝑒𝑛), 𝜎(𝑡, 𝜃) = 𝐹𝑆𝜋𝜎(𝑡,𝜃)

(𝜌𝜎(𝑡,𝜃) = 𝑒1 . . . 𝑒𝑛𝑒), 𝐾 = {𝑛− 𝑙+1 |
𝑒𝑙 ≺𝑇𝑁𝜋𝜎(𝑡,𝜃)

𝑒}. Let 𝑝𝑎𝑡ℎ(𝜎) be the path starting from the root and finishing in the node 𝜎 of
𝑇𝐶𝑇 (𝒯 𝒩)4.

3Time processes 𝜋 = (𝑇𝑁,𝜙) and 𝜋′ = (𝑇𝑁 ′, 𝜙′) ∈ 𝒞𝒫(𝒯 𝒩) are isomorphic (denoted 𝜋 ≃ 𝜋′) iff there exists
a bijective mapping 𝛽 : 𝐵 ∪𝐸 → 𝐵′ ∪𝐸′ such that (i) 𝛽(𝐵) = 𝐵′ and 𝛽(𝐸) = 𝐸′; (ii) 𝑥 𝐺 𝑦 ⇐⇒ 𝛽(𝑥)𝐺′ 𝛽(𝑦),
for all 𝑥, 𝑦 ∈ 𝐵 ∪ 𝐸; (iii) 𝑙(𝑒) = 𝑙′(𝛽(𝑒)), for all 𝑒 ∈ 𝐸; (iv) 𝜏(𝑒) = 𝜏 ′(𝛽(𝑒)), for all 𝑒 ∈ 𝐸; (v) 𝜙(𝑥) = 𝜙′(𝛽(𝑥)),
for all 𝑥 ∈ 𝐵 ∪ 𝐸.

4We assume 𝑝𝑎𝑡ℎ(𝜖) = 𝜖. Notice that in 𝑇𝐶𝑇 (𝒯 𝒩), for any node 𝜎 ∈ ℱ𝒮𝑖(𝒯 𝒩), there is a path starting
from the root and finishing in 𝜎.

65

Example 2. Consider the time Petri net ̃︂𝒯 𝒩 (see Figure 1) and its interleaving firing sequence
𝜎 = (𝑡1, 0.5) (𝑡4, 0) (𝑡3, 1) (𝑡2, 2) (𝑡5, 2) ∈ ℱ𝒮𝑖(̃︂𝒯 𝒩). It is easy to get that 𝜑(𝑝𝑎𝑡ℎ(𝜎)) =
(𝑎, 0.5, ∅) (𝑎, 0.5, ∅) (𝑏, 1, {2}) (𝑎, 2, {1}) (𝑐, 2, {1, 3}).

We finally establish some relationships between correct time processes and labeled paths in
the time causal trees of two time Petri nets.

Proposition 2. Let 𝒯 𝒩 , 𝒯 𝒩 ′ be time Petri nets. Then,

(i) for any 𝜋 ∈ 𝒞𝒫(𝒯 𝒩) and 𝜋′ ∈ 𝒞𝒫(𝒯 𝒩 ′) with an isomorphism 𝑓 : 𝜂(𝑇𝑁𝜋) → 𝜂(𝑇𝑁𝜋′),
𝜑(𝑝𝑎𝑡ℎ(𝐹𝑆𝜋(𝜌))) = 𝜑′(𝑝𝑎𝑡ℎ(𝐹𝑆𝜋′(𝑓(𝜌)))), for any 𝑖-linearization 𝜌 of 𝑇𝑁𝜋 ;

(ii) for any 𝜎 ∈ ℱ𝒮𝑖(𝒯 𝒩) and 𝜎′ ∈ ℱ𝒮𝑖(𝒯 𝒩 ′) such that 𝜑(𝑝𝑎𝑡ℎ(𝜎)) = 𝜑′(𝑝𝑎𝑡ℎ(𝜎′)), there
is an isomorphism 𝑓 : 𝜂(𝑇𝑁𝜋𝜎) → 𝜂(𝑇𝑁𝜋𝜎′) such that 𝑓(𝜌𝜎) = 𝜌𝜎′ .

3. Testing Equivalences

Interleaving testing equivalence deals with the experiments on the TPN — sequences of actions
with their times — and the behaviors which are tested for after the experiments — sets of actions
with their times. So, it checks whether actions with times, given as a test, can be executed after
a sequence of actions with times, specified as an experiment. Here, both the experiments and
tests represent interleaving semantics.

Definition 5. Given time Petri nets 𝒯 𝒩 and 𝒯 𝒩 ′,

• for a sequence 𝑤 ∈ (𝐴𝑐𝑡 × T)* and a set 𝑊 ⊆ (𝐴𝑐𝑡 × T), 𝒯 𝒩 after 𝑤 MUST𝑖𝑛𝑡
𝑖𝑛𝑡 𝑊

iff for all firing sequences 𝜎 ∈ ℱ𝒮𝑖(𝒯 𝒩) such that 𝐿(𝜎) = 𝑤, there exists an element
(𝑎, 𝜃) ∈ 𝑊 and a firing sequence 𝜎(𝑡, 𝜃) ∈ ℱ𝒮𝑖(𝒯 𝒩) such that 𝐿(𝜎(𝑡, 𝜃)) = 𝑤(𝑎, 𝜃);

• 𝒯 𝒩 and 𝒯 𝒩 ′ are interleaving testing equivalent (denoted 𝒯 𝒩 ∼𝑖𝑛𝑡
𝑖𝑛𝑡 𝒯 𝒩 ′) iff for all

sequences 𝑤 ∈ (𝐴𝑐𝑡× T)* and for all sets 𝑊 ⊆ (𝐴𝑐𝑡× T), it holds:

𝒯 𝒩 after 𝑤 MUST𝑖𝑛𝑡
𝑖𝑛𝑡 𝑊 ⇐⇒ 𝒯 𝒩 ′ after 𝑤 MUST𝑖𝑛𝑡

𝑖𝑛𝑡 𝑊.

In step testing, the experiments on the TPN are sequences of multisets over sets of actions
with their times and the tests checked after the experiments are sets of multisets over sets of
actions with their times. So, it checks whether multisets over sets of actions with times, given
as a test, can be executed after a sequence of multisets over sets of actions with times, specified
as an experiment. Thereby, both the experiments and tests respect step semantics.

Definition 6. Given time Petri nets 𝒯 𝒩 and 𝒯 𝒩 ′,

• for a sequence 𝑤 ∈ (𝐴𝑐𝑡N × T)* and a set 𝑊 ⊆ (𝐴𝑐𝑡N × T), 𝒯 𝒩 after 𝑤 MUST𝑠𝑡𝑒𝑝
𝑠𝑡𝑒𝑝

𝑊 iff for all firing sequences 𝜎 ∈ ℱ𝒮𝑠(𝒯 𝒩) such that 𝐿(𝜎) = 𝑤, there exists an element
(𝐴, 𝜃) ∈ 𝑊 and a firing sequence 𝜎(𝑈, 𝜃) ∈ ℱ𝒮𝑠(𝒯 𝒩) such that 𝐿(𝜎(𝑈, 𝜃)) = 𝑤(𝐴, 𝜃);

66

𝒯 𝒩 1 :

𝑎[1, 1] 𝑏[1, 2]

𝑏[0, 0] 𝑏[0, 1] 𝑎[0, 0]

𝒯 𝒩 2 :

𝑎[1, 1] 𝑏[1, 1]

Figure 2: The ∼𝑖𝑛𝑡
𝑖𝑛𝑡–equivalent but neither ∼𝑠𝑡𝑒𝑝

𝑠𝑡𝑒𝑝– nor ∼𝑝𝑜𝑠
𝑝𝑜𝑠–equivalent TPNs 𝒯 𝒩 1 and 𝒯 𝒩 2.

𝒯 𝒩 3 :

𝑏[0, 0] 𝑏[0, 0]

𝑎[2, 3] 𝑎[2, 3] 𝑎[2, 3]

𝒯 𝒩 4 :

𝑏[0, 0] 𝑏[0, 0]

𝑎[2, 3] 𝑎[2, 3]

Figure 3: The ∼𝑠𝑡𝑒𝑝
𝑠𝑡𝑒𝑝–equivalent but not ∼𝑝𝑜𝑠

𝑝𝑜𝑠–equivalent TPNs 𝒯 𝒩 3 and 𝒯 𝒩 4.

• 𝒯 𝒩 and 𝒯 𝒩 ′ are step testing equivalent (denoted 𝒯 𝒩 ∼𝑠𝑡𝑒𝑝
𝑠𝑡𝑒𝑝 𝒯 𝒩 ′) iff for all sequences

𝑤 ∈ (𝐴𝑐𝑡N × T)* and for all sets 𝑊 ⊆ (𝐴𝑐𝑡N × T), it holds:

𝒯 𝒩 after 𝑤 MUST𝑠𝑡𝑒𝑝
𝑠𝑡𝑒𝑝 𝑊 ⇐⇒ 𝒯 𝒩 ′ after 𝑤 MUST𝑠𝑡𝑒𝑝

𝑠𝑡𝑒𝑝 𝑊.

The idea of partial order testing is that the experiments on the TPN are time posets and the
tests, that are examined after the experiments, are sets of 𝑝𝑜𝑠-extensions of the experiments.
This contrasts with partial order based testing investigated in the paper in [14], where the tests
contain sets of time posets extending the experiments by single actions with their times. From
now on, we denote 𝑝𝑜𝑠-extensions of a time poset 𝑇𝑃 by TP𝑇𝑃 .

Definition 7. Given time Petri nets 𝒯 𝒩 and 𝒯 𝒩 ′,

• for a time poset 𝑇𝑃 and a set TP ⊆ TP𝑇𝑃 , 𝒯 𝒩 after 𝑇𝑃 MUST𝑝𝑜𝑠
𝑝𝑜𝑠 TP iff for all

time processes 𝜋 = (𝑇𝑁,𝜙) ∈ 𝒞𝒫(𝒯 𝒩) and for all isomorphisms 𝑓 : 𝜂(𝑇𝑁) −→ 𝑇𝑃 ,

67

𝒯 𝒩 5 :

𝑏[0, 0] 𝑏[0, 0]

𝑐[1, 4] 𝑎[1, 4] 𝑎[1, 4]

𝒯 𝒩 6 :

𝑏[0, 0] 𝑏[0, 0]

𝑐[1, 4] 𝑎[1, 4] 𝑎[4, 4]𝑎[1, 4]

Figure 4: The ∼⋆
⋆–equivalent TPNs 𝒯 𝒩 5 and 𝒯 𝒩 6, for ⋆ ∈ {𝑖𝑛𝑡, 𝑠𝑡𝑒𝑝, 𝑝𝑜𝑠}.

there exists a time poset 𝑇𝑃 ′ ∈ TP, a time process 𝜋′ = (𝑇𝑁 ′, 𝜙′) ∈ 𝒞𝒫(𝒯 𝒩), and an
isomorphism 𝑓 ′ : 𝜂(𝑇𝑁 ′) −→ 𝑇𝑃 ′, such that 𝜋′ is a 𝑝𝑜𝑠-extension of 𝜋 and 𝑓 ⊂ 𝑓 ′;

• 𝒯 𝒩 and 𝒯 𝒩 ′ are poset testing equivalent (denoted 𝒯 𝒩 ∼𝑝𝑜𝑠
𝑝𝑜𝑠 𝒯 𝒩 ′) iff for all time posets

𝑇𝑃 and for all sets TP ⊆ TP𝑇𝑃 , it holds:

𝒯 𝒩 after 𝑇𝑃 MUST𝑝𝑜𝑠
𝑝𝑜𝑠TP ⇐⇒ 𝒯 𝒩 ′ after 𝑇𝑃 MUST𝑝𝑜𝑠

𝑝𝑜𝑠TP.

Theorem 1. Given time Petri nets 𝒯 𝒩 and 𝒯 𝒩 ′,

𝒯 𝒩 ∼𝑝𝑜𝑠
𝑝𝑜𝑠 𝒯 𝒩 ′ =⇒ 𝒯 𝒩 ∼𝑠𝑡𝑒𝑝

𝑠𝑡𝑒𝑝 𝑇𝑁 =⇒ 𝒯 𝒩 ∼𝑖𝑛𝑡
𝑖𝑛𝑡 𝒯 𝒩 ′.

The implications in the theorem above do not hold in the opposite directions, as demonstrated
in the example below.

Example 3. The time Petri nets 𝒯 𝒩 1 and 𝒯 𝒩 2, shown in Figure 2, are ∼𝑖𝑛𝑡
𝑖𝑛𝑡–equivalent but

they are neither ∼𝑠𝑡𝑒𝑝
𝑠𝑡𝑒𝑝– nor ∼𝑝𝑜𝑠

𝑝𝑜𝑠–equivalent. First, check that 𝒯 𝒩 1 and 𝒯 𝒩 2 are not ∼𝑠𝑡𝑒𝑝
𝑠𝑡𝑒𝑝–

equivalent. It is easy to see that 𝒯 𝒩 1 after 𝑤 = (1′𝑎 + 1′𝑏, 1) MUST𝑠𝑡𝑒𝑝
𝑠𝑡𝑒𝑝 𝑊 = ∅, because

in ℱ𝒮𝑠(𝒯 𝒩 1) there is no firing sequence 𝜎 such that 𝐿(𝜎) = 𝑤. However, this is not the
case in 𝒯 𝒩 2, since in ℱ𝒮𝑠(𝒯 𝒩 2) there exists a firing sequence 𝜎 such that 𝐿(𝜎) = 𝑤 and it
is impossible to find any element (𝐴, 𝜃) of 𝑊 so as to locate in ℱ𝒮𝑠(𝒯 𝒩 2) a firing sequence
𝜎(𝑈, 𝜃) such that 𝐿(𝜎(𝑈, 𝜃)) = 𝑤(𝐴, 𝜃). Hence, it hods that ¬(𝒯 𝒩 2 after 𝑤 = (1′𝑎 + 1′𝑏, 1)
MUST𝑠𝑡𝑒𝑝

𝑠𝑡𝑒𝑝 𝑊 = ∅). Second, verify that 𝒯 𝒩 1 and 𝒯 𝒩 2 are not ∼𝑝𝑜𝑠
𝑝𝑜𝑠–equivalent. Define

a poset 𝑇𝑃 = ({𝑥1, 𝑥2}, ⪯, 𝜆, 𝜏) (with ⪯= {(𝑥1, 𝑥1), (𝑥2, 𝑥2)}, 𝜆(𝑥1) = 𝑎, 𝜆(𝑥2) = 𝑏,
𝜏(𝑥1) = 𝜏(𝑥2) = 1). For any time process 𝜋1 = (𝑇𝑁1, 𝜙1) ∈ 𝒞𝒫(𝒯 𝒩 1), there is no isomorphism
𝑓1 : 𝜂(𝑇𝑁1) −→ 𝑇𝑃 . So, it is true that 𝒯 𝒩 1 after 𝑇𝑃 MUST𝑝𝑜𝑠

𝑝𝑜𝑠 TP = ∅. However, this is
not the case in 𝒯 𝒩 2 because there is a time process 𝜋2 = (𝑇𝑁2, 𝜙2) ∈ 𝒞𝒫(𝒯 𝒩 2), with 𝐸𝑇𝑁2

containing two concurrent events labeled by 𝑎 and 𝑏, both with time value 1, and an isomorphism
𝑓2 : 𝜂(𝑇𝑁2) −→ 𝑇𝑃 , and we cannot find any 𝑝𝑜𝑠-extension of 𝑇𝑃 in TP. Hence, it hods that
¬(𝒯 𝒩 2 after 𝑇𝑃 MUST𝑝𝑜𝑠

𝑝𝑜𝑠 TP = ∅).

68

The time Petri nets 𝒯 𝒩 3 and 𝒯 𝒩 4, shown in Figure 3, are ∼𝑠𝑡𝑒𝑝
𝑠𝑡𝑒𝑝–equivalent but not ∼𝑝𝑜𝑠

𝑝𝑜𝑠–
equivalent. Let’s make sure of the latter. Define posets 𝑇𝑃 = ({𝑥1}, ⪯, 𝜆, 𝜏) (with ⪯= {(𝑥1, 𝑥1)},
𝜆(𝑥1) = 𝑏, 𝜏(𝑥1) = 0) and 𝑇𝑃 ′ = ({𝑥1, 𝑥2, 𝑥3, 𝑥4}, ⪯′, 𝜆′, 𝜏 ′) (with ⪯′= {(𝑥𝑖, 𝑥𝑖) | 1 ≤
𝑖 ≤ 4} ∪ {(𝑥2, 𝑥3)}, 𝜆′(𝑥1) = 𝜆′(𝑥2) = 𝑏, 𝜆′(𝑥3) = 𝜆′(𝑥4) = 𝑎, 𝜏 ′(𝑥1) = 𝜏 ′(𝑥2) = 0,
and 𝜏 ′(𝑥3) = 𝜏 ′(𝑥4) = 2.9. It is easy to see that 𝑇𝑃 ′ is a 𝑝𝑜𝑠-extension of 𝑇𝑃 . For any
time process 𝜋1 = (𝑇𝑁1, 𝜙1) ∈ 𝒞𝒫(𝒯 𝒩 3), with 𝐸𝑇𝑁1 consisting of an event with label 𝑏
and time value 0, and any isomorphism 𝑓1 : 𝜂(𝑇𝑁1) −→ 𝑇𝑃 , we can find a 𝑝𝑜𝑠-extension
𝜋′
1 = (𝑇𝑁 ′

1, 𝜙
′
1) ∈ 𝒞𝒫(𝒯 𝒩 1), with 𝐸𝑇𝑁 ′

1
consisting of two concurrent events, both with label 𝑏

and time value 0, and two concurrent events, both with label 𝑎 and time value 2.9, and, moreover,
one of the two events labeled by 𝑎 is causally preceded by the added event labeled by 𝑏, and an
isomorphism 𝑓 ′

1 : 𝜂(𝑇𝑁 ′
1) −→ 𝑇𝑃 ′ such that 𝑓1 ⊂ 𝑓 ′

1. But this is not the case in 𝒯 𝒩 4.
The time Petri nets 𝒯 𝒩 5 and 𝒯 𝒩 6, depicted in Figure 4, are ∼⋆

⋆–equivalent, for ⋆ ∈ {𝑖𝑛𝑡, 𝑠𝑡𝑒𝑝,
𝑝𝑜𝑠}. □

At last, the definition of testing equivalence based on the causal trees of TPNs is developed.
In doing so the experiments are considered as sequences over the alphabet (𝐴𝑐𝑡 × T × 2N)
(corresponding to labeled paths from the roots in the causal trees) and the tests are specified as
sets of non-empty sequences over the same alphabet (corresponding to sets of extensions of the
labeled paths in the causal trees). In the paper [14], the tests directly extend the experiments by
single elements, not by sequences of elements, from the set (𝐴𝑐𝑡× T× 2N).

Definition 8. Given time Petri nets 𝒯 𝒩 and 𝒯 𝒩 ′ with their time causal trees 𝑇𝐶𝑇 (𝒯 𝒩) and
𝑇𝐶𝑇 (𝒯 𝒩 ′), respectively,

• for a sequence 𝑤 ∈ (𝐴𝑐𝑡×T× 2N)* and a set W ⊆ (𝐴𝑐𝑡×T× 2N)+, we say 𝑇𝐶𝑇 (𝒯 𝒩)
after 𝑤 MUST𝑒𝑥𝑡

𝑐𝑡 W iff for all paths 𝑢 in 𝑇𝐶𝑇 (𝒯 𝒩) from its root to a node 𝑛 such
that 𝜑(𝑢) = 𝑤, there exists 𝑤′ ∈ W and a path 𝑢′ starting from the node 𝑛, such that
𝜑(𝑢′) = 𝑤′;

• 𝒯 𝒩 and 𝒯 𝒩 ′ are causal tree testing equivalent (𝒯 𝒩 ∼𝑒𝑥𝑡
𝑐𝑡 𝒯 𝒩 ′) iff for all sequences

𝑤 ∈ (𝐴𝑐𝑡× T× 2N)* and sets W ⊆ (𝐴𝑐𝑡× T× 2N)+, it holds:

𝑇𝐶𝑇 (𝒯 𝒩) after 𝑤 MUST𝑒𝑥𝑡
𝑐𝑡 W ⇐⇒ 𝑇𝐶𝑇 (𝒯 𝒩 ′) after 𝑤 MUST𝑒𝑥𝑡

𝑐𝑡 W.

We finally expand the main result of [14] by establishing the coincidence of poset and causal
tree testing equivalences with extended tests, in the setting of TPNs.

Theorem 2. Given time Petri nets 𝒯 𝒩 and 𝒯 𝒩 ′,

𝒯 𝒩 ∼𝑝𝑜𝑠
𝑝𝑜𝑠 𝒯 𝒩 ′ ⇐⇒ 𝒯 𝒩 ∼𝑒𝑥𝑡

𝑐𝑡 𝒯 𝒩 ′.

4. Concluding Remarks

We have specified and studied several testing equivalences based on concurrent semantics, in
the setting of contact-free time Petri nets. In doing so, we dealt with various conceptions of the

69

behavior of the time Petri net: interleaving/step firing sequences, time processes, from causal
nets of which partial orders are derived, and time causal tree, constructed from interleaving
firing sequences and partial orders. We have demonstrated that interleaving testing equivalence
(with the experiments as labeled interleaving firing sequences and with the tests as experiments
extensions by single actions with their times) is coarser than step testing (with the experiments
as labeled step firing sequences and the tests as sequences extensions by steps of concurrent
actions with their times), which, in turn, is coarser than poset testing (with time posets as
experiments and their 𝑝𝑜𝑠-extensions as tests). As the main result, the latter equivalence has
been established to coincide with causal tree testing (based on labeled paths and their extensions
in time causal trees of TPNs).

As for future work, we plan to investigate the equivalences and semantics under consideration
in the framework of Petri nets with weak timing policy [18]. Also, it would be interesting to
see whether open intervals in the specification of TPNs influence the results obtained here.

References

[1] R. de Nicola, M. Hennessy, Testing equivalence for processes, in: J. Díaz (Ed.), Automata,
Languages and Programming, 10th Colloquium, Barcelona, Spain, July 18-22, 1983, Pro-
ceedings, volume 154 of Lecture Notes in Computer Science, Springer, 1983, pp. 548–560.
URL: https://doi.org/10.1007/BFb0036936. doi:10.1007/BFb0036936.

[2] R. de Nicola, Extensional equivalences for transition systems, Acta Informatica 24 (1987)
211–237. URL: https://doi.org/10.1007/BF00264365. doi:10.1007/BF00264365.

[3] R. Cleaveland, M. Hennessy, Testing equivalence as a bisimulation equivalence, Formal
Aspects Comput. 5 (1993) 1–20. URL: https://doi.org/10.1007/BF01211314. doi:10.1007/
BF01211314.

[4] L. Pomello, G. Rozenberg, C. Simone, A survey of equivalence notions for net based
systems, in: G. Rozenberg (Ed.), Advances in Petri Nets 1992, The DEMON Project,
volume 609 of Lecture Notes in Computer Science, Springer, 1992, pp. 410–472. URL: https:
//doi.org/10.1007/3-540-55610-9_180. doi:10.1007/3-540-55610-9_180.

[5] L. Aceto, History preserving, causal and mixed-ordering equivalence over stable event
structures, Fundam. Informaticae 17 (1992) 319–331.

[6] L. Aceto, R. de Nicola, A. Fantechi, Testing equivalences for event structures, in: M. V. Zilli
(Ed.), Mathematical Models for the Semantics of Parallelism, Advanced School, Rome, Italy,
September 24 - October 1, 1986, Proceedings, volume 280 of Lecture Notes in Computer
Science, Springer, 1986, pp. 1–20. URL: https://doi.org/10.1007/3-540-18419-8_9. doi:10.
1007/3-540-18419-8_9.

[7] U. Goltz, H. Wehrheim, Causal testing, in: W. Penczek, A. Szalas (Eds.), Mathemat-
ical Foundations of Computer Science 1996, 21st International Symposium, MFCS’96,
Cracow, Poland, September 2-6, 1996, Proceedings, volume 1113 of Lecture Notes in Com-
puter Science, Springer, 1996, pp. 394–406. URL: https://doi.org/10.1007/3-540-61550-4_165.
doi:10.1007/3-540-61550-4_165.

[8] R. Cleaveland, A. E. Zwarico, A theory of testing for real-time, in: Proceedings of the
Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Amsterdam, The

70

Netherlands, July 15-18, 1991, IEEE Computer Society, 1991, pp. 110–119. URL: https:
//doi.org/10.1109/LICS.1991.151635. doi:10.1109/LICS.1991.151635.

[9] M. Hennessy, T. Regan, A process algebra for timed systems, Inf. Comput. 117 (1995)
221–239. URL: https://doi.org/10.1006/inco.1995.1041. doi:10.1006/inco.1995.1041.

[10] F. Corradini, W. Vogler, L. Jenner, Comparing the worst-case efficiency of asynchronous
systems with PAFAS, Acta Informatica 38 (2002) 735–792. URL: https://doi.org/10.1007/
s00236-002-0094-3. doi:10.1007/s00236-002-0094-3.

[11] L. F. L. Díaz, D. de Frutos-Escrig, Denotational semantics for timed testing, in: M. Bertran,
T. Rus (Eds.), Transformation-Based Reactive Systems Development, 4th International
AMAST Workshop on Real-Time Systems and Concurrent and Distributed Software,
ARTS’97, Palma, Mallorca, Spain, May 21-23, 1997, Proceedings, volume 1231 of Lec-
ture Notes in Computer Science, Springer, 1997, pp. 368–382. URL: https://doi.org/10.1007/
3-540-63010-4_25. doi:10.1007/3-540-63010-4_25.

[12] E. Bihler, W. Vogler, Timed Petri nets: Efficiency of asynchronous systems, in: M. Bernardo,
F. Corradini (Eds.), Formal Methods for the Design of Real-Time Systems, International
School on Formal Methods for the Design of Computer, Communication and Software
Systems, SFM-RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised Lectures, volume
3185 of Lecture Notes in Computer Science, Springer, 2004, pp. 25–58. URL: https://doi.org/
10.1007/978-3-540-30080-9_2. doi:10.1007/978-3-540-30080-9_2.

[13] M. V. Andreeva, I. B. Virbitskaite, Observational equivalences for timed stable event
structures, Fundam. Informaticae 72 (2006) 1–19. URL: http://content.iospress.com/articles/
fundamenta-informaticae/fi72-1-3-02.

[14] E. N. Bozhenkova, I. B. Virbitskaite, Testing equivalences of time Petri nets, Program.
Comput. Softw. 46 (2020) 251–260. URL: https://doi.org/10.1134/S0361768820040040. doi:10.
1134/S0361768820040040.

[15] T. Aura, J. Lilius, A causal semantics for time Petri nets, Theor. Comput. Sci. 243 (2000) 409–
447. URL: https://doi.org/10.1016/S0304-3975(99)00114-0. doi:10.1016/S0304-3975(99)
00114-0.

[16] I. B. Virbitskaite, D. Bushin, E. Best, True concurrent equivalences in time Petri nets,
Fundam. Informaticae 149 (2016) 401–418. URL: https://doi.org/10.3233/FI-2016-1454.
doi:10.3233/FI-2016-1454.

[17] P. Darondeau, P. Degano, Refinement of actions in event structures and causal trees,
Theor. Comput. Sci. 118 (1993) 21–48. URL: https://doi.org/10.1016/0304-3975(93)90361-V.
doi:10.1016/0304-3975(93)90361-V.

[18] P. Reynier, A. Sangnier, Weak time Petri nets strike back!, in: M. Bravetti, G. Zavattaro
(Eds.), CONCUR 2009 - Concurrency Theory, 20th International Conference, CONCUR 2009,
Bologna, Italy, September 1-4, 2009. Proceedings, volume 5710 of Lecture Notes in Computer
Science, Springer, 2009, pp. 557–571. URL: https://doi.org/10.1007/978-3-642-04081-8_37.
doi:10.1007/978-3-642-04081-8_37.

71

Left Recursion by Recursive Ascent
Roman R. Redziejowski

Abstract
Recursive-descent parsers can not handle left recursion, and several solutions to this problem have been
suggested. This paper presents yet another solution. The idea is to modify recursive-descent parser so
that it reconstructs left-recursive portions of syntax tree bottom-up, by "recursive ascent".

Keywords
parsing, recursive descent, left recursion

1. Introduction

Recursive-descent parser is a collection of "parsing procedures" that correspond to different
syntactic units and call each other recursively. Some of these procedures must choose what
to call next, and the choice is made by looking at the input ahead, on depth-first basis. This
process does not work if the grammar is left-recursive: the procedure may indefinitely call itself,
facing the same input. One suggested solution [1] counts the number of recursive calls of each
procedure and stops when it reaches a pre-set bound. The process is repeated with the bound
starting with 1 and gradually increased. Another solution [2, 3] saves the input consumed by
invocations of parsing procedures and tricks the parser to use the saved result instead of making
recursive call. The third idea sees parsing as reconstruction of input’s syntax tree. The classical
process builds that tree top-down, but [4] suggests that portions of the tree involved in left
recursion can be reconstructed starting from the bottom. We present here an approach based on
this idea. To reconstruct portions of the tree bottom-up we use procedures that call each other
recursively. These procedures can be regarded as new parsing procedures. We incorporate them
into the recursive-descent parser, and the result is recursive-descent parser for a new grammar,
referred to as the "dual grammar". The dual grammar is (normally) not left-recursive and defines
the same language as the original one.

After the necessary definitions in Section 2, Section 3 gives an example of recursive ascent,
and shows that the procedures performing it can be seen as parsing procedures for new non-
terminals. Section 4 incorporates these new non-terminals into the original grammar, thus
obtaining the dual grammar. Two Propositions state the essential properties of that grammar.
Section 5 discusses handling choice expressions, and Section 6 discusses the elements omitted
to simplify the presentation. Section 7 contains some final remarks: relation to other solutions
and unsolved problems. Proofs of the Propositions are given in the Appendix.

29th international Workshop on Concurrency, Specification and Programming (CS&P’21), September 2021, Berlin,
Germany
" roman@redz.se (R. R. Redziejowski)
~ http://www.romanredz.se (R. R. Redziejowski)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

72

2. Basic concepts

We consider a BNF-like grammar 𝐺 = (N,Σ,E, ℰ , 𝑁𝑠) with finite set N of non-terminals, finite
set Σ of terminals, finite set E of expressions, function ℰ from non-terminals to expressions, and
the start symbol 𝑁𝑠.
An expression is one of these:

• 𝑎 ∈ Σ ("terminal"),
• 𝑁 ∈ N ("non-terminal"),
• 𝑒1 . . . 𝑒𝑛 ("sequence"),
• 𝑒1| . . . |𝑒𝑛 ("choice"),

where each of 𝑒𝑖 is an expression. The function ℰ is defined by a set of rules of the form
𝑁 → 𝑒, where 𝑒 is the expression assigned by ℰ to non-terminal 𝑁 . We often write 𝑁 → 𝑒 to
mean 𝑒 = ℰ(𝑁). To simplify the presentation, we did not include the empty string 𝜀 among
expressions. In the following, expressions 𝑎 ∈ Σ and 𝑁 ∈ N will be viewed as special cases of
choice expression with 𝑛 = 1.

Non-terminal 𝑁 → 𝑒1 . . . 𝑒𝑛 derives the string 𝑒1 . . . 𝑒𝑛 of symbols, while 𝑁 → 𝑒1| . . . |𝑒𝑛
derives one of 𝑒1, . . . , 𝑒𝑛. The derivation is repeated to obtain a string of terminals. This process
is represented by syntax tree.

Figures 1 and 2 are examples of grammar 𝐺, showing syntax trees of strings derived from
the start symbol. The set of all strings derived from 𝑁 ∈ N is called the language of 𝑁 and is
denoted by ℒ(𝑁).

N = {Z,A,A1,B,B1,B2}
Σ = {a,b,x,y}
𝑁𝑠 = Z

Z → x A y
A → A1 | a
A1→ B a
B → B1 | B2 | b
B1→ A b
B2→ B b

Z
��

x
HH

yA

A1
�� HH

aB

B1
�� HH

bA

a

Figure 1: Example of grammar 𝐺 and syntax tree of ’xabay’

For 𝑁 ∈ N and 𝑒 ∈ N ∪ Σ, define 𝑁 first−→ 𝑒 to mean that parsing procedure for 𝑁 may call that
for 𝑒 on the same input. We have thus:

• If 𝑁 → 𝑒1 . . . 𝑒𝑛, 𝑁 first−→ 𝑒1.

• If 𝑁 → 𝑒1| . . . | 𝑒𝑛, 𝑁 first−→ 𝑒𝑖 for 1 ≤ 𝑖 ≤ 𝑛.

Let First−→ be the transitive closure of first−→. Non-terminal 𝑁 ∈ N is recursive if 𝑁 First−→ 𝑁 . The set
of all recursive non-terminals of 𝐺 is denoted by R. All non-terminals in Figure 1 except Z, and
all non-terminals in Figure 2 are recursive.

73

N = {E,E1,F,F1}
Σ = {a,b,x,z}
𝑁𝑠 = E

E → E1 | F
E1→ E + F
F → F1 | a
F1→ F * a

E

E1
�� HH

E + F

F F1
�� HH

F1 F * a
�� HH
F * a a

a

Figure 2: Example of grammar 𝐺 and syntax tree of ’a*a+a*a’

Define relation between recursive 𝑁1, 𝑁2 ∈ R that holds if 𝑁1
First−→ 𝑁2

First−→ 𝑁1. This is an
equivalence relation that partitions R into equivalence classes. We call them recursion classes.
The recursion class of 𝑁 is denoted by C(𝑁). All non-terminals in Figure 1 belong to the same
class; the grammar of Figure 2 has two recursion classes: {E,E1} and {F,F1}.

In syntax tree, the leftmost path emanating from any node is a chain of nodes connected

by first−→. Suppose 𝑁1 and 𝑁2 belonging to the same recursion class C appear on the same
leftmost path. Any non-terminal 𝑁 between them must also belong to C, which follows from
the fact that 𝑁1

First−→ 𝑁
First−→ 𝑁2

First−→ 𝑁1. It means that members of C appearing on the same
leftmost path must form an uninterrupted sequence. We call such sequence a recursion path of
class C. The only recursion path in Figure 1 is the whole leftmost path from the first A without
final a. The syntax tree in Figure 2 has two recursion paths, one starting with E and another
with F.

Let 𝑁 → 𝑒1 . . . 𝑒𝑛 be on a recursion path. The next item on the leftmost path is 𝑒1, and it
must belong to C(𝑁) to ensure 𝑁 First−→ 𝑁 . It follows that the last item on a recursion path must
be 𝑁 → 𝑒1| . . . |𝑒𝑛 where at least one of 𝑒𝑖 is not a member of C(𝑁). Such 𝑁 is called an exit
of C(𝑁), and its alternatives outside C(𝑁) are the seeds of C(𝑁). In Figure 1, both A and B are
exits, and the seeds are a and b. In Figure 2, E and F are exits of their respective classes, and the
corresponding seeds are F and a.

A recursive 𝑁 that appears in expression for a non-terminal outside C(𝑁), or is the start
symbol, is an entry of its recursion class. It is the only non-terminal that can be first in a
recursion path. The recursion class of Figure 1 has entry A, and recursion classes of Figure 2
have E and F as their respective entries.
To simplify presentation, we assume that each class has only one entry.

74

3. Recursive ascent

Recursive descent constructs the syntax tree implicitly, as the structure of its procedure calls. We
assume that to serve any purpose, this tree has to be somehow registered. Thus, we assume that
parsing procedures include "semantic actions" that actually build data structure representing
the tree.

We suggest that parsing procedure for entry𝐸 builds its syntax tree in a special way, illustrated
below by parsing the string ’xabay’ from Figure 1. The parsing starts with procedure for
non-recursive Z that, in the usual way, calls the procedures for ’x’, A, and ’y’. After consuming
’x’, Z applies A to ’abay’. The procedure for entry A is not the usual choice between A1 and a;
instead, it reconstructs the subtree A as follows:

1. The recursion path from A must end with a seed. The seeds are a and b. Decide to try a.
2. Apply expression a to ’abay’. It consumes ’a’, leaving ’bay’. Use a as start of the

tree.
3. The only possible parent of seed a in the syntax tree is its exit A. Add A on top of the tree,

with a as child.
4. We have a tree for A, but decide to continue.
5. A appears only in B1→A b, so B1 is the only possible parent of A.
6. The tree for A is already constructed. Complete B1 by applying expression b to the

remaining ’bay’. It consumes b, leaving ’ay’. Add B1 on top of the tree, with A,b as
children.

7. B1 appears only in B→B1|B2|b, so B is the only possible parent of B1.
8. Add B on top of the tree, with B1 as child.
9. The possible parents of B are A1→B a and B2→B b. Decide for A1.

10. The tree for B is already constructed. Complete A1 by applying expression a to ’ay’. It
consumes ’a’, leaving ’y’. Add A1 on top of the tree with B,a as children.

11. The only possible parent of A1 is A→A1.
12. Add A on top of the tree, with A1 as child.
13. We have a tree for A, and decide to stop. Return the tree of the consumed ’aba’ to Z,

which continues to consume y and constructs the tree for ’xabay’.

In general, the procedure for entry 𝐸 chooses and executes one of procedures that correspond
to different seeds. In the example, the choice is made in step 1, and the selected procedure
consists of steps 2-13. The procedure for seed 𝑆 starts with constructing the tree for 𝑆 and
follows by executing a procedure that adds node for the containing exit 𝑋 ; then it proceeds to
grow the resulting tree towards 𝐸. These are the steps 2 respectively 3-13 in our example. This
may be seen as parsing procedure that implements a new expression for 𝐸:

𝐸 → 𝑆1 $𝑋1| . . . |𝑆𝑛 $𝑋𝑛 (1)

where 𝑆𝑖 are all the seeds of C(𝐸) and 𝑋𝑖 are the exits containing them.
We can see $𝑋 as a special case of procedure $𝑅 that adds a new node 𝑅 on top of previously

constructed tree. This is the case in steps 6, 8, 10, and 12 of our example. The procedure then
continues to build the tree, which is in each case done in the subsequent steps up to the step 13.

75

𝑅 → 𝑇𝑒2 . . . 𝑒𝑚 𝑅 → 𝑒1| . . . |𝑇 | . . . |𝑒𝑛
𝑅 𝑅

��� �� TT
HHH

𝑇 𝑇 𝑒2 . . . 𝑒𝑚 𝑇
�� TT - �� TT �� TT �� TT �� TT
𝑥 𝑥 𝑥2 . . . 𝑥𝑚 𝑥

Figure 3: Adding R

The way of adding 𝑅 on top of tree 𝑇 depends on 𝑅 as illustrated in Figure 3.
If 𝑅 → 𝑒1𝑒2 . . . 𝑒𝑚 (where 𝑒1 = 𝑇), $𝑅 builds the trees for 𝑒2, . . . , 𝑒𝑚, binds them with 𝑇

into the tree for 𝑅. The whole procedure can be seen as parsing procedure for new non-terminal:

$𝑅 → 𝑒2 . . . 𝑒𝑚 #𝑅 (2)

where 𝑒2, . . . , 𝑒𝑚 are procedures for these expressions and #𝑅 continues the growing.
If 𝑅 → 𝑒1| . . . |𝑒𝑚 (where 𝑇 = 𝑒𝑖 for some 𝑖), the procedure just adds 𝑅 on top of 𝑇 and

proceeds to grow that tree. This can be seen as parsing procedure for:

$𝑅 → #𝑅 . (3)

Procedure #𝑅 consists of choosing a possible parent of node 𝑅 and adding that parent to
the tree. This can be seen as parsing procedure for another new non-terminal:

#𝑅 → $𝑃1| . . . |$𝑃𝑛 (4)

where 𝑃𝑖 are all members of C such that 𝑃𝑖
first−→ 𝑅.

In our example, the choice (4) is performed in steps 5, 7, 9, and 11.
If 𝑅 is identical to 𝐸, #𝑅 can choose to terminate building of the tree. Therefore, #𝐸 must

have an alternative to allow that:

#𝐸 → $𝑃1| . . . |$𝑃𝑛|$𝜀 (5)

where procedure $𝜀 returns the tree constructed for𝐸. It was not chosen in step 4, but terminated
the process in step 13.

4. The dual grammar

As shown above, parsing procedure for an entry expression can be implemented by a set of
procedures that reconstruct portion of syntax tree bottom-up, by "recursive ascent". These
procedures can be seen as parsing procedures for new non-terminals. We can add these non-
terminals to the original grammar. The result for the grammar of Figure 1 is shown in Figure 4.
Here we replaced the expression for entry A by (1), and added the new non-terminals appearing
in it, and in their expressions. The other left-recursive non-terminals are no longer used, so they
are omitted. The non-recursive non-terminals, here represented by Z, are left unchanged. This

76

Z → x A z
A → a $A | b $B
$A → #A
$A1 → a #A1
#A → $B1 | $𝜀
#A1 → $A

$B → #B
$B1 → b #B1
$B2 → b #B2
#B → $A1 | $B2
#B1 → $B
#B2 → $B

Figure 4: Dual grammar for grammar of Figure 1

E → F $E
$E → #E
$E1 → + F #E1
#E → $E1 | $𝜀
#E1 → $E

F → a $F
$F → #F
$F1 → * a #F1
#F → $F1 | $𝜀
#F1 → $F

Figure 5: Dual grammar for grammar of Figure 2

is the "dual grammar" of the grammar in Figure 1. Figure 5 shows the dual grammar obtained in
a similar way for the grammar of Figure 2.

In general, the dual grammar is obtained as follows:

• For each entry 𝐸 replace ℰ(𝐸) by 𝑆1 $𝑋1| . . . |𝑆𝑛 $𝑋𝑛

where 𝑆1, . . . , 𝑆𝑛 are all seeds of C(𝐸), and 𝑋𝑖 is the exit containing 𝑆𝑖.
• Replace each recursive 𝑅 → 𝑒1𝑒2 . . . 𝑒𝑛 by $𝑅 → 𝑒2 . . . 𝑒𝑛 #𝑅.
• Replace each recursive 𝑅 → 𝑒1| . . . |𝑒𝑛 by $𝑅 → #𝑅.
• For each 𝑅 ∈ R create:

– #𝑅 → $𝑃1| . . . |$𝑃𝑛 if 𝑅 ̸= 𝐸,
– #𝑅 → $𝑃1| . . . |$𝑃𝑛|$𝜀 if 𝑅 = 𝐸,

where 𝑃1, . . . , 𝑃𝑛 are all members of C(𝑅) such that 𝑃𝑖
first−→ 𝑅, and 𝐸 is the entry of C.

The dual grammar is an n-tuple 𝐷 = (N𝑑,Σ,E𝑑, ℰ𝑑, 𝑁𝑠). Its set N𝑑 consists of:

• The non-recursive members of N;
• The entries to recursion classes;
• The $-expressions;
• The #-expressions.

In the following, the set of all non-recursive members of N is denoted by R, and the set of all
entries by RE. They appear as non-terminals in both 𝐺 and 𝐷. The set R∪RE of these common
symbols is denoted by N𝑐. Functions ℰ and ℰ𝑑 assign the same expressions to members of R.

The two important facts about the dual grammar are:

Proposition 1. The dual grammar is left-recursive only if the original grammar contains a cycle,
that is, a non-terminal that derives itself.

Proof is found in the Appendix.

77

Proposition 2. ℒ𝐷(𝑁) = ℒ(𝑁) for all 𝑁 ∈ N𝑐.

Proof is found in the Appendix.

The start symbol 𝑁𝑠 is either non-recursive or an entry, so it appears in both grammars, and
thus both grammars define the same language. It means that recursive-descent parser for the
dual grammar is a correct parser for the original grammar, and its "semantic actions" build
syntax tree for the original grammar.

5. Implementing the choices

The construction of dual grammar introduces a number of choice expressions. We assume that
they are treated in the same way as those originally present in the grammar. If dual grammar
has the LL(𝑘) property, the choice can be made by looking at the next 𝑘 input terminals. The
dual grammar of Figure 4 is LL(1), so decisions in steps 1, 5, 10, and 14 of the example could
well be made by looking at the next terminal.

If the dual grammar is not LL(𝑘), the possible option is trial-and-error with backtracking. As
this may result in exponential processing time, the practical solution is limited backtracking,
recently being popular as the core of Parsing Expression Grammar (PEG) [5]. (As a matter of
fact, the three solutions named in the Introduction are all suggested as modifications to PEG.)

The problem with limited backtracking is that it may fail to accept some legitimate input
strings. For some grammars, which may be called "PEG-complete", limited backtracking does
accept all legitimate strings. Thus, if the dual grammar is PEG-complete, it provides a correct
parser for the original grammar.

There exist a sufficient condition that may be used to check if the dual grammar is PEG-
complete [6].

The checks for LL(𝑘) and PEG-completeness are carried on dual grammar. It is the subject of
further research how they can be replaced by checks applied to the original grammar.

6. Towards full grammar

We made here two simplifying assumptions. First, we did not include empty string 𝜀 in the
grammar. Second, we assumed a unique entry to each recursion class.

The result of adding 𝜀 is that some expressions may derive empty string. These expressions
are referred to as nullable, and can be identified as such by analyzing the grammar.

Nullable 𝑒1 in 𝑁 → 𝑒1 . . . 𝑒𝑛 invalidates the whole analysis in Section 2. Nullable 𝑒2 . . . 𝑒𝑛
in recursive 𝑁 → 𝑒1𝑒2 . . . 𝑒𝑛 invalidates the proof of Proposition 1. Except for these two cases,
our approach seems to work with empty string.

The assumption of unique entry per recursion class is not true for many grammars; for
example, the class of Primary in Java has four entries.

The exit alternative $𝜀 must appear in #𝐸 for the entry 𝐸 that actually started the ascent.
This can be solved by having a separate version of #𝐸 and $𝐸 for each entry, multiplying the
number of these non-terminals by the number of entries.

78

A practical shortcut can exploit the fact that the ascents are nested. One can keep the stack of
entries for active ascents and modify the procedure for #𝑇 to check if 𝑇 is the entry to current
ascent.

7. Final remarks

The traditional way of eliminating left recursion is to rewrite the grammar so that left recursion
is replaced by right recursion. It can be found, for example, in [7], page 177. The process is
cumbersome and produces large results; most important, it loses the spirit of the grammar. Our
rewriting is straightforward and produces correct syntax tree for the original grammar.

The methods described in [1, 2, 3] use memoization tables and special code to handle them.
The procedures are repeatedly applied to the same input. Our approach is in effect just another
recursive-descent parser.
Our idea of recursive ascent is in principle the same as that of [4], but this latter uses specially
coded "grower" to interpret data structures derived from the grammar.

As indicated in Section 6, our method does not handle some cases of nullable expressions.
Among them is the known case of "hidden" left recursion: 𝐴 → 𝑒1𝑒2 . . . 𝑒𝑛 becomes left
recursive when 𝑒1 derives 𝜀. Another unsolved problem is 𝐸 → 𝐸+𝐸 |𝑛, which results in a
right-recursive parse for 𝐸.

References

[1] S. Medeiros, F. Mascarenhas, R. Ierusalimschy, Left recursion in Parsing Expression Gram-
mars, Science of Computer Programming 96 (2014) 177–190.

[2] A. Warth, J. R. Douglass, T. D. Millstein, Packrat parsers can support left recursion, in:
Proceedings of the 2008 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
based Program Manipulation, PEPM 2008, San Francisco, California, USA, January 7-8, 2008,
pp. 103–110.

[3] L. Tratt, Direct left-recursive parsing expression grammars, Technical Report EIS-10-01,
School of Engineering and Information Sciences, Middlesex University, 2010.

[4] O. Hill, Support for Left-Recursive PEGs, 2010.
https://github.com/orlandohill/peg-left-recursion.

[5] B. Ford, Parsing expression grammars: A recognition-based syntactic foundation, in: N. D.
Jones, X. Leroy (Eds.), Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2004, ACM, Venice, Italy, 2004, pp. 111–122.

[6] R. R. Redziejowski, More about converting BNF to PEG, Fundamenta Informaticae 133
(2014) 177–191.

[7] A. V. Aho, R. Sethi, J. D. Ullman, Compilers, Principles, Techniques, and Tools, Addison-
Wesley, 1987.

79

A. Proof of Proposition 1

For 𝑁 ∈ N𝑑 and 𝑒 ∈ N𝑑 ∪ Σ, define 𝑁
firstD−→ 𝑒 to mean that parsing procedure 𝑁 may call

parsing procedure 𝑒 on the same input:

(a) For 𝑁 ∈ R, firstD−→ is the same as first−→.

(b) For 𝑁 ∈ RE, 𝑁 firstD−→ 𝑆 for each seed 𝑆 of C(𝑁).

(c) For $𝑅 → 𝑒2 . . . 𝑒𝑛#𝑅, $𝑅 firstD−→ 𝑒2.

(d) For $𝑅 → #𝑅, $𝑅 firstD−→ #𝑅.

(e) #𝑅
firstD−→ $𝑃𝑖 for each 𝑃𝑖 ∈ C(𝑅) such that 𝑃𝑖

first−→ 𝑅.

Grammar 𝐷 is left-recursive if 𝑁 FirstD−→ 𝑁 for some 𝑁 ∈ N𝑑, whereFirstD−→ is the transitive closure
of firstD−→.

Suppose 𝐷 is left-recursive, that is, exist 𝑁1, 𝑁2, . . . , 𝑁𝑘 ∈ N𝑑 such that 𝑁1
FirstD−→ 𝑁2

FirstD−→
. . .

FirstD−→ 𝑁𝑘 and 𝑁𝑘 = 𝑁1. We start by showing that none of them can be in N𝑐.

Assume, by contradiction, that 𝑁1 ∈ N𝑐. We show that in this case 𝑁2 ∈ N𝑐 and 𝑁1
First−→ 𝑁2.

(Case 1) 𝑁1 ∈ R. Because ℰ𝑑(𝑁1) = ℰ(𝑁1), 𝑁2 is in N, and thus in N𝑐. We have 𝑁1
first−→ 𝑁2.

(Case 2) 𝑁1 ∈ RE. According to (b), 𝑁2 is a seed of C(𝑁1), which is either non-recursive or an

entry, and thus is in N𝑐. For a seed 𝑁2 of C(𝑁1) holds 𝑁1
First−→ 𝑁2.

(Conclusion) The above can be repeated with 𝑁2, . . . , 𝑁𝑘−1 to show that if any of 𝑁𝑖 is in N𝑐,
then for all 𝑖, 1 ≤ 𝑖 ≤ 𝑛 𝑁𝑖 ∈ N𝑐 and 𝑁𝑖

First−→ 𝑁𝑖. Thus, all 𝑁𝑖 belong to R and are all in the
same recursion class. As none of 𝑁𝑖 belongs to R, they must all be in RE. Then, in particular,
𝑁1 ∈ RE. But, according to (b), 𝑁2 is a seed of C(𝑁1), that cannot be a member of C(𝑁1).
Thus, 𝑁1 /∈ N𝑐.

It follows that each 𝑁𝑖 is $𝑅𝑖 or #𝑅𝑖 for some 𝑅𝑖 ∈ R. If 𝑅𝑖 → 𝑒2 . . . 𝑒𝑛, we have from (c)
$𝑅𝑖

firstD−→ 𝑒2, and 𝑒2 ∈ N𝑐. That means all 𝑅𝑖 are choice expressions. Thus, the sequence of 𝑁𝑖

is a repetition of $𝑅𝑖,#𝑅𝑖+1, $𝑅𝑖+2 where, according to (d), 𝑅𝑖+1 = 𝑅𝑖, and according to (e),
𝑅𝑖+2 → . . . |𝑅𝑖+1| That means 𝑅𝑖+2 derives 𝑅𝑖, and in 𝑘/2 steps derives itself. □

B. Proof of Proposition 2

The proof is in terms of syntax trees. We write 𝑒◁𝑥 for syntax tree of 𝑥 with root 𝑒. We write
𝑒◁ [𝑒1◁𝑥1+· · ·+𝑒𝑛◁𝑥𝑛]𝑥 to represent syntax tree with root 𝑒 and children 𝑒1◁𝑥1, . . . , 𝑒𝑛◁𝑥𝑛
where 𝑥1 . . . 𝑥𝑛 = 𝑥.

To distinguish between the trees according to grammar 𝐺 (𝐺-trees) and those according to
grammar 𝐷 (𝐷-trees) we use the symbols ◁𝐺 respectively ◁𝐷 .

Assuming that a terminal derives itself, we show that every string 𝑥 derived from 𝑒 ∈ N𝑐 ∪Σ
according to 𝐺 can be also derived from 𝑒 according to 𝐷 and vice-versa. The proof is by
induction on height of syntax trees.

80

(Induction base) Syntax tree of height 0. This is the syntax tree of a terminal. The terminals and
their syntax trees are identical in both grammars.

(Induction step) Assume that the stated property holds for all strings 𝑤 having syntax tree of
height ℎ ≥ 0 or less. Lemmas 1 and 2 below show that it holds then for syntax trees of height
ℎ + 1.

Lemma 1. Assume that for each 𝑒◁𝐺𝑤 of height ℎ ≥ 0 with 𝑒 ∈ N𝑐 ∪ Σ exists 𝑒◁𝐷𝑤. Then the
same holds for each 𝑒◁𝐺𝑤 of height ℎ + 1.

Proof. Take any 𝑁◁𝐺𝑤 of height ℎ + 1 where 𝑁 ∈ N𝑐.

(Case 1) 𝑁 ∈ R. It means 𝑁 → 𝑒1 . . . 𝑒𝑛 or 𝑁 → 𝑒1| . . . |𝑒𝑛.
We have 𝑁◁𝐺 [𝑒1◁𝐺𝑤1 + · · · + 𝑒𝑛◁𝐺𝑤𝑛]𝑤 respectively 𝑁◁𝐺 [𝑒𝑗◁𝐺𝑤]𝑤. Each of the subtrees
𝑒𝑖◁𝐺𝑤𝑖 has height ℎ or less and each 𝑒𝑖 is in N𝑐 ∪ Σ. By assumption, exists 𝑒𝑖◁𝐷𝑤𝑖 for each 𝑖.
The required 𝐷-tree is 𝑁◁𝐷 [𝑒1◁𝐷𝑤1 + · · · + 𝑒𝑛◁𝐷𝑤𝑛]𝑤 respectively 𝑁◁𝐷 [𝑒𝑗◁𝐷𝑤]𝑤.

(Case 2) 𝑁 ∈ RE. The tree 𝑁◁𝐺𝑤 has the leftmost path 𝑅𝑛
first−→ . . .

first−→ 𝑅1
first−→ 𝑅0 where

𝑅𝑛 = 𝑁 , 𝑅𝑖 ∈ C(𝑁) for 𝑛 ≥ 𝑖 > 0, and 𝑅0 is a seed of C(𝑁). Define 𝑥𝑖 to be the string
derived by 𝐺 from 𝑅𝑖, for 0 ≤ 𝑖 ≤ 𝑛. We have thus 𝑤 = 𝑥𝑛.

Define 𝑤0 be the string derived by 𝐺 from 𝑅0, so the subtree for 𝑅0 is 𝑅0◁𝐺𝑤0.
Let 1 ≤ 𝑖 ≤ 𝑛. If 𝑅𝑖 → 𝑒1𝑒2 . . . 𝑒𝑚, the subtree for 𝑅𝑖 is 𝑅𝑖◁𝐺 [𝑅𝑖−1◁𝐺𝑥𝑖−1 + 𝑒2◁𝐺𝑣2 + · · · +
𝑒𝑚◁𝐺𝑣𝑚]𝑥𝑖. Define 𝑤𝑖 = 𝑣2 . . . 𝑣𝑚, so 𝑥𝑖 = 𝑥𝑖−1𝑤𝑖.
if 𝑅𝑖 → 𝑒1| . . . |𝑒𝑚, the subtree for 𝑅𝑖 is 𝑅𝑖◁𝐺 [𝑅𝑖−1◁𝐺𝑥𝑖−1]𝑥𝑖 Define 𝑤𝑖 = 𝜀, so we have again
𝑥𝑖 = 𝑥𝑖−1𝑤𝑖.
One can easily see that 𝑤 = 𝑥𝑛 = 𝑤0 . . . 𝑤𝑛.

Define 𝑦𝑖 to be the string derived by 𝐷 from $𝑅𝑖, and 𝑧𝑖 to be the string derived by 𝐷 from
#𝑅𝑖, for 0 ≤ 𝑖 ≤ 𝑛.

For entry 𝑅𝑛 exists the tree #𝑅𝑛◁𝐷𝜀. If $𝑅𝑛 → #𝑅𝑛, exists the tree $𝑅𝑛◁𝐷 [#𝑅𝑛◁𝐷𝜀]𝜀 = 𝑤𝑛.
If $𝑅𝑛 → 𝑒2 . . . 𝑒𝑛#𝑅𝑛, exists by assumption D-tree for each of 𝑒𝑗 , deriving, respectively, 𝑣𝑗 .
Thus, exists the tree $𝑅𝑛◁𝐷 [𝑒2◁𝐷𝑣2 + 𝑑𝑜𝑡𝑠 + 𝑒𝑚◁𝐷𝑣𝑚 + #𝑅𝑛◁𝐷𝜀]𝑣2 . . . 𝑣𝑚𝜀 = 𝑤𝑛. Define
𝑦𝑛 = 𝑤𝑛.

Suppose that exists the tree $𝑅𝑖◁𝐷𝑦𝑖. Then exists the tree #𝑅𝑖−1[◁𝐷$𝑅𝑖◁𝐷𝑦𝑖]𝑦𝑖. By construc-
tion similar to the above, w find the D-tree for $𝑅𝑖−1 deriving 𝑦𝑖−1 = 𝑤𝑖−1𝑦𝑖. At the end, we
find the D-tree for $𝑅1 deriving 𝑦1 = 𝑤1𝑦2.
By assumption there exists D-tree for the seed 𝑅0 deriving 𝑤0. For entry 𝑅𝑛 we have 𝑅𝑛 →
𝑅0$𝑅1, which gives the D-tree 𝑅𝑛◁𝐷 [𝑅0◁𝐷𝑤0 + $𝑅𝑖◁𝐷𝑦1]𝑤0𝑦1. One can easily see that
𝑦1 = 𝑤1 . . . 𝑤𝑛, so we have a D-tree for 𝑁 = 𝑅𝑛 deriving 𝑤 = 𝑤0 . . . 𝑤𝑛. □

Lemma 2. Assume that for each 𝑒◁𝐷𝑤 of height ℎ ≥ 0 with 𝑒 ∈ N𝑐 ∪ Σ exists 𝑒◁𝐺𝑤. Then the
same holds for each 𝑒◁𝐷𝑤 of height ℎ + 1.

Proof. Take any 𝑁◁𝐷𝑤 of height ℎ + 1 where 𝑁 ∈ N𝑐.

(Case 1) 𝑁 ∈ R. It means 𝑁 → 𝑒1 . . . 𝑒𝑛 or 𝑁 → 𝑒1| . . . |𝑒𝑛. We have 𝑁◁𝐷 [𝑒1◁𝐷𝑤1 + · · · +
𝑒𝑛◁𝐷𝑤𝑛]𝑤 respectively 𝑁◁𝐷 [𝑒𝑗◁𝐷𝑤]𝑤. Each of the subtrees 𝑒𝑖◁𝐷𝑤𝑖 has height ℎ or less

81

and each 𝑒𝑖 is in N𝑐 ∪ Σ. By assumption, exists 𝑒𝑖◁𝐺𝑤𝑖 for each 𝑖. The required 𝐺-tree is
𝑁◁𝐺 [𝑒1◁𝐺𝑤1 + · · · + 𝑒𝑛◁𝐺𝑤𝑛]𝑤 respectively 𝑁◁𝐺 [𝑒𝑗◁𝐺𝑤]𝑤.

(Case 2) 𝑁 ∈ RE. The D-tree of 𝑁 has root 𝑁 , node 𝑆 for seed of C(𝑁),and nodes $𝑅𝑖, #𝑅𝑖

for 1 ≤ 𝑖 ≤ 𝑛. Denote 𝑅𝑛 = 𝑁 and 𝑅0 = 𝑆. Denote 𝑦𝑖 the string derived by $𝑅𝑖 and 𝑧𝑖 that
derived by #𝑅𝑖. We have 𝑧𝑖 = 𝑦𝑖+1 for 𝑖 < 𝑛 and 𝑧𝑛 = 𝜀. Denote by 𝑤0 the string derived by
𝑅0 and by 𝑤 one derived by 𝑁 = 𝑅𝑛.
The D-tree for 𝑅𝑛 is 𝑅𝑛◁𝐷 [𝑅0◁𝐷𝑤0 + $𝑅1◁𝐷𝑦1]𝑤0𝑦1 = 𝑤.
If $𝑅𝑖 → 𝑒2 . . . 𝑒𝑛#𝑅𝑖, we have 𝑦𝑖 = 𝑣2 . . . 𝑣𝑚𝑧𝑖. where 𝑣𝑗 is the string derived by 𝑒𝑗 . Defining
𝑤𝑖 = 𝑣2 . . . 𝑣𝑚 by 𝑤𝑖, we have 𝑦𝑖 = 𝑤𝑖𝑧𝑖.
If $𝑅𝑖#𝑅𝑖, we have 𝑦𝑖 = 𝑧𝑖. Defining 𝑤𝑖 = 𝜀, we have again 𝑦𝑖 = 𝑤𝑖𝑧𝑖.
We have 𝑧𝑖 = 𝑦(𝑖 + 1) for 𝑖 < 𝑛 and 𝑧𝑛 = 𝜀, so 𝑦𝑖 = 𝑤𝑖𝑦(𝑖 + 1) for 𝑖 < 𝑛 and 𝑦𝑛 = 𝑤𝑛. One
can easily see that 𝑤 = 𝑤0 . . . 𝑤𝑛.

By assumption exists G-tree 𝑅0◁𝐺𝑤0. Suppose we have the G-tree for 𝑅𝑖−1 where 1 ≤ 𝑖 ≤ 𝑛
that derives 𝑥𝑖−1.
Suppose 𝑅𝑖 → 𝑅(𝑖 − 1)𝑒2 . . . 𝑒𝑚. By assumption exist G-trees that derive 𝑣2 . . . 𝑣𝑚 from
𝑒2 . . . 𝑒𝑚, so exists G-tree for 𝑅𝑖 deriving 𝑥𝑖 = 𝑥(𝑖 − 1)𝑣2 . . . 𝑣𝑚 = 𝑥(𝑖 − 1)𝑤𝑖. Suppose
𝑅𝑖 → 𝑅(𝑖− 1). Then exists G-tree deriving 𝑥𝑖 = 𝑥(𝑖− 1)𝜀 = 𝑥(𝑖− 1)𝑤𝑖. One can easily see
that the string 𝑥𝑛 derived by 𝑅𝑛 is 𝑤0 . . . 𝑤𝑛 = 𝑤 □

82

Process Opacity and Insertion Functions
Damas P. Gruska1, M. Carmen Ruiz2

1Comenius University, Slovak Republic
2Universidad de Castilla-La Mancha, Spain

Abstract
Time insertion functions as a way how to guarantee state-based security with respect to timing attacks
are proposed and studied. As regards the security property, we work with the property called process
opacity. First, we define timing attacks and later we show how security with respect to them can be
enforced by such functions. The time insertion function can alter the time behaviour of the original
system by inserting some time delays to guarantee its security. We investigate conditions under which
such functions do exist and also some of their properties.

Keywords
state-based security, process opacity, process algebras, information flow, insertion function, timing at-
tack

1. Introduction

Formal methods allows us, in many cases, to show, even prove, that a given system is not secure.
Then we have a couple of options what to do. We can either re-design its behavior, what might
be costly, difficult or even impossible, in the case that it is already part of a hardware solution,
proprietary firmware and so on, or we can use supervisory control (see [1]) to restrict system’s
behaviour in such a way that the system becomes secure. A supervisor can see (some) system’s
actions and can control (disable or enable) some set of system’s action. In this way it restricts
system’s behaviour to guarantee its security (see also [2]). This is a trade-off between security
and functionality. Situation is different in the case of timing attacks. They, as side channel
attacks, represent serious threat for many systems. They allow intruders “break” “unbreakable”
systems, algorithms, protocols, etc. For example, by carefully measuring the amount of time
required to perform private key operations, attackers may be able to find fixed Diffie-Hellman
exponents, factor RSA keys, and break other cryptosystems (see [3]). This idea was developed
in [4] were a timing attack against smart card implementation of RSA was conducted. In [5], a
timing attack on the RC5 block encryption algorithm is described. The analysis is motivated
by the possibility that some implementations of RC5 could result in data-dependent rotations
taking a time that is a function of the data. In [6], the vulnerability of two implementations of
the Data Encryption Standard (DES) cryptosystem under a timing attack is studied. It is showed
that a timing attack yields the Hamming weight of the key used by both DES implementations.
Moreover, the attack is computationally inexpensive. A timing attack against an implementation
of AES candidate Rijndael is described in [7], and the one against the popular SSH protocol in

29th International Workshop on Concurrency, Specification and Programming (CS&P’21)
" damas.gruska@fmph.uniba.sk (D. P. Gruska); MCarmen.Ruiz@uclm.es (M. C. Ruiz)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

83

[8]. Even relatively recently discovered possible attacks on most of currently used processors
(Meltdown and Spectre) also belong to timing attacks. To protect systems against timing attacks
we propose application of inserting functions (see [9, 10, 11, 12]). Such functions can add some
idling between actions to enforce process’s security. In this paper we investigate conditions
under which such functions do exist and also their properties.

As regards formalism, we will work with a timed process algebra and opacity, which is
the security property based on an absence of information flow. This formalism enables us to
formalize timing attacks. In [13] we have introduced time insertion functions to guarantee
language-based security and showed some of their properties. In [14] we studied conditions
under which there exists a timed insertion function for a given process and security language-
based security property and we have presented some decidability and undecidability results.
In this paper we define and study time insertion functions for state-based security property
process opacity.

The paper is organized as follows. In Section 2 we describe the timed process algebra TPA
which will be used as a basic formalism and information flow state-based security process
opacity. The next section is devoted to time insertion functions as a way how to guarantee state
this security property with respect to timing attacks.

2. Working Formalism

In this section we briefly recall Timed Process Algebra, TPA for short (for more details see [15]).
TPA is based on Milner’s Calculus of Communicating Systems (for short, CCS, see [16]) but
the special time action 𝑡 which expresses elapsing of (discrete) time is added and hence the set
of actions is extended from 𝐴𝑐𝑡 to 𝐴𝑐𝑡𝑡. The presented language is a slight simplification of
Timed Security Process Algebra (tSPA) introduced in [17]. We omit an explicit idling operator
𝜄 used in tSPA and instead of this we allow implicit idling of processes. Hence processes can
perform either "enforced idling" by performing 𝑡 actions which are explicitly expressed in their
descriptions or "voluntary idling" (i.e. for example, the process 𝑎.𝑁𝑖𝑙 can perform 𝑡 action
despite the fact that this action is not formally expressed in the process specification). But
in both cases internal communications have priority to action 𝑡 in the parallel composition.
Moreover we do not divide actions into private and public ones as it is in tSPA. TPA differs
also from the tCryptoSPA (see [18]). TPA does not use value passing and strictly preserves time
determinancy in case of choice operator + what is not the case of tCryptoSPA (see [15]).

To define the language TPA, we first assume a set of atomic action symbols 𝐴 not containing
symbols 𝜏 and 𝑡, and such that for every 𝑎 ∈ 𝐴 there exists 𝑎 ∈ 𝐴 and 𝑎 = 𝑎. We define
𝐴𝑐𝑡 = 𝐴 ∪ {𝜏}, 𝐴𝑡 = 𝐴 ∪ {𝑡}, 𝐴𝑐𝑡𝑡 = 𝐴𝑐𝑡 ∪ {𝑡}. We assume that 𝑎, 𝑏, . . . range over 𝐴,
𝑢, 𝑣, . . . range over 𝐴𝑐𝑡, and 𝑥, 𝑦 . . . range over 𝐴𝑐𝑡𝑡.

We give a structural operational semantics of terms by means of labeled transition systems.
The set of terms represents a set of states, labels are actions from 𝐴𝑐𝑡𝑡. The transition relation
→ is a subset of TPA ×𝐴𝑐𝑡𝑡× TPA. We write 𝑃

𝑥→ 𝑃 ′ instead of (𝑃, 𝑥, 𝑃 ′) ∈ → and 𝑃 ̸ 𝑥→ if
there is no 𝑃 ′ such that 𝑃 𝑥→ 𝑃 ′. The meaning of the expression 𝑃

𝑥→ 𝑃 ′ is that the term 𝑃
can evolve to 𝑃 ′ by performing action 𝑥, by 𝑃

𝑥→ we will denote that there exists a term 𝑃 ′

such that 𝑃 𝑥→ 𝑃 ′. We define the transition relation as the least relation satisfying the inference

84

rules for CCS plus the following inference rules:

𝑁𝑖𝑙
𝑡→ 𝑁𝑖𝑙

𝐴1
𝑢.𝑃

𝑡→ 𝑢.𝑃
𝐴2

𝑃
𝑡→ 𝑃 ′, 𝑄 𝑡→ 𝑄′, 𝑃 | 𝑄 ̸ 𝜏→
𝑃 | 𝑄 𝑡→ 𝑃 ′ | 𝑄′

𝑃𝑎
𝑃

𝑡→ 𝑃 ′, 𝑄 𝑡→ 𝑄′

𝑃 + 𝑄
𝑡→ 𝑃 ′ + 𝑄′

𝑆

For 𝑠 = 𝑥1.𝑥2.𝑥𝑛, 𝑥𝑖 ∈ 𝐴𝑐𝑡 we write 𝑃
𝑠→ instead of 𝑃 𝑥1→𝑥2→ . . .

𝑥𝑛→ and we say that
𝑠 is a trace of 𝑃 . The set of all traces of 𝑃 will be denoted by 𝑇𝑟(𝑃). By 𝜖 we denote the
empty sequence and by 𝑀* we denote the set of sequences of elements from 𝑀 . We use 𝑥⇒ for
transitions including 𝜏 actions (see [16]). By 𝑠|𝐵 we will denote the sequence obtained from 𝑠
by removing all actions not belonging to 𝐵. By 𝐿(𝑃) we will denote a set of actions which can
be performed by 𝑃 , i.e. 𝐿(𝑃) = {𝑥|𝑃 𝑠.𝑥→, 𝑠 ∈ 𝐴𝑐𝑡𝑡*}.

We define two behavior equivalences trace equivalence and weak bisimulation, respectively
(see [16]).

Definition 1. The set of weak traces of process 𝑃 is defined as 𝑇𝑟𝑤(𝑃) = {𝑠 ∈ 𝐴𝑡⋆|∃𝑃 ′.𝑃 𝑠⇒
𝑃 ′}.

Two processes 𝑃 and 𝑄 are weakly trace equivalent iff 𝑇𝑟𝑤(𝑃) = 𝑇𝑟𝑤(𝑄).

Definition 2. Let (TPA, 𝐴𝑐𝑡,→) be a labelled transition system (LTS). A relationℜ ⊆ TPA×TPA
is called a weak bisimulation if it is symmetric and it satisfies the following condition: if (𝑃,𝑄) ∈
ℜ and 𝑃

𝑥→ 𝑃 ′, 𝑥 ∈ 𝐴𝑐𝑡𝑡 then there exists a process 𝑄′ such that 𝑄 ̂︀𝑥⇒ 𝑄′ and (𝑃 ′, 𝑄′) ∈ ℜ.
Two processes 𝑃,𝑄 are weakly bisimilar, abbreviated 𝑃 ≈ 𝑄, if there exists a weak bisimulation
relating 𝑃 and 𝑄.

To formalize an information flow we do not divide actions into public and private ones at the
system description level, as it is done for example in [18], but we use a more general concept of
observation and opacity. This concept was exploited in [19] and [20] in a framework of Petri
Nets and transition systems, respectively. Firstly we define observation function on sequences
from 𝐴𝑐𝑡⋆. Various variants of observation functions differs according to contexts which they
take into account. For example, an observation of an action can depend on the previous actions.

Definition 3 (Observation). Let Θ be a set of elements called observables. Any function 𝒪 :
𝐴𝑐𝑡𝑡⋆ → Θ⋆ is an observation function. It is called static /dynamic /orwellian / m-orwellian
(𝑚 ≥ 1) if the following conditions hold respectively (below we assume 𝑤 = 𝑥1 . . . 𝑥𝑛):

• static if there is a mapping 𝒪′ : 𝐴𝑐𝑡𝑡 → Θ ∪ {𝜖} such that for every 𝑤 ∈ 𝐴𝑐𝑡⋆ it holds
𝒪(𝑤) = 𝒪′(𝑥1) . . .𝒪′(𝑥𝑛),

• dynamic if there is a mapping 𝒪′ : 𝐴𝑐𝑡𝑡⋆ → Θ ∪ {𝜖} such that for every 𝑤 ∈ 𝐴𝑐𝑡𝑡⋆ it
holds 𝒪(𝑤) = 𝒪′(𝑥1).𝒪′(𝑥1.𝑥2) . . .𝒪′(𝑥1 . . . 𝑥𝑛),

• orwellian if there is a mapping 𝒪′ : 𝐴𝑐𝑡𝑡×𝐴𝑐𝑡𝑡⋆ → Θ∪{𝜖} such that for every 𝑤 ∈ 𝐴𝑐𝑡𝑡⋆

it holds 𝒪(𝑤) = 𝒪′(𝑥1, 𝑤).𝒪′(𝑥2, 𝑤) . . .𝒪′(𝑥𝑛, 𝑤),

85

• m-orwellian if there is a mapping 𝒪′ : 𝐴𝑐𝑡𝑡 × 𝐴𝑐𝑡𝑡⋆ → Θ ∪ {𝜖} such that for every 𝑤 ∈
𝐴𝑐𝑡𝑡⋆ it holds 𝒪(𝑤) = 𝒪′(𝑥1, 𝑤1).𝒪′(𝑥2, 𝑤2) . . .𝒪′(𝑥𝑛, 𝑤𝑛) where
𝑤𝑖 = 𝑥𝑚𝑎𝑥{1,𝑖−𝑚+1}.𝑥𝑚𝑎𝑥{1,𝑖−𝑚+1}+1 . . . 𝑥𝑚𝑖𝑛{𝑛,𝑖+𝑚−1}.

In the case of the static observation function each action is observed independently from
its context. In the case of the dynamic observation function an observation of an action
depends on the previous ones, in the case of the orwellian and m-orwellian observation function
an observation of an action depends on the all and on 𝑚 previous actions in the sequence,
respectively. The static observation function is the special case of m-orwellian one for 𝑚 = 1.
Note that from the practical point of view the m-orwellian observation functions are the most
interesting ones. An observation expresses what an observer - eavesdropper can see from a
system behavior and we will alternatively use both the terms (observation - observer) with the
same meaning. Note that the same action can be seen differently during an observation (except
static observation function) and this express a possibility to accumulate some knowledge by
intruder. For example, an action not visible at the beginning could become somehow observable.
From now on we will assume that Θ ⊆ 𝐴𝑐𝑡𝑡.

Now let us assume hat an intruder is interested whether a given process has reached a
state with some given property which is expressed by a (total) predicate. This property might
be process deadlock, capability to execute only traces with some given actions, capability to
perform at the same actions form a given set, incapacity to idle (to perform 𝜏 action) etc. We
do not put any restriction on such predicates but we only assume that they are consistent with
some suitable behavioral equivalence. The formal definition follows.

Definition 4. We say that the predicate 𝜑 over processes is consistent with respect to relation ∼=
if whenever 𝑃 ∼= 𝑃 ′ then 𝜑(𝑃) ⇔ 𝜑(𝑃 ′).

As the consistency relation ∼= we could take bisimulation, weak bisimulation, weak trace
equivalence or any other suitable equivalence.

An intruder cannot learn validity of predicate 𝜑 observing process’s behaviour iff there are
two traces, undistinguished for him (by observation function 𝒪), where one leads to a state
which satisfy 𝜑 and another one leads to a state for which ¬𝜑 holds. The formal definition
follows.

Definition 5 (Process Opacity). Given process𝑃 , a predicate𝜑 over processes is process opaque
w.r.t. the observation function 𝒪 whenever 𝑃

𝑤→ 𝑃 ′ for

𝑤 ∈ 𝐴𝑐𝑡𝑡* and 𝜑(𝑃 ′) holds then there exists 𝑃 ′′ such that 𝑃 𝑤′
→ 𝑃 ′′ for some 𝑤′ ∈ 𝐴𝑐𝑡𝑡*

and ¬𝜑(𝑃 ′′) holds and moreover 𝒪(𝑤) = 𝒪(𝑤′). The set of processes for which the predicate 𝜑
is process opaque w.r.t. to the 𝒪 will be denoted by 𝑃𝑂𝑝𝜑𝒪 .

3. Insertion functions

Timing attacks belong to powerful tools for attackers who can observe or interfere with systems
in real time. On the other side these techniques is useless for off-line systems and hence they
could be consider safe with respect to attackers who cannot observe (real) time behaviour. By

86

the presented formalism we have a way how to distinguish these two cases. First we define
untimed version of an observation function, i.e. a function which does not take into account time
information. From now on we will consider observation functions 𝒪 : 𝐴𝑐𝑡𝑡⋆ → 𝐴𝑐𝑡𝑡⋆ for which
there exists untimed variants 𝒪𝑡 . Function 𝒪𝑡 is untimed variant of 𝒪 iff 𝒪(𝑤) = 𝒪𝑡(𝑤|𝐴𝑐𝑡),
i.e. untimed variant represents an observer who does not see elapsing of time since both traces,
with and without actions 𝑡, are seen equally. Now we can formally describe situation when a
process could be jeopardized by a timing attack i.e. is secure only if an observer cannot see
elapsing of time.

Definition 6 (Timinig Attacks). We say that process 𝑃 is prone to timing attacks with respect
to 𝜑 and 𝒪 iff 𝑃 ̸∈ 𝑃𝑂𝑝𝜑𝒪 but 𝑃 ∈ 𝑃𝑂𝑝𝜑𝒪𝑡

.

Example 1. Let us assume an intruder who tries to learn whether a private action ℎ was per-
formed by a given process while (s)he can observe only public action 𝑙 but not ℎ itself. Then
process 𝑃 = 𝑎.𝑡.𝑅 + 𝑏.𝑡.𝑡.𝑄 is not opaque for static observation function 𝒪(𝑥) = 𝜖 for 𝑥 ̸= 𝑡,
𝒪(𝑡) = 𝑡 and 𝜑(𝑅),¬𝜑(𝑄) hold, i.e. 𝑃 ̸∈ 𝑃𝑂𝑝𝜑𝒪 . But if an observer cannot see elapsing of time
this process is opaque, i.e. 𝑃 ∈ 𝑃𝑂𝑝𝜑𝒪𝑡

.

From now on we will consider only processes which are prone to timing attacks (see Definition
6) and moreover we will assume that predicate 𝜑 is decidable. There are basically three ways
how to solve vulnerability to timing attacks except putting a system off-line. First, redesign
the system, put some monitor or supervisor which prevents dangerous behavior which could
leak some classified information (see, for example, [2]) or hide this leakage by inserting some
time delays between system’s action (see [12, 10] for general insertion functions for non-
deterministic finite automata). Now we will define and study this possibility. First we need
some notation. For 𝑤,𝑤′ ∈ 𝐴𝑐𝑡𝑡* and 𝑤 = 𝑥1.𝑥2 . . . 𝑥𝑛 we will write 𝑤 ≪𝑆 𝑤′ for 𝑆 ⊂ 𝐴𝑐𝑡𝑡
iff 𝑤′ = 𝑥1.𝑖1.𝑥2 . . . 𝑥𝑛.𝑖𝑛 where 𝑖𝑘 ∈ 𝑆* for every 𝑘, 1 ≤ 𝑘 ≤ 𝑛. In general, an insertion
function inserts additional actions between original process’s actions (given by trace 𝑤) such
that for the resulting trace 𝑤′ we have 𝑤 ≪𝑆 𝑤′ and 𝑤′ is still a possible trace of the process.
In our case we would consider insertion functions (called time insertion functions) which insert
only time actions i.e. such functions that 𝑤 ≪{𝑡} 𝑤′. Results of an insertion function depends
on previous process behaviour. We can define this dependency similarly as it is defined for
observation functions.

Definition 7 (Time Insertion function). Any function ℱ : 𝐴𝑐𝑡𝑡⋆ → 𝐴𝑐𝑡𝑡⋆ is an insertion
function iff for every 𝑤 ∈ 𝐴𝑐𝑡𝑡* we have 𝑤 ≪{𝑡} ℱ(𝑤). It is called static /dynamic /orwellian / m-
orwellian (𝑚 ≥ 1) if the following conditions hold respectively (below we assume 𝑤 = 𝑥1 . . . 𝑥𝑛):

• static if there is a mapping 𝑓 : 𝐴𝑐𝑡𝑡 → {𝑡}* such that for every 𝑤 ∈ 𝐴𝑐𝑡𝑡⋆ it holds
ℱ(𝑤) = 𝑥1.𝑓(𝑥1).𝑥2.𝑓(𝑥2) . . . 𝑥𝑛.𝑓(𝑥𝑛),

• dynamic if there is a mapping 𝑓 : 𝐴𝑐𝑡𝑡⋆ → {𝑡}* such that for every 𝑤 ∈ 𝐴𝑐𝑡⋆ it holds
ℱ(𝑤) = 𝑥1.𝑓(𝑥1).𝑥2.𝑓(𝑥1.𝑥2) . . . 𝑥𝑛.𝑓(𝑥1.𝑥𝑛),

• orwellian if there is a mapping 𝑓 ′ : 𝐴𝑐𝑡𝑡×𝐴𝑐𝑡𝑡⋆ → {𝑡}* such that for every 𝑤 ∈ 𝐴𝑐𝑡𝑡⋆ it
holds ℱ(𝑤) = 𝑥1.𝑓(𝑥1, 𝑤).𝑥2.𝑓(𝑥2, 𝑤) . . . 𝑥𝑛.𝑓(𝑥𝑛, 𝑤),

87

• m-orwellian if there is a mapping 𝑓 ′ : 𝐴𝑐𝑡𝑡×𝐴𝑐𝑡𝑡⋆ → {𝑡}* such that for every𝑤 ∈ 𝐴𝑐𝑡𝑡⋆ it
holds ℱ(𝑤) = 𝑥1.𝑓(𝑥1, 𝑤1).𝑥2.𝑓(𝑥2, 𝑤2) . . . 𝑥𝑛.𝑓(𝑥𝑛, 𝑤𝑛),
𝑤𝑖 = 𝑥𝑚𝑎𝑥{1,𝑖−𝑚+1}.𝑥𝑚𝑎𝑥{1,𝑖−𝑚+1}+1 . . . 𝑥𝑚𝑖𝑛{𝑛,𝑖+𝑚−1}.

Note that contrary to general insertion function (see [12, 10]) inserting time actions is much
simpler due to transition rules 𝐴1, 𝐴2, 𝑆. The purpose of time insertion function is to guaranty
security with respect to process opacity. Let 𝑃 ̸∈ 𝑃𝑂𝑝𝜑𝒪 but 𝑃 ∈ 𝑃𝑂𝑝𝜑𝒪𝑡

, i.e. the process 𝑃 is
prone to timing attack with respect to 𝒪 and 𝜑. If 𝒪 and 𝜑 is clear from a context we will omit
it. Now we define what it means that process can be immunized by a time insertion function.

Definition 8. We say that process 𝑃 can be immunized for process opacity with respect to a
predicate 𝜑 over 𝐴𝑐𝑡𝑡⋆ and the observation function 𝒪 if for every 𝑃 ′, 𝑃 𝑤→ 𝑃 ′ such that 𝜑(𝑃 ′)

holds and there does not exists 𝑃 ′′ such that 𝑃 𝑤′
→ 𝑃 ′′ for some 𝑤′ such that 𝒪(𝑤) = 𝒪(𝑤′) and

𝜑(𝑃 ′′) does not hold, there exist 𝑤𝑡, 𝑤 ≪{𝑡} 𝑤𝑡 such that 𝑃 𝑤𝑡→ 𝑃 ′′ and and there exists 𝑃 ′′′ and

𝑤′′, such that 𝑃 𝑤′′
→ 𝑃 ′′′ such that ¬𝜑(𝑃 ′′′) holds and 𝒪(𝑤𝑡) = 𝒪(𝑤′′).

In Fig. 1 process immunization is depicted.

𝑃
𝑤

=⇒ 𝜑(𝑃 ′) 𝒪(𝑤)

𝑃 ̸ 𝑤
′

=⇒ ¬𝜑(𝑃 ′′) 𝒪(𝑤′)

‖

𝑃
𝑤𝑡=⇒ 𝜑(𝑃 ′) 𝒪(𝑤𝑡)

𝑃
𝑤′′
=⇒ ¬𝜑(𝑃 ′′′) 𝒪(𝑤′′)

‖

Figure 1: Process immunization

Now we will study an existence of time insertion functions. First we need some notations.
We begin with observational functions which do not see 𝜏 actions.

Definition 9. We say that observational function 𝒪 is not sensitive to 𝜏 action iff 𝒪(𝑤) =
𝒪(𝑤|𝐴𝑡) for every 𝑤 ∈ 𝐴𝑐𝑡*. Otherwise we say that 𝒪 is sensitive to 𝜏 action.

Example 2. Process 𝑃, 𝑃 = 𝑡.𝑅+(𝑎.𝑄|�̄�.𝑁𝑖𝑙)∖{𝑎}, cannot be immunized if 𝒪 is sensitive to 𝜏
action and 𝜑(𝑅), ¬𝜑(𝑄) hold. An immunization should put a time delay into the trace performed
by the right part of the process 𝑃 but this subprocess cannot perform 𝑡 action due to the inference
rule 𝑃𝑎 before communication by means of channel 𝑎.

Lemma 1. Let 𝑃 is prone to timing attack with respect to 𝒪 and 𝜑. Let 𝜏 ̸∈ 𝐿(𝑃), 𝑃 is sequential
(i.e. does not contain parallel composition) and 𝒪 is static. Then 𝑃 can be immunized.

Another problem, which causes that processes cannot be immunized, is related to observation
of time, namely, if this observation is context sensitive, as it is stated by the following example.

88

Example 3. Process 𝑃, 𝑃 = ℎ.𝑅.𝑁𝑖𝑙+ 𝑡.𝑄.𝑁𝑖𝑙 cannot be immunized for dynamic 𝒪 such that
𝒪(𝑤.ℎ.𝑡*.𝑤′) = 𝒪(𝑤.𝑤′), 𝒪(𝑤.𝑙.𝑤′) = 𝒪(𝑤).𝑙.𝒪(𝑤′), if 𝑤 does not end with action ℎ we have
𝒪(𝑤.𝑡.𝑤′) = 𝒪(𝑤).𝑡.𝒪(𝑤′), and 𝜑(𝑅), ¬𝜑(𝑄) hold.

Now we define time contextuality formally.

Definition 10. We say that observational function 𝒪 is time non-contextual if 𝒪𝑡(𝑤) = 𝒪𝑡(𝑤
′)

for every 𝑤,𝑤′ such that 𝑤 ≪{𝑡} 𝑤′.

Proposition 1. Let process𝑃 is prone to timing attacks with respect to 𝜑 and time non-contextual
observation function 𝒪 which does not see 𝜏 . Then 𝑃 can be immunized for opacity with respect
to timing attacks.

Proof 1. The main idea. Let 𝑃 ̸∈ 𝑃𝑂𝑝𝜑𝒪 but 𝑃 ∈ 𝑃𝑂𝑝𝜑𝒪𝑡
. This means that there exists a

sequence 𝑤 and 𝑃 ′ such that 𝑃 𝑤→ 𝑃 ′, 𝜑(𝑃 ′) holds and there does not exist 𝑃 ′′ such that 𝑃 𝑤′
→ 𝑃 ′′

for some 𝑤′ such that 𝒪(𝑤) = 𝒪(𝑤′) and 𝜑(𝑃 ′′) does not hold.
Suppose that 𝑃 cannot be immunized, i.e. for every 𝑤𝑡, 𝑤 ≪{𝑡} 𝑤𝑡 if 𝑃 𝑤𝑡→ 𝑃 ′′′, 𝜑(𝑃 ′′′) holds,

there does not exist 𝑃 ′′′′′ such that 𝑃 𝑤′′
→ 𝑃 ′′′′ for some 𝑤′′ such that 𝒪(𝑤𝑡) = 𝒪(𝑤′′′). But due

to our assumption we have 𝒪𝑡(𝑤𝑡) = 𝒪𝑡(𝑤) and hence it is with contradiction that 𝑃 is prone to
timing attacks.

Corollary 1. Let 𝒪 is a static observation function such that 𝒪(𝜏) = 𝜖 and 𝒪(𝑡) = 𝑡. Then
process 𝑃 which is prone to timing attacks with respect to 𝜑 and observation function 𝒪 can
be immunized for process opacity with respect to timing attacks.

Under some special conditions time insertion functions can be computed effectively a it is
stated by the following proposition.

Proposition 2. Let process𝑃 is prone to timing attacks with respect to 𝜑 and time non-contextual
observation function 𝒪 which does not see 𝜏 . Then 𝑃 can be immunized for opacity with respect
to timing attacks by a m-orwellian insertion function, moreover such one, which can be emulated
by finite state process.

Proof 2. Sketch. The prove follows an idea from Proposition 3 and Theorem 4.10 and Lemma
4.5.in [13], where insertion functions are modeled by processes run in parallel with 𝑃 .

No we define what it means that a predicate is time sensitive.

Definition 11. We say that predicate 𝜑 is time sensitive iff whenever 𝜑(𝑃) holds for 𝑃 then there
exists 𝑛, 𝑛 > 0 such that 𝑃 𝑡𝑛→ 𝑃 ′ and 𝜑(𝑃 ′) does not hold.

Proposition 3. Let process 𝑃 is prone to timing attacks with respect to time sensitive predicate
¬𝜑 and time non-contextual observation function 𝒪 which does not see 𝜏 . Then 𝑃 can be immu-
nized for opacity with respect to timing attacks, 𝒪 and 𝜑.

89

Proof 3. Sketch. By inserting some time actions after performing a sequence we can always reach
a state for which 𝜑 holds and hence 𝑃 becomes safe with respect to 𝑃𝑂𝑝¬𝜑𝒪 .

Corollary 2. Let process 𝑃 is prone to timing attacks with respect 𝜑 and time non-contextual
observation function 𝒪 which does not see 𝜏 . Let ¬𝜑 is not time sensitive predicate then 𝑃 can
be immunized for opacity with respect to timing attacks and 𝒪 and𝜑.

In general, we cannot decide whether process can be immunized as it is stated by the
following proposition. Fortunately, it is decidable for the most important static and m-orwellian
observation functions.

Proposition 4. Immunizability is undecidable i.e. it cannot be decided whether 𝑃 can be immu-
nized for opacity with respect to timing attacks.

Proof 4. Sketch. Let 𝑇𝑖 represents i-th Turing machine under some numeration of all Turing
machines. We start with generalized process from Example 3. Let 𝑃 = ℎ.𝑙.𝑅 +

∑︀
𝑖∈𝑁 𝑡𝑖.𝑙.𝑄.

Let 𝒪(𝑤.ℎ.𝑡𝑖.𝑤′) = 𝒪(𝑤.𝑤′) whenever 𝑇𝑖 halts with the empty tape and 𝒪(𝑤.ℎ.𝑡𝑖.𝑤′) =
𝒪(𝑤).𝑡𝑖.𝒪(𝑤′) otherwise. It is easy to check that immunization of 𝑃 is undecidable.

Proposition 5. Immunizability is decidable for static and m-orwellian observation function 𝒪.

Proof 5. According to Proposition 3 it is enough to show that observation function 𝒪 is time non-
contextual observation function and it does not see 𝜏 . Clearly both these properties are decidable
for static and m-orwellian observation functions.

4. Conclusions

We have investigated time insertion functions for timed process algebra which enforce the
security with respect to timing attack formalized process opacity. Time insertion functions
add some delays to system’s behaviour to prevent a timing attack. We study an existence of
an insertion function for a given process, given observational function and a predicate over
processes. In future work we plan to investigate minimal insertion functions, i.e. such functions
which add as little as possible time delays to guarantee process’s security with respect to timing
attacks. The presented approach allows us to exploit also process algebras enriched by operators
expressing other "parameters" (space, distribution, networking architecture, power consumption
and so on). Hence we could obtain security properties which have not only theoretical but
also practical value. Moreover, we can use similar techniques as in [21] to minimize time,
as well as other resources, added to process’s behaviour. Moreover, we plan to model both
observation functions as well as predicates over processes by processes themselves, to obtain
some complexity results as it was done in [13] for trace based variant of opacity.

Acknowledgement

This work was supported by the Slovak Research and Development Agency under the Contract
no. APVV-19-0220 (ORBIS) and by the Slovak VEGA agency under Contract no. 1/0778/18
(KATO).

90

References

[1] P. Ramadge, W. Wonham, The control of discrete event systems, Proceedings of the IEEE
77 (1989) 81–98. doi:10.1109/5.21072.

[2] D. P. Gruska, M. C. Ruiz, Opacity-enforcing for process algebras, in: B. Schlingloff, S. Akili
(Eds.), Proceedings of the 27th International Workshop on Concurrency, Specification and
Programming, Berlin, Germany, September 24-26, 2018, volume 2240 of CEUR Workshop
Proceedings, CEUR-WS.org, 2018. URL: http://ceur-ws.org/Vol-2240/paper1.pdf.

[3] P. C. Kocher, Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems, in: N. Koblitz (Ed.), Advances in Cryptology — CRYPTO ’96, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1996, pp. 104–113.

[4] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. MestrÃ©, J.-J. Quisquater, J.-L. Willems, A practical
implementation of the timing attack, volume 1820, 1998, pp. 167–182. doi:10.1007/
10721064_15.

[5] H. Handschuh, H. M. Heys, A timing attack on rc5, in: Proceedings of the Selected Areas
in Cryptography, SAC ’98, Springer-Verlag, Berlin, Heidelberg, 1998, p. 306–318.

[6] A. Hevia, M. Kiwi, Strength of two data encryption standard implementations under
timing attacks, ACM Trans. Inf. Syst. Secur. 2 (1999) 416–437. URL: https://doi.org/10.1145/
330382.330390. doi:10.1145/330382.330390.

[7] F. Koeune, F. Koeune, J.-J. Quisquater, J. jacques Quisquater, A timing attack against
Rijndael, Technical Report, 1999.

[8] D. X. Song, D. Wagner, X. Tian, Timing analysis of keystrokes and timing attacks on ssh,
in: Proceedings of the 10th Conference on USENIX Security Symposium - Volume 10,
SSYM’01, USENIX Association, USA, 2001.

[9] R. Jacob, J.-J. Lesage, J.-M. Faure, Overview of discrete event systems opacity: Models,
validation, and quantification, Annual Reviews in Control 41 (2016) 135–146. URL: https:
//www.sciencedirect.com/science/article/pii/S1367578816300189. doi:https://doi.org/
10.1016/j.arcontrol.2016.04.015.

[10] C. Keroglou, L. Ricker, S. Lafortune, Insertion functions with memory for opacity enforce-
ment, IFAC-PapersOnLine 51 (2018) 394–399. URL: https://www.sciencedirect.com/science/
article/pii/S240589631830661X. doi:https://doi.org/10.1016/j.ifacol.2018.06.
331, 14th IFAC Workshop on Discrete Event Systems WODES 2018.

[11] C. Keroglou, S. Lafortune, Embedded insertion functions for opacity enforcement,
IEEE Transactions on Automatic Control 66 (2021) 4184–4191. doi:10.1109/TAC.2020.
3037891.

[12] Y.-C. Wu, S. Lafortune, Enforcement of opacity properties using insertion functions, in:
2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, pp. 6722–6728.
doi:10.1109/CDC.2012.6426760.

[13] D. P. Gruska, Security and time insertion, Proceedings of the 23rd Pan-Hellenic Conference
on Informatics (2019).

[14] D. P. Gruska, Time insertion functions, in: Proceedings CSMML 2021, to appear, 2021.
[15] D. P. Gruska, Process opacity for timed process algebra, in: A. Voronkov, I. B. Virbit-

skaite (Eds.), Perspectives of System Informatics - 9th International Ershov Informatics
Conference, PSI 2014, St. Petersburg, Russia, June 24-27, 2014. Revised Selected Papers,

91

volume 8974 of Lecture Notes in Computer Science, Springer, 2014, pp. 151–160. URL: https:
//doi.org/10.1007/978-3-662-46823-4_13. doi:10.1007/978-3-662-46823-4_13.

[16] R. Milner, Communication and Concurrency, Prentice-Hall, Inc., USA, 1989.
[17] R. Focardi, R. Gorrieri, F. Martinelli, Information flow analysis in a discrete-time process

algebra, in: Proceedings 13th IEEE Computer Security Foundations Workshop. CSFW-13,
2000, pp. 170–184. doi:10.1109/CSFW.2000.856935.

[18] R. Gorrieri, F. Martinelli, A simple framework for real-time cryptographic protocol
analysis with compositional proof rules, Science of Computer Programming 50 (2004)
23–49. doi:10.1016/j.scico.2004.01.001.

[19] J. W. Bryans, M. Koutny, P. Y. Ryan, Modelling opacity using petri nets, Electronic Notes
in Theoretical Computer Science 121 (2005) 101–115. URL: https://www.sciencedirect.
com/science/article/pii/S1571066105000277. doi:https://doi.org/10.1016/j.entcs.
2004.10.010, proceedings of the 2nd International Workshop on Security Issues with
Petri Nets and other Computational Models (WISP 2004).

[20] J. Bryans, M. Koutny, L. Mazare, P. Ryan, Opacity generalised to transition systems,
volume 7, 2008, pp. 421–435. doi:10.1007/11679219_7.

[21] Y. Ji, X. Yin, S. Lafortune, Enforcing opacity by insertion functions un-
der multiple energy constraints, Automatica 108 (2019) 108476. URL: https://
www.sciencedirect.com/science/article/pii/S0005109819303243. doi:https://doi.org/
10.1016/j.automatica.2019.06.028.

92

Attack Trees with Time Constraints
Aliyu Tanko Ali, Damas Gruska

Comenius University, Mlynska Dolina 842 48, Bratislava, Slovak Republic

Abstract
We propose how attack trees formalism can be extended with time constraints. An attack tree is a basic
description of how an attacker can compromise an asset, we refine this basic description by adding time
constraints which can prevent an attacker from reaching the root node, if the attack actions performed
cannot be completed within the defined time constraint. Adding time to attack trees causes an infinite
number of possible states, to overcome this problem, we translate the tree into (an extended version of)
timed automata and later use UPPAAL verification tool to analyse.

Keywords
Attack trees, timed attack trees, cyber-physical systems, security, threat modelling, timed automata,
reachability

1. Introduction

Attack tree’s security. The revolution that brought the introduction of assets such as IoTs, CPS,
and industrial control systems etc., in the last decades also brought many security challenges.
At its inception, attack trees are used to model how an asset (mostly static) may be compromised
and allow a security engineer to plan on how to address the potential security threats. For
example, in its early days, attack trees were used to model how to gain access (open) to secure
documents, how a PGP encrypted file or password can be cracked, potential ways to infect a
system files with a virus, how unauthorized users can obtain admin privileges, and how to gain
remote access to a system [1, 2, 3] etc. In recent days, attack trees are used for security and
risk assessment of assets such as SCADA systems [4], IoT systems [5], CPS [6], and medical
equipment [7] etc. It is important to note that while attack trees remain a powerful graphical
security tool that can be used to identify how an asset may be compromised, the shift in the
dynamics of the assets i.e. from modelling and analysing single static systems to dealing with
complex and dynamic (sometimes run concurrently) raised some questions in the effectiveness
of using attack trees to analyse certain assets.

The settings of (traditional) attack trees are to depict (static) varying ways an asset may be
compromised. However, most assets nowadays have erratic behaviour and can interact with
other (sub)systems. This makes their vulnerabilities change according to the threat environments.
Therefore, to capture such dynamism using attack trees, the estimated annotations (i.e. nodes)
need to be updated regularly. Attempts have been made to extend attack trees through the
introduction of attack-defence trees [8], attack protection trees [9], sequential and parallel attack

29th International Workshop on Concurrency, Specification and Programming (CS&P’21)
" aliyu.ali@fmph.uniba.sk (A. T. Ali); gruska@fmph.uniba.sk (D. Gruska)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

93

trees [10], and attack countermeasure trees [11] etc. These proposed extensions introduced
how potential threats can be refuted. For example, if an attack tree models potential ways an
asset may be attacked (i.e. access to a secure sever room), the security engineer having good
knowledge of the assets surroundings, will design a security defence (hidden or open) to defend
the asset. These concepts are proven effective to assets that can be modelled with finite number
of nodes (states). The asset is modelled with an attack tree, and all possible attack paths are
blocked with defence or attack countermeasures. However, for a large and complex asset that
has infinitely many states, this concept is ineffective. Another important point is that; most
assets nowadays are safety-critical. They do require a timely response to threats. This means
apart from identifying possible ways an asset may be compromised, the model has to also
provide a means to slow down or prevent the attack. In previous papers [9, 12], we investigated
the concept of attack trees for stand-alone assets. In [9] we proposed the use of protection nodes
as an alternative to defence nodes. However, we realised that such a method is less effective to
CPS assets even with a small number of states. The challenge here is, CPS assets interact with a
wide range of objects (i.e. routing signs, cameras, buildings) and respond accordingly. Each of
these objects has its characteristics, and an attacker can manipulate these objects in different
ways (e.g. blur, blocked, add) to compromise the asset (e.g. DoS, message falsification attacks).
As such, a single pre-defined countermeasures or defence nodes is not enough to stop potential
attacks. In [12] we explored informally an idea to introduce time constraints in the set of parent
nodes in addition to the associated gates refinement. In this idea, we assume that even if the
threat environment of an asset changed, new vulnerabilities that emerged are connected to an
existing parent nodes. Although these vulnerabilities might not be refuted with the already
existing defence or protection nodes for other vulnerabilities, the time constraints defined on
the parent node will still be apply to the new vulnerabilities that connect to the parent node.

In this paper we push forward our approach, we formally defined attack trees with time
constraints, we provided a case study to highlight situations where such model is applicable.
Also, we translated the concept into a (weighted) timed automata, and use a formal verification
tool UPPAAL to analyse. Let 𝑞 be a parent node that is associated with a gate refinement,
assume we want to prevent an attacker from achieving the parent node. We introduce a set of
constant time intervals 𝜏 that is represented by a constant pair < 𝑏, 𝑓 >, with 𝑏 marking the
start of an attack and 𝑓 marking the end of the attack on a parent node. 𝑏, 𝑓 ∈ Q, and 𝑏 ≤ 𝑓 .
We associate the set of attack actions 𝐴𝑐𝑡 with a set of attack time 𝑇 . An attack time defines
the attack execution time for each action. To reach to the parent node, the attack time 𝑡 ∈ 𝑇 for
each action on a given child node under attack has to be less than or equal to the interval. In
other words, if the attack time for child node(s) is more than the interval, the attacker cannot
reach to the parent node. We formalized this idea and translated the parent node reachability to
state reachability of timed automata.

Related work. Currently, threat modelling methods commonly used in industry mainly
include graphical models, such as attack trees [1], and attack graph [13]. Among them, attack
tree is a systematic attack scenario modelling method proposed by Schneier [1] and formally
defined by Mauw and Oostdijk [2]. Since attack tree is a static model (and considered a
semiformal model), several analysis frameworks have been proposed to establish its analysis

94

method based on formal methods. These analysis frameworks have been developed based on
timed automata [14], petri nets [15], and stochastic games [16] etc. The authors of [17] developed
a stochastic framework for quantitative analysis of ADTrees. The framework adopts ADTree
methodology to represent attack scenarios in a simple graphical representation and performs
quantitative assessment using CTMC analytical approach. The authors of [18] introduced a
multi-objective optimization framework for attack trees whereby the leaves of the attack trees
were enriched with various parameters such as cost, time, skills and resources. The framework
supports the computation of a wide range of security metrics such as attack values, attack paths,
and ranking. They translated each attack tree gate and leaf into a priced timed automata and
analyse the framework via UPPAAL CORE. In another effort, the work in [19] developed a
modelling framework for expressing the temporal behaviour of an attacker as a boolean formula,
and use a model checking tools to perform fully automated analyses of the modelled system
by performing both qualitative (boolean) and quantitative (probabilistic) analysis. The authors
demonstrated an example using UPPAAL tool, a network of timed automata that shows the
model of a thief who wants to enter a house while the resident is not at home. The work in
[20] defined the semantics for arbitrary attackers in an attack-defence tree using schematic
timed automata (STA), and implemented the model by translating it into UPPAAL SMC. The
authors modelled the encoding of an AD-Tree with one automaton modelling the defender, one
automaton modelling the attacker and a separate one modelling the environment of an outcome,
and coordinated their behaviour through synchronising channels. Other related works are
[21, 22, 11, 8].

Unlike the works mentioned here, our work focus on traditional attack trees without consid-
ering defence nodes/actions. In our view, as mentioned earlier, defence actions are effective
only to pre-identified vulnerabilities. As such cannot be applied to a (new) set of attack surface
that emerged as a result of a change in the vulnerabilities landscape of the asset; modelled in an
attack tree. Therefore, we shift our focus on preventing attacks by introducing a set of time
constraints at the parent nodes; in addition to the gate refinement of the tree. We introduce a
set of time constraints 𝜏 that is represented by a constant pair < 𝑏, 𝑓 >, with 𝑏 marking the
start of an attack and 𝑓 marking the end of the attack on a parent node. 𝑏, 𝑓 ∈ Q, and 𝑏 ≤ 𝑓 .
We associate the set of attack actions 𝐴𝑐𝑡 with a set of attack time 𝑇 . An attacker can achieve
the parent node if and only if the attack action(s) together with the attack time can be executed
within the defined constant time intervals. To model the time constraints, we translate the tree
into a parallel composition of weighted timed automata (WTA). The sets of nodes of the attack
trees are translated to a set of locations in the weighted timed automata. For each leaf node in
the attack tree, we have an automaton that represents a linear path from the leaf to the root
node. Altogether their areas many WTAs as the leaf nodes in the attack tree. Each location that
represents a leaf has a clock that is activated when there is an attack in the corresponding leaf
in the tree. A transition is enabled only if a simple attack is successful in the attack tree.

The paper is organized as follows. In Section 2 we describe attack trees formalism. In Section
3 we present the motivation for enhanced restrictions on attack trees model, and why time
constraint is a good option. In Section 4 we present time constraint as a form of security in attack
trees, and Section 5 timed automata and the translation of attack trees with time constraint into
(weighted) timed automata. Section 6 contains discussions and plans for future work.

95

2. Attack trees formalism

In this section, we describe and define attack trees. An attack tree is a graphical way of describing
varying ways an asset may be compromised by a malicious user (an attacker). The structure
of attack trees we use in this paper is based on the existing model introduced by Schneier [1]
but here we introduce a set of attacker’s actions 𝐴𝑐𝑡 (explain later) over the tree. (𝒬, ℰ) is a
tree, where 𝒬 = {𝑞0} ∪ 𝒬𝑆 ∪ 𝒬𝐿. {𝑞0} is the root node of the tree, it represents attackers
ultimate goal, 𝒬𝑆 is a set of internal nodes which we will refer to as sub-goal (also called parent
nodes), they represent the decomposition of the root node into smaller units that are easier to
solve, and 𝒬𝐿 is a set of leaf nodes (also called child nodes). The leaf nodes represent atomic
nodes or end nodes (vulnerability), indicating an attack step. These sets of nodes are connected
by a set of edges ℰ ⊆ 𝒬 ×𝒬. Each node in the attack tree (except for leaf nodes) has a gate
refinement. A gate indicates (the fashion) how a node can be achieved (compromised). The
interpretation of this fashion is on a node at a level above the current node. For this work, we
make use of the 𝐴𝑁𝐷 and 𝑂𝑅 gates refinement. Informally, for a (parent) node with 𝐴𝑁𝐷
gate, it is said to have a set of (child) nodes, that are linked to the parent node by a set of
edges and all these (child) nodes must be achieved first before the parent node is reached. For a
(parent) node with 𝑂𝑅 gate, a single node from the set of child nodes when achieved is enough
for the parent node to be reached. Formally we associate nodes with gates by the mapping
𝒢 : {𝑞0} ∪ 𝒬𝑆 → {𝐴𝑁𝐷,𝑂𝑅}.

Definition 1. An attack tree is a tuple 𝒯 = (𝒬, 𝑞0,𝒬𝑆 ,𝒬𝐿, ℰ ,𝒢) where, 𝒬 is a finite set of
nodes, 𝑞0 is the root node of the tree, 𝒬𝑆 ,𝒬𝐿 ⊆ 𝒬 are two subsets such that 𝒬𝑆 ∪ 𝒬𝐿 = 𝒬
and 𝒬𝑆 ∩ 𝒬𝐿 = ∅, ℰ ⊆ 𝒬 × 𝒬 is a set of edges, connecting the nodes, and 𝒢 : {𝑞0} ∪ 𝒬𝑆 →
{𝐴𝑁𝐷,𝑂𝑅} is a mapping that associate some nodes to a gate.

Steal a car attack tree (A) An attack tree with time constraint (B)

Figure 1: Simple attack trees of how to steal a car that could be extended with time restriction

Note, to compromise nodes in the tree, an attacker needs to perform a set of attack actions.
These set of (possible) actions are denoted by 𝐴𝑐𝑡, and we defined an attack as a mapping
𝒜 : 𝒬𝐿 → 𝐴𝑐𝑡 ∪ {𝑁𝑖𝑙} such that 𝐴(𝑙) = 𝑎 means that an attacker can compromises leaf node
𝑙 ∈ 𝒬𝐿 by executing an action 𝑎 ∈ 𝐴𝑐𝑡, 𝒜(𝑙) = Nil when no action is performed. We say that
attack 𝒜 is simple if 𝒜(𝑙) ̸= Nil only for one leaf i.e. only one leaf is attacked. Practically, these
set of attack actions are aided by the use of tools or/and techniques to carry out the attack.

96

Therefore, in this work, we will name a tool that can aid an attacker in executing the attack
when referring to attack process in the working examples.

Example 1. Shown in Figure.1 (A) is a simple attack tree that depicts possible ways to steal a car.
The car can be stolen by achieving the sub-goal obtain key or short-circuit. To obtain the key, the
sub-goal is of 𝑂𝑅 refinement and therefore, an attacker must either steal the key or make a copy.
While to achieve short-circuit, the sub-goal is of 𝐴𝑁𝐷 refinement and the attacker must get access
interior, find ignition cable, and connect the cable. Since the nodes must be achieved sequentially,
in this case the 𝐴𝑁𝐷 gate is said to be extended to 𝑆𝐴𝑁𝐷 (sequential 𝐴𝑁𝐷). Linked with dotted
lines (below the tree) are a set of aided tools or/and techniques, and an attack is performed when
a tool is mapped to a node i.e. 𝒜(make copy) = key cutter.

To model the attack propagation (i.e. from leaf nodes, through sub-goals to root), we define a
state of attack tree, denoted by 𝑠 i.e. state after an attacker has performed some actions from
𝐴𝑐𝑡. A state of attack tree is defined as a set of nodes, and for each successful execution of
attack actions (depending on the gate refinement of the target state), an attacker progresses to
another state. An initial state is denoted by 𝑠0. Let 𝑠 be a state of an attack tree, and let 𝒜 be
an attack. The transition 𝛿 : (𝑠,𝒜) → 𝑠

′
defines a change in state from 𝑠, when an attack 𝒜

is performed, to state 𝑠
′
. We define this for simple attacks but it can be extended for arbitrary

ones.

Definition 2. Let 𝒜 be a simple attack such that 𝒜(𝑙𝑖) = 𝑏 and let 𝑠 be an attack state. Then
the next state 𝑠′ after attack 𝒜 is defined as 𝑠

′
= 𝑟(𝑠 ∪ 𝑙𝑖) where operation 𝑟 on the set of nodes

is defined as follows: 𝑡
′

= 𝑟(𝑡) iff 𝑡′ is the smallest set with the following properties

• 𝑡 ⊆ 𝑡′

• if 𝑞 is a sub-goal that is associated with 𝐴𝑁𝐷 gate and all its child nodes are in 𝑟(𝑡) then
𝑞 ∈ 𝑟(𝑡)

• if 𝑞 is a sub-goal that is associated with𝑂𝑅 gate and at least one of its child node is contained
in 𝑟(𝑡) then 𝑞 ∈ 𝑟(𝑡),

A state is called final if it contains the root node. The transitive closure of 𝛿 defines reachability
and will consider only states reachable from 𝑠0 by some attacks. Henceforth, we will use the

notation 𝑠
𝒜→ 𝑠′ instead of 𝛿 : (𝑠,𝒜) → 𝑠

′
. In the following lemma, we can see that an attack

can be decomposed into simple attacks, however, the order of executing the attacks is important
in succeeding.

Lemma 1. Given an attack tree 𝑇 . Let 𝒜1,𝒜2 be two simple attacks and 𝑠 is a state. Then
𝑠

𝒜1𝒜2→ 𝑠′ ̸= 𝑠
𝒜2𝒜1→ 𝑠′, i.e. attacks are asymmetry.

Proof 1. By example. State 𝑠 is composed of all the nodes needed to reach 𝑠′, while 𝑠′ contains
all the nodes attacked by 𝒜1 and 𝒜2. As we can see from example 1, it is impossible to connect
the cable before accessing the interior and/or before finding the ignition cable. As such ordering of
attacks has influences on multiple simple attacks.

Example 2. Let 𝑠, 𝑠
′

be a state and its successor respectively. Suppose from Fig.1 (A) to access the
interior, an attacker needs a plier. Then a transition 𝑠

𝒜→ 𝑠′ iff 𝒜(access interior) = plier.

97

3. Motivation for enhanced restrictions

In this section, we will present motivations for a new security concept that will be formally
introduced in the next section. We start by presenting why it is important to have enhanced
restrictions in attack trees that will serve as a form of security in addition to identifying varying
ways an asset (modelled with attack trees) may be compromised. But first, we start by explaining
enhanced restriction and why it is needed.

An attack tree is a basic description of how an attacker may compromise an asset, without
the description of how to prevent or repel the attack. This can play well into potential attackers;
by analysing an asset using attack trees to identify the set of vulnerabilities. The gates describe
an order (restriction) that guides how a set of parent nodes can be achieved. For example, the
𝐴𝑁𝐷 gate refinement required an attacker to execute attack on all the child nodes (link to a
parent node) before the attack succeeds. A more restrictive version of this was proposed in [10],
where the attacker is required to achieve the (child) nodes in sequential order. Failing to achieve
“all” the child nodes or “ accordingly”, will result in the attack process failing. Mechanisms like
this can be added (hidden) to components that will help prevent an attack. However, assets
such as CPS (i.e. interaction with objects from the physical environment which can be observed
by the attacker), this can be uncovered easily. The following scenario motivates the need for
extending attack trees (gates refinement) with time constraints.

Attack Scenario: Assume that an auto company developed an app tool that connects its
customers with the service centre for

• technical analysis: whereby, some sensors in the vehicle can send data back to the manu-
facturer for intelligent and autonomous vehicle studies,

• threat analysis: whereby, safety or/and varying ways a vehicle can be in danger is identi-
fied and cautions message sent to the user.

Combined this, a security threat analysis of the vehicle can be carried out based on the threat
environment (i.e. vehicle moving or parked), at each instance; an attack tree identifies potential
threats and display either in the vehicles’ onboard TFT LCD screen display or/and the user
mobile phone as a notification. For each identified possible threat/fault, the app indicates the
originating location (leaf node), other components in the vehicle that can be affected (sub-goals)
and the resultant effect/damage (attack goal). Potential adversaries to the vehicle are classified
as follows:

• an insider: someone with close relation to the auto company i.e. rough employee that
directly/indirectly misuses his/her privileges,

• generic attacker : someone with the intention to exploit vulnerabilities, that can result in
putting the vehicle to harm,

• component failure: part of vehicle components with rust/ware-out that can lead to dam-
ages.

For this paper, we will model working examples from a single threat environment i.e. the
vehicle is at a parked position, and in our future work, we will consider working with a dynamic

98

threat environment. Now, consider the vehicle user who is notified (by the app) of potential
danger. Even though the attack tree can (correctly) show the originating point and target, the
user cannot prevent or slow down the attack process.

Example 3. Let us revisit example 1. let us assume a case whereby an attacker has already made
some progress with the attack (i.e. access interior and locate ignition cable) and (s)he is interrupted.
By the settings of traditional attack trees model, the attacker is not restricted from returning later
in time to complete the attack, or with the previous knowledge, restart the attack process.

It is important that, apart from identifying possible ways the attacker can achieve the target,
a security measure is defined that will constrain the attacker from unlimited attempts.

4. Time constraints and security

In this section, we extend the set of gates refinement with a set of time constraints. The time
constraints is an addition to the already existing gate refinement that is associated with each
parent node. We also associate each attack action with an attack time, indicating the time
needed for an attacker to complete executing the action.

Given a set of attack actions 𝐴𝑐𝑡, we introduce a set of attack time 𝑇 . 𝑇 is the time needed to
complete an action that can result in compromising a node, denoted simply by (𝑎, 𝑡) ∈ 𝐴𝑐𝑡× 𝑇
(see Figure.1 (B)). By doing so, we are extending the attack definition (defined in section 2) by
𝒜 : 𝒬𝐿 → (𝐴𝑐𝑡× 𝑇) ∪ {𝑁𝑖𝑙}. The set of gates refinements mapping is also extended with a
set of time constraints 𝜏 that is represented by a constant pair ⟨𝑏, 𝑓⟩, with 𝑏 marking the start
of an attack and 𝑓 marking the (expected) end of attack on the parent node such that 𝑏, 𝑓 ∈ Q,
and 𝑏 ≤ 𝑓 . This allows us to redefine the gates refinement mapping as 𝒢 : {𝑞0} ∪ 𝒬𝑆 →
{𝑂𝑅,𝐴𝑁𝐷} × 𝜏 . For the sake of simplicity, we denote this as ⟨𝑏, 𝑓⟩. From the graphical
representation shown in Figure.1 (B), one can easily derive these time extensions whereby
⟨𝑏0, 𝑓0⟩, ⟨𝑏1, 𝑓1⟩, and ⟨𝑏2, 𝑓2⟩ is added to the parent nodes (root node and sub-goals), meaning
they can only be reached if an attacker can execute the attack within the interval respectively.
Also, below with the dotted lines, attack time 𝑡𝑖 is added to each action, where 𝑖 ∈ {1 . . . 6}.
Regardless of the gates refinement i.e. 𝑂𝑅,𝐴𝑁𝐷, an attack can only succeed if the action(s)
execution time does not exceed the time intervals at the gates of the (parent) node.

Example 4. Let us consider attack tree shown in Figure.1(B), the parent nodes are extended with
time intervals represented as pairs ⟨𝑏0, 𝑓0⟩ for the root node, ⟨𝑏1, 𝑓1⟩ for the 𝑂𝑅 sub-goal, and
⟨𝑏2, 𝑓2⟩ for the 𝐴𝑁𝐷 sub-goal. The attack actions (represented by tools) are also extended with
attack time. Each time indicates the time needed to complete the attack. From the initial attack
attempt, an attacker has until elapsed of 𝑡𝑖 to complete the attack, otherwise the whole attack
process is consider failed. If 𝑡𝑖 is larger than the constant time interval for the connected sub-goal,
the attack cannot succeed.

Definition 3. Attack trees with time constraint. Let (𝒬, ℰ) be a tree, an attack tree with
time constraint is a tuple 𝒯𝑟 = (𝒬, 𝑞0,𝒬𝑆 ,𝒬𝐿, ℰ , 𝜏,𝒢, 𝑇,𝒜), where, 𝒬 is a finite set of nodes,
𝑞0 is the root node of the tree that represents the attack target, 𝒬𝑆 ,𝒬𝐿 ⊆ 𝒬 are two subsets such
that 𝒬𝑆 ∪ 𝒬𝐿 = 𝒬 and 𝒬𝑆 ∩ 𝒬𝐿 = ∅, ℰ ⊆ 𝒬×𝒬 is a set of edges that connect the nodes, 𝜏 is

99

a set of time constraints, 𝒢 : {𝑞0} ∪𝒬𝑆 → {𝐴𝑁𝐷,𝑂𝑅}× 𝜏 is the mapping that associate some
nodes to a gate and time constraint, 𝑇 is a set of attack time, and 𝒜 : 𝒬𝐿 → (𝐴𝑐𝑡× 𝑇)∪ {𝑁𝑖𝑙}.

Definition 4. Given an attack tree with time constraint 𝒯𝑟 , an attack over the tree that can reach
to the root node is defined as (assuming 𝑎 ∈ 𝐴𝑐𝑡, 𝑙 ∈ 𝒬𝐿 and 𝑡 ∈ 𝑇)

• If the tree has 𝐴𝑁𝐷 gates, ∀𝒜1 . . .𝒜𝑛 : ∀𝑡𝑖 . . . 𝑡𝑛 are less than or equal to the constant
time interval on the parent node,

• If the tree has 𝑂𝑅 gates, ∃𝒜𝑖 : 𝑡𝑖 is less than or equal to the constant time interval on the
parent node.

As an example, let us consider a sub-goal short-circuit from Figure. 1 (B), an attacker can
succeed in achieving the sub-goal if and only if the summation of attack time 𝑡3 + 𝑡4 + 𝑡5 does
not exceed the time interval defined at ⟨𝑏, 𝑓⟩.

From Figure.1 (B), 𝒜(𝒬𝐿) = Nil if the attacker cannot complete the attack within the time
constraint at the gates. The following lemma guarantees that under some conditions a parent
node remains unreachable to a potential attacker regardless of the gate refinement associated
with the parent node.

Lemma 2. Given a sub-goal 𝑆, a set of time constraint defined at the gate refinement ⟨𝑏, 𝑓⟩, and
a set of attack (actions) 𝑋 ⊆ 𝐴𝑐𝑡 required to compromise 𝑆. The sub-goal is unreachable to an
attacker if the attack execution time ∀𝑖 ∈ 𝑋 exceeds the attack time defined at the gate refinement.

Proof 2. Since each action has an attack time, we need to show that this attack time for all the
child nodes of 𝑆 exceeds the time constraint at the gate. Now if this action cannot be executed
within the attack time, the sub-goal cannot be achieved.

4.1. Enhanced restrictions and security

There are some relations between time constraint on the gates refinement and improved security
for different kinds of systems; in general. For example, the use of idle time outs for web session
is a common practice in the development of high-risk applications such as online banking
platforms. Other instances where time constraint is used to improve the security of asset can be
found on e-locks (eg. car central locking system) that can automatically locked itself after a
specified passage of time [23]. The implementation of time restriction such as action time-out
in assets such as ATMs [15], and SMART-doors [24] are further good examples.

In addition to other extensions of attack trees with security mechanism such as defence nodes
or attack countermeasures, time constraint can be used to model and analyse different kinds of
attack scenarios for different kinds of assets.

5. Timed automata

As in [12], we now consider the use of a weighted timed automata to analyse our model.
A weighted timed automata (WTA) is an extension of timed automata [14] with cost/price

100

information on both locations and edges that can be used to solve several interesting problems.
There exists a formal verification tool UPPAAL [25] that accepts WTA as its modelling language.
Before we explain further, we first recall the definition of a timed automata. (henceforth, we
refer to a location of timed automata by 𝑙).

Definition 5. A timed automaton is a tuple 𝑇𝐴 = (ℒ,ℒ0,E, 𝒞, ℐ, 𝑇, 𝑓), where ℒ is a finite set
of locations, ℒ0 ⊆ ℒ is a set of initial locations, E is a finite set of synchronization actions (events),
𝒞 is a finite set of clocks, ℐ : ℒ → Φ(𝒞) is an invariant, assigning to every location 𝑙 ∈ ℒ a clock
constraint, 𝑇 ⊆ ℒ × E × Φ(𝒞) × 2𝒞 × ℒ is a set of transition relations such that ⟨𝑙, 𝑎, 𝜑, 𝑐, 𝑙′⟩
represents an edge from location 𝑙 to location 𝑙

′
on symbol 𝑎. 𝜑 is a clock constraint, 𝑐 ⊆ 𝒞 is a set

of clocks to be reset, and 𝑓 is a final location.

The semantics of a timed automaton 𝑇𝐴 is defined by associating a (labelled) transition
system 𝑇𝐴𝐿𝑇𝑆 (defined in section 1) with it. A state in 𝑇𝐴𝐿𝑇𝑆 consists of a pair (𝑙, 𝑣) whereby
𝑙 is a location of 𝑇𝐴 and 𝑣 indicates that for a clock 𝑐, 𝑣 satisfies the label constraint ℐ(𝑙).

5.1. Weighted time automata and attack trees translation

In this subsection, we introduce the basics of a WTA and give the translation of attack trees
with time constraint into a WTA.

A Weighted timed automata, otherwise known as price timed automata (PTA), is an extended
version of timed automata (TA) with weight/cost information added on both locations and
edges. To arrive at a location, the weight value defined at that location has to be satisfied, also,
to enabled a transition via an edge, the weight value at that edge has to be satisfied. At the
final/desired location, a global weight/cost which is the accumulated weight/cost along the run
is calculated. With this accumulative weight/cost value, it is easy to calculate the distance or
cost of travelling from point 𝐴 to point 𝐵 in different case studies. Formally, a weighted timed
automata is defined as follows [25].

Definition 6. The tuple 𝑊𝑇𝐴 = (ℒ,ℒ0,E, 𝒞, ℐ,𝒲,𝒲𝒫, 𝑇 𝑓) is a weighted timed automaton,
where ℒ is a finite set of locations, ℒ0 ⊆ ℒ is a set of initial locations, E is a finite set of synchro-
nization actions (events), 𝒞 is a finite set of clocks, ℐ : ℒ → Φ(𝒞) is an invariant, assigning to
every location 𝑙 ∈ ℒ a clock constraint, 𝒲 : ℒ∪E → N𝑛

≥0 is a function that assigns weight value
to location and edge, 𝑤 : 𝒲𝒫 → Q is a set of weight parameters that updates the weight value
𝛼 : 𝒲 → (𝒲 ∪𝒲𝒫), 𝑇 is a set of transitions such that ⟨𝑙, 𝜑, 𝑎, 𝑐, 𝛼, 𝑙′⟩, where 𝑙, 𝑙

′ ∈ ℒ are the
source and target locations, 𝜑 is a clock constraint, 𝑎 ∈ E, 𝑐 ⊆ 𝒞 is a set of clocks to be reset, and
𝛼 is a parametric weight update, and finally 𝑓 is a final location.

The trace of a weighted timed automata is a sequence of states with the transitions across
the states given as 𝜋 = 𝑙0

𝑎0−→
𝑐0

𝛼0
𝑙1

𝑎1−→
𝑐1

𝛼1
𝑙2... such that

• there is always an initial location 𝑙0 with an initial clock valuation 𝑐0 = 0,
• for every 𝑖 ∈ {1, .., 𝑘}, there is some transition (𝑙𝑖, 𝜑, 𝑎𝑖, 𝑐𝑖, 𝛼𝑖, 𝑙𝑖+1) ∈ 𝑇 ,
• a transition is enables only if; for every clock valuation 𝑣, there exists a constraint 𝜑 such

that 𝑣 satisfies 𝜑,

101

• for every successful transition, a new clock valuation 𝑐𝑖+1 is obtained by increasing every
clock variable in 𝑐𝑖 by a transition 𝑖 and resetting all previous clocks 0.

Now, in other to analyse attack trees with time constraint using UPPAAL, we translate the
tree into a parallel composition of weighted timed automata. The sets of nodes of the attack
trees are translated to a set of locations in the weighted timed automata. For each leaf node
in the attack tree, we have a WTA that represents a linear path from the leaf to the root node.
Altogether there are as many WTAs as the leaf nodes in the attack tree. Each location that
represents a leaf which has a clock that is activated when there is an attack in the corresponding
leaf in the tree. An attack on a node in the tree represents an enabled transition in the WTA.
Initially, clocks become active when events synchronized, and end with either a success or fail
synchronization action.

More general, an attack tree is translated into a parallel composition of weighted timed
automata 𝑊𝑇𝐴1 . . .𝑊𝑇𝐴𝑛 that represents linear path from the leaf to the root node. Given
an attack tree with time constraint 𝒯𝑟 , the semantics of successfully reaching the root node that
satisfies the weighted timed automata WTA can be given as J𝒯𝑟K ⊆ WTA if

• J𝑞0K = WTA, a final location 𝑓 ∈ WTA is always satisfied,
• J𝒬K𝑂𝑅 = {WTA1 . . .WTA𝑛}such that at least WTA𝑖 reached the

final location 𝑓𝑖,
• J𝒬K𝐴𝑁𝐷 = {WTA1 . . .WTA𝑛}such that for all A𝑖, the final location 𝑓𝑖 reached.

Lemma 3. Let 𝒯𝑟 be an attack tree with time constraint and let 𝑊𝑇𝐴 be the equivalent product
of weighted timed automata. Suppose 𝑆 is a (target) node, and location 𝑙 is the (equivalent) trans-
lation in 𝑊𝑇𝐴. The number of the active clock(s) in 𝑊𝑇𝐴 to reach 𝑙, is the same as the number
of (attack) actions carried out by an attacker before reaching 𝑆.

Proof 3. We know that a clock is reset for each enabled transition in WTA, therefore, since the
locations of 𝑊𝑇𝐴 corresponds to the nodes in the attack trees, each enabled clock indicates an
active attack on a node. As such, the number of attack executed will correspond to the number of
clock(s) reset for events in the 𝑊𝑇𝐴.

Theorem 1. Let 𝑊𝑇𝐴 be a product of weighted timed automata for the translation of 𝒯𝑟 . For
a transition (𝑙𝑖, 𝜑, 𝑎𝑖, 𝑐𝑖, 𝛼𝑖, 𝑙𝑖+1), the clock 𝑐𝑖 is inactive for a corresponding node 𝑞 ∈ 𝒬 in the
tree, if there is no active attack process on that node.

Proof 4. Directly from lemma 3.

We can model an attack 𝒜 as a special weighted timed automata, and denote it as 𝒜𝑊𝑇𝐴,
this weighted timed automata shows the attackers’ action and time when they are performed
on the attack tree. We use this in the following theorem to check the attack target (root node)
reachability for both the attack tree and the WTA.

Theorem 2. Given an attack tree with time constraint 𝒯𝑟 and a time automata 𝑊𝑇𝐴, an at-
tacker 𝐴 can only reach the root node of the tree {𝑞0} iff corresponding 𝑊𝑇𝐴 plus 𝒜𝑊𝑇𝐴
running with the attack path in the tree can reach the final location.

102

Proof 5. The main idea. We know that a root node can only be reached if an attacker can succeed
in completing the attack process. Therefore we have to show that a 𝑊𝑇𝐴 plus 𝒜𝑊𝑇𝐴 can also
reach the final location.

5.2. UPPAAL model

Uppaal accepts the synchronization of events using channels (input and output). As such, we
modelled a set of events 𝑎?, 𝑏?, 𝑐?, 𝑑? (receive) at the initial location to serve as a set of leave
nodes. We use two clocks 𝑡 and 𝑥, with 𝑡 being a clock associated with each event while 𝑥

Figure 2: A simple UPPAAL model of nodes and time constraints

associated with a target location. Here, 𝑥 is a clock to track 𝑡. We also define two invariant
𝑚𝑖𝑛 and 𝑚𝑎𝑥, to check whether both 𝑡 and 𝑥 are satisfied before the transition to the target
location is enabled.

The UPPAAL template shown in Figure.2 is a simple model of time constraint in achieving
nodes in an attack trees. The leaves locations begin by waiting for the activation of signal
by one of the events 𝑎?, 𝑏?, 𝑐?, 𝑑? An event become activate only when the clock is less than
(predefined) 𝑚𝑖𝑛. If the sub_goal location is of 𝑂𝑅 gate, the activation of a single event is
enough for the transition to be enabled to the target location (sub_goal), otherwise all the events
(i.e. 𝐴𝑁𝐷 gate) needs to be activated, and the sub_goal location can only be reached if the
clock 𝑥 is less than (predefined) 𝑚𝑎𝑥.

6. Discussion and future work

In this paper, we have presented attack trees with a time constraint to serve as a secured version
of attack trees. We discussed how the gates refinement can be extended with time parameters
and also propose how the attack trees with time constraint can be modelled using a formal
verification tool UPPAAL.

As further work, we plan to study how attack trees can be used to analyse a CPS. A CPS is
a special kind of asset that can interact with objects from the physical environment as well
as other cyber-systems. This allows its operations to run parallel and concurrent, making it
easy for a potential attacker to observe (from the physical components), and perform some
dangerous attacks such as message falsification attack, DoS, message spoofing etc. by simply

103

adding, blocking or blurring the objects from the physical environment. This kind of threats
cannot be captured using attack trees alone. We plan to investigate opacity, a security property
formalizing the information leakage of a system to an external observer, namely intruder and
study how it can be used with attack trees.

Acknowledgement

This work was supported by the Slovak Research and Development Agency under the Contract
no. APVV-19-0220 (ORBIS) and by the Slovak VEGA agency under Contract no. 1/0778/18
(KATO).

References

[1] B. Schneier, Attack trees, Dr. Dobb’s journal 24 (1999) 21–29.
[2] S. Mauw, M. Oostdijk, Foundations of attack trees, in: International Conference on

Information Security and Cryptology, Springer, 2005, pp. 186–198.
[3] B. Kordy, L. Piètre-Cambacédès, P. Schweitzer, Dag-based attack and defense modeling:

Don’t miss the forest for the attack trees, Computer science review 13 (2014) 1–38.
[4] C.-W. Ten, C.-C. Liu, G. Manimaran, Vulnerability assessment of cybersecurity for scada

systems, IEEE Transactions on Power Systems 23 (2008) 1836–1846.
[5] D. Beaulaton, N. B. Said, I. Cristescu, S. Sadou, Security analysis of iot systems using attack

trees, in: International Workshop on Graphical Models for Security, Springer, 2019, pp.
68–94.

[6] F. Xie, T. Lu, X. Guo, J. Liu, Y. Peng, Y. Gao, Security analysis on cyber-physical system
using attack tree, in: 2013 Ninth International Conference on Intelligent Information
Hiding and Multimedia Signal Processing, IEEE, 2013, pp. 429–432.

[7] M. A. Siddiqi, R. M. Seepers, M. Hamad, V. Prevelakis, C. Strydis, Attack-tree-based threat
modeling of medical implants., in: PROOFS@ CHES, 2018, pp. 32–49.

[8] A. Roy, D. S. Kim, K. S. Trivedi, Attack countermeasure trees (act): towards unifying the
constructs of attack and defense trees, Security and Communication Networks 5 (2012)
929–943.

[9] A. T. Ali, D. P. Gruska, Attack protection tree., in: CS&P, 2019.
[10] F. Arnold, D. Guck, R. Kumar, M. Stoelinga, Sequential and parallel attack tree modelling,

in: International Conference on Computer Safety, Reliability, and Security, Springer, 2014,
pp. 291–299.

[11] X. Ji, H. Yu, G. Fan, W. Fu, Attack-defense trees based cyber security analysis for cpss,
in: 2016 17th IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD), IEEE, 2016, pp.
693–698.

[12] A. T. Ali, Simplified timed attack trees, in: International Conference on Research Challenges
in Information Science, Springer, 2021, pp. 653–660.

[13] X. Ou, A. Singhal, Attack graph techniques, in: Quantitative Security Risk Assessment of
Enterprise Networks, Springer, 2012, pp. 5–8.

104

[14] R. Alur, Timed automata, in: International Conference on Computer Aided Verification,
Springer, 1999, pp. 8–22.

[15] B. Berthomieu, M. Diaz, Modeling and verification of time dependent systems using time
petri nets, IEEE transactions on software engineering 17 (1991) 259.

[16] L. S. Shapley, Stochastic games, Proceedings of the national academy of sciences 39 (1953)
1095–1100.

[17] K. Lounis, S. Ouchani, Modeling attack-defense trees’ countermeasures using continuous
time markov chains, in: International Conference on Software Engineering and Formal
Methods, Springer, 2020, pp. 30–42.

[18] R. Kumar, E. Ruijters, M. Stoelinga, Quantitative attack tree analysis via priced timed
automata, in: International Conference on Formal Modeling and Analysis of Timed
Systems, Springer, 2015, pp. 156–171.

[19] O. Gadyatskaya, R. R. Hansen, K. G. Larsen, A. Legay, M. C. Olesen, D. B. Poulsen, Modelling
attack-defense trees using timed automata, in: International Conference on Formal
Modeling and Analysis of Timed Systems, Springer, 2016, pp. 35–50.

[20] R. R. Hansen, P. G. Jensen, K. G. Larsen, A. Legay, D. B. Poulsen, Quantitative evaluation
of attack defense trees using stochastic timed automata, in: International Workshop on
Graphical Models for Security, Springer, 2017, pp. 75–90.

[21] I. A. Tøndel, M. G. Jaatun, M. B. Line, Threat modeling of ami, in: Critical Information
Infrastructures Security, Springer, 2013, pp. 264–275.

[22] A. E. M. AL-Dahasi, B. N. A. Saqib, Attack tree model for potential attacks against the
scada system, in: 2019 27th Telecommunications Forum (TELFOR), IEEE, 2019, pp. 1–4.

[23] D. Ray, The time structure of self-enforcing agreements, Econometrica 70 (2002) 547–582.
[24] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling tcp throughput: A simple model

and its empirical validation, in: Proceedings of the ACM SIGCOMM’98 conference on
Applications, technologies, architectures, and protocols for computer communication,
1998, pp. 303–314.

[25] P. Bulychev, A. David, K. G. Larsen, M. Mikučionis, D. B. Poulsen, A. Legay, Z. Wang,
Uppaal-smc: Statistical model checking for priced timed automata, arXiv preprint
arXiv:1207.1272 (2012).

105

Extended Abstract: Simulation of Interactions
between Beehives
Volha Taliaronak1, Heinrich Mellmann1 and Verena V. Hafner1

1Humboldt University of Berlin, Unter den Linden 6, Berlin, 10117, Germany

Abstract
The interdisciplinary EU project HIVEOPOLIS aims to develop a new generation of intelligent beehive
which might help bees in coping with adverse environmental factors. As a part of the HIVEOPOLIS
project, this extended abstract reports on our ongoing work on the simulation of a decision-making
process based on interactions between HIVEOPOLIS units and bee colonies which are not equipped
with HIVEOPOLIS systems using the Mesa simulation framework.

Keywords
Multi-agent systems, Bio-hybrid systems, HIVEOPOLIS

1. Introduction

The impact of humans on the environment is difficult to exaggerate. Habitats of different species
have been reduced, transformed or damaged as a result of monocultural agriculture, pesticide
pollution, etc [1]. These changes in addition to colony diseases dramatically affect insects
including bees. As a result, one of the concerning issues has become the sharing of valuable
food sources, such as pollen and nectar as well as the limited habitat between native bee species
and honeybees, as invasive species [2, 3].

The interdisciplinary EU project HIVEOPOLIS aims to develop a new generation of intelligent
beehive which might help bees in coping with these adverse environmental factors and provide
a synergistic added value to the colony, to its owner, and to the ecosystem in general [4, 5]. The
intelligent beehives will form connected bio-hybrid systems. One concrete example is an active
selection of foraging grounds, which could enable a mutually beneficial distribution of resources
among several beehives and avoidance of areas affected by pesticides. Bees communicate
beneficial foraging locations through a specific waggle dance [5, 6]. A HIVEOPOLIS beehive will
be equipped with a technology, which enables decoding, suppressing and imitating such dances
and allows the system to actively influence the foraging locations of the bees [5, 6]. A prototype
of such robot, called RoboBee, was introduced in [6]. And as observed in [7], HIVEOPOLIS unit
may incorporate one or more dancing robots which interact with honeybees to communicate
them directions to floral resources. From that perspective a bio-hybrid HIVEOPOLIS beehive
can be seen as an autonomous robot making autonomous decisions and negotiating with other

CS&P 2021: 29th International Workshop on Concurrency, Specification and Programming
" taliarov@hu-berlin.de (V. Taliaronak); mellmann@informatik.hu-berlin.de (H. Mellmann);
hafner@informatik.hu-berlin.de (V. V. Hafner)
� 0000-0001-8150-024X (V. Taliaronak)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

106

beehives, e.g., send the bees to a particular region or, potentially, prevent them from harvesting
in another.

Bees are able to exhibit complex swarm behaviors like decentralized target selection and
workload balancing [8]. A decision mechanism steering the behavior of a whole bee swarm
requires a model describing how waggle dances generated by robots which mimic honeybees
would influence the behavior of the bees and their interaction with the environment. The first
results of such modeling experiments for foraging choices in a bee swarm were introduced in
[7] where the authors investigate the effect of robots on the hive’s foraging decisions using a
mathematical model. Further, such models can form a basis for a decision process based on
anticipation as described in [9].

In this paper we introduce a proof of concept rule-based decision-making process and simu-
late behavior of bees’ colonies and their interaction with the environment using agent based
modeling approach. We aim to simulate different scenarios and study direct and indirect
interactions between native bee colonies and honeybee colonies with integrated external regu-
lation mechanisms and gain insights about possible competitive factors as well as cooperative
strategies.

2. Modeling Methods

Behavior and interactions are the two key issues for modeling ecosystem organization. Using
the Mesa framework [10], we direct our attention on a simulation of a decision-making process
based on the interactions between agents (bees) and the environment, while bee agents’ behavior
is reduced to honeybees’ foraging behavior, and the surrounding landscape is modeled as a
simplified forage map [11].

2.1. Mesa

In comparison to the other well-known simulation tools, like NetLogo [12] and Mason [13],
this framework has several competitive advantages. First of all, it is python-based and can be
extended with modern python libraries and other python-based tools (e.g., Jupyter Notebook
and Pandas tools) in order to create more complex simulations or analyse collected data. The
collected data can be stored in a JSON or Pandas DataFrame format for further analysis. Second,
Mesa consists of decoupled components, which can be replaced or used independently from
each other. Third, visualization is browser-based, which provides additional opportunities for
sharing of visualisation via the Internet. Since all components in the Mesa framework are
decoupled, visualisation modules can be customized, extended, replaced, or removed.

2.2. Simulation

The environment of our simulations is discrete, modeled as a squared grid, with three types of
agents: bee, beehive, and field. The beehives are modeled as hierarchical multi-agent system
which consists of two levels: bees’ level and beehives’ (or colonies’) level. A bee swarm is
considered to be a multi-agent system with a non-hierarchical structure, where every bee is
modeled as a separate agent. On the other hand, every beehive itself is considered an agent.

107

Despite the fact that HIVEOPOLIS unit has been conceived and, in reality, may be designed as a
robotic honeybee imitating waggle dancing, in our simulations we implemented HIVEOPOLIS
unit on the beehives’ level as a separate type of beehive agent. Figure 1 (Right) demonstrates
one of our simulations, which consists of two beehives ((1) is a beehive with an integrated
HIVEOPOLIS unit and (2) is a wild beehive) with bees (e.g., (6), (7)) and three possible food
sources ((3), (4), (5)), green-colored cells represent field agents without available food sources. For
the sake of simplicity, we do not model the whole complex social organisation of an individual
colony, ignore the diversity of bees’ casts (workers, drones, queen) and food sources (nectar,
pollen, water). Bee and beehive agents are described with a limited number of parameters (e.g.,
maximum flying distance, collected amount of food, coordinates of a known field, abundance
of a field, etc). Floral sources are described using only three relevant parameters: amount of
available resources, blooming tag, flowering period. We simulate agents’ movements as discrete
events. An activation order of agents is randomized in order to reduce its impact on the model.

Figure 1: Simulation of the environment with two beehives. Left: graphs of collected food for each
beehive. Right: a 2D view of the environment.

We implemented two foraging strategies for bees agents: random foraging search and targeted
foraging on the known floral patch. We also considered two different interaction strategies be-
tween agents. The first one, a direct interaction, occurs on the bees’ level, when the information
about known foraging resources is communicated between simulated bees from one colony. So,
for instance, the wild bees start with the random search strategy, as seen in Figure 1 (Right).
After a discovery of a field with available floral resources (e.g., field (3) in Figure 1 (Right)), the
bees return back to the hive and share the information about the found floral resource with
other bees which are also in the hive. Bees might follow the communicated directions, in this
case, they switch to the targeted foraging strategy, but might also ignore this information about
the found food sources. The second one, an indirect interaction, occurs on the beehives’ level,
where the internal robot is supposed to define the most optimal food source and communicate
it to the bees. This type of interactions is implemented only in the beehives with HIVEOPOLIS
units. We assume that it will make autonomous decisions regarding optimal foraging sources

108

based on information about the surrounding landscape, weather and other information received
from the external sources as well as its predictions about behavior of the other beehives from
the surroundings. The implementation details of the HIVEOPOLIS’ interior robot are outside
the scope of this work. In our simulations, the optimal fields are determined using rule-based
decision-making approach which is based on three parameters: a distance parameter, a flowering
period of fields, and an abundance of fields. In every simulation step, it is checked if there
are any bees in the hive. If there are any, then a new optimal field is being calculated on the
beehive’s level and communicated to the bees on the bees’ level. Also a decision, to follow the
communicated coordinates or ignore them is being simulated on the bees’ level. Data generated
during simulation is displayed in the real-time mode in the live chart (see Figure 1 (Left)), the x
axis shows the number of simulation steps, the y axis – the foraging dynamics of the modeled
hives.

3. Results and Discussion

Bees are not only important pollinators but also a prime example of swarm intelligence [8]. Such
modeling tools, like BEESCOUT [11] and BEEHAVE [14], can be useful for better understanding
and exploration of the possible realistic scenarios of colony natural dynamics, bees’ searching
behavior in habitats with different landscape configuration as well as interactions between
bees. Nevertheless, these tools are NetLogo based and cannot be applied for simulations of
interactions between several colonies.
We are not the first, who is aiming to simulate decision-making processes in bees’ swarms.
A multi-agent simulation able to simulate the dynamics of honeybee nectar foraging was
conducted using NetLogo tool and introduced in [8]. The authors implemented experiments
reported in [15] and other works of T. Seeley, who investigated decision-making mechanisms
within bee swarm.
Nonetheless, in our work, we aim to model and simulate decision-making processes not only
within one colony, as it was done in [15, 8], but in a system of beehives and HIVEOPOLIS
units. For this reason, we examined the factors relevant for a selection process of foraging
sources. In [15] the authors highlighted three main factors, which are being considered during a
process of choosing nectar sources: distance, quality and the abundance of the food. The factors
determining the quality of food sources are, for instance, difficulty of feeding at the source,
direction in relation to the wind, and the colony’s need for food, etc [15]. In our first attempt of
simulations, we focus on a distance from hive and abundance of patches. We also added one
more parameter, which was not mentioned by [15], but can be relevant for our purposes, –
flowering period of floral patches. Quality of food resources is a complex factor which is hard
to capture and implement without any real data. Nonetheless, we hope to find a way how to
integrate this parameter in our further simulation scenarios.
A HIVEOPOLIS bio-hybrid system could serve as a mechanism for implementing interactions
on the beehive level and having an influence on the colony decisions regarding chosen food
resources. Such centralized control mechanism might be beneficial for cases in which several
bee colonies have to share limited floral resources, floral resources are difficult to discover due
to the morphology of the beehive surrounding area, or a gentle way to redirect the bees to

109

the desired fields is required. It might be a feasible path to make safer or ecologically more
important food sources more attractive to bees, even if these sources are energetically less
profitable [7].
Our simulations don’t capture the whole complexity of a decision-making process yet. We are
going to continue our work on simulations with different combinations of possible competitive
factors such as a food diversity. We consider evaluation of collected data to be a non-trivial task,
which will require expertise from other scientific fields. The collected data are strongly affected
by the parameters (e.g., number of bees per hive), which are relative values. Nevertheless,
all parameters can be changed without much extra effort. Simulation experiments have low
computational cost and can be run repeatedly.

4. Conclusion

Mesa is a convenient, powerful tool, which provides a solid base functionality for easy and
comfortable simulation implementations as well as enough capabilities for customization of
created models and their visualisation. Since the framework is based on Python, it might be
advantageous and handy for a wide range of researchers.
Multi-agent systems are useful for problems integrating social and spatial aspects and suitable
for simulation of complex systems. Models and simulations of beehives have been studied for a
long time, so that we can draw experience from a rich library of literature. The novel direction
of this work is the study of the simulation scenarios as a basis for a decision mechanism, which
would allow a bio-hybrid beehive to act autonomously in a way beneficial to itself and its
environment. Our preliminary results have shown coherent behaviors of the whole simulation,
nevertheless, the model parameters require further tuning and scientific justification. Our
further work will be focused on extension and improving of the existing simulation model. In
order to increase credibility of our simulations, we aim to utilise geospatial data. The goal is to
integrate an augmented map of a landscape and model the distribution of the floral resources
and landscape features more precisely. Further, we are planning on collecting additional data
and storing it in DataFrame format for further analysis using modern data science libraries.

Acknowledgments

This work was supported by the EU H2020 program under grant agreement No. 824069
(HIVEOPOLIS).

References

[1] O. Komasilova, V. Komasilovs, A. Kviesis, N. Bumanis, H. Mellmann, A. Zacepins, Model
for the bee apiary location evaluation, Agronomy Research 18 (2020) 1350–1358. doi:10.
15159/AR.20.090.

[2] A. Hudewenz, A.-M. Klein, Competition between honey bees and wild bees and the role of
nesting resources in a nature reserve, Journal of Insect Conservation 17 (2013) 1275–1283.
doi:10.1007/s10841-013-9609-1.

110

[3] C. Rasmussen, Y. L. Dupont, H. B. Madsen, P. Bogusch, D. Goulson, L. Herbertsson, K. P.
Maia, A. Nielsen, J. M. Olesen, S. G. Potts, S. P. M. Roberts, M. A. K. Sydenham, P. Kryger,
Evaluating competition for forage plants between honey bees and wild bees in denmark,
PLOS ONE 16 (2021) 1–19. doi:10.1371/journal.pone.0250056.

[4] CORDIS, Futuristic beehives for a smart metropolis, 2019. URL: https://cordis.europa.eu/
project/id/824069.

[5] A. Ilgün, K. Angelov, M. Stefanec, S. Schönwetter-Fuchs, V. Stokanic, J. Vollmann, D. N.
Hofstadler, M. H. Kärcher, H. Mellmann, V. Taliaronak, A. Kviesis, V. Komasilovs, M. A.
Becher, M. Szopek, D. M. Dormagen, R. Barmak, E. Bairaktarov, M. Broisin, R. Thenius,
R. Mills, S. C. Nicolis, A. Campo, A. Zacepins, S. Petrov, J.-L. Deneubourg, F. Mondada,
T. Landgraf, V. V. Hafner, T. Schmickl, Bio-hybrid systems for ecosystem level effects, in:
Proceedings of the ALIFE 2021: The 2021 Conference on Artificial Life, MIT Press Direct,
Virtual (formerly Prague), Czech Republic, 2021. doi:10.1162/isal_a_00396.

[6] T. Landgraf, D. Bierbach, A. Kirbach, R. Cusing, M. Oertel, K. Lehmann, U. Greggers,
R. Menzel, R. Rojas, Dancing honey bee robot elicits dance-following and recruits foragers,
2018. URL: https://arxiv.org/abs/1803.07126.

[7] D. Lazic, T. Schmickl, Can robots inform a honeybee colony’s foraging decision-making?,
in: Proceedings of the ALIFE 2021: The 2021 Conference on Artificial Life, MIT Press
Direct, Virtual (formerly Prague), Czech Republic, 2021. doi:10.1162/isal_a_00397.

[8] T. Schmickl, K. Crailsheim, Costs of environmental fluctuations and benefits of dynamic
decentralized foraging decisions in honey bees, in: C. Anderson, T. Balch (Eds.), The 2nd
International Workshop on the Mathematics and algorithms of Social Insects Proceedings,
Georgia Institute of Technology, Atlanta, GA, 2003, pp. 145–152.

[9] H. Mellmann, B. Schlotter, L. Musiolek, V. V. Hafner, Anticipation as a mechanism for
complex behavior in artificial life, in: Proceedings of the ALIFE 2020: The 2020 Conference
on Artificial Life, MIT Press Direct, Virtual (formerly Prague), Czech Republic, 2020, pp.
157–159. doi:10.1162/isal_a_00314.

[10] J. Kazil, D. Masad, A. Crooks, Utilizing python for agent-based modeling: The mesa
framework, in: R. Thomson, H. Bisgin, C. Dancy, A. Hyder, M. Hussain (Eds.), Social,
Cultural, and Behavioral Modeling, volume 12268 of Lecture Notes in Computer Science,
Springer, Cham, 2020, pp. 308–317. doi:10.1007/978-3-030-61255-9_30.

[11] M. A. Becher, V. Grimm, J. Knapp, J. Horn, G. Twiston-Davies, J. L. Osborne, Beescout: A
model of bee scouting behaviour and a software tool for characterizing nectar/pollen land-
scapes for beehave, Ecological Modelling 340 (2016) 126–133. doi:10.1016/j.ecolmodel.
2016.09.013.

[12] S. Tisue, U. Wilensky, Netlogo: A simple environment for modeling complexity, in:
C. Anderson, T. Balch (Eds.), The International Conference on Complex Systems, Boston,
MA, USA, 2004.

[13] S. Luke, C. Cioffi-Revilla, L. Panait, K. M. Sullivan, G. Balan, Mason: A multi-agent
simulation environment, SIMULATION 81 (2005) 517–527.

[14] M. A. Becher, V. G. P. Thorbek, J. Horn, P. J. Kennedy, J. L. Osborne, Beehave: a systems
model of honeybee colony dynamics and foraging to explore multifactorial causes of colony
failure, Journal of Applied Ecology 51 (2014) 470–482. doi:10.1111/1365-2664.12222.

[15] T. Seeley, S. Camazine, J. Sneyd, Collective decision-making in honey bees: How colonies

111

choose among nectar sources, Behavioral Ecology and Sociobiology 28 (1991) 277–290.
doi:10.1007/BF00175101.

112

Extended Abstract: A Novel Mobile App for the Next
Generation of Beekeepers
Eugen Puzynin1, Heinrich Mellmann1 and Verena V. Hafner1

1Humboldt University of Berlin, Unter den Linden 6, Berlin, 10117, Germany

Abstract
In this extended abstract, the authors report the ongoing work on a new mobile app for beekeepers. It is
very important for beekeepers - especially for those who are in search of new locations for their beehives
- to know the current situation in the immediate vicinity. This work presents a mobile application
suitable for beekeepers to view weather and air quality data and, in particular, what people in the
nearby area have annotated.

Keywords
Beekeeping, Mobile App, Prototype, HIVEOPOLIS

1. Introduction

Beekeepers pollinate many crop plants with their bees. Most important crops depend to some
degree of pollination from the most important species for crop pollination: the western honey
bee. Honey production is also an important source of income in many rural communities
[1]. Often forgotten are the wild bees, who are responsible for pollinating garden plants and
wildflowers. Honey bees are linked to the spread of diseases to wild pollinators via shared
flowers. They can also out-compete with native pollinators for resources and food [2]. Other
modern challenges for bees are pesticides, parasites, climate change and a lack of flowers [3].
According to the World Health Organization, an estimated seven million people die each year
from air pollution [4]. Since bees rely on their sense of smell to identify different flowers, air
pollution is affecting them too. Air pollution masks the scent molecules from plants. This makes
bees forage longer leading them to become ineffective pollinators because of the decreased
reproductive output and the amount of pollen flow in flowering plants [5]. Another study
observed a reduction in pollinator survival as well as significant molecular and physiological
changes [6]. In order to fight these challenges, the authors created a prototype in the form of a
mobile app. Beekeepers should monitor climate and air conditions to keep bees and themselves
healthy. Managed honey bee hives should not be placed in protected areas, where a risk would
exist of wild bees being driven away or attacked. More plants are required to address the plant
shortage and help wild insects. The map-based app uses current technologies, with which
non-beekeepers can help beekeepers by marking spots on the map. The whole utilization

CS&P 2021: 29th International Workshop on Concurrency, Specification and Programming
" puzynine@informatik.hu-berlin.de (E. Puzynin); mellmann@informatik.hu-berlin.de (H. Mellmann);
hafner@informatik.hu-berlin.de (V. V. Hafner)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

113

process is simplified for all users with features such as identifying plant species via photos and
showing which plants are suitable for bees.

The development of a new app is part of the HIVEOPOLIS project [7, 8]. HIVEOPOLIS intends
to provide honeybee colonies with technology (internet, databases, satellite data and robots)
that would otherwise be unavailable to them.

2. Methodology

The goals of developing the app consists of three main components:

1. An interactive augmented map shows key elements of weather and air quality for bee-
keepers.

2. Users must be able to make inputs and help beekeepers with it.
3. It should be simple and swiftly to use.

The application was developed as a native iOS app in the programming language Swift with
the integrated development environment Xcode. One reason mobile app development was
preferred is access to the camera for various functions, such as photographing plants for plant
identification. Furthermore, GPS data is required in case a user of the app wants to get directions
to the next destination of his hives. Apple’s MapKit was used natively for the app’s interactive
map. This allows users to see the map as a satellite view in 2D or 3D. OpenWeather provides
with its API the current and forecast weather as well as air pollution data for all coordinates.
The air pollution values are currently based on the European Air Quality Index. A pretrained
convolutional neural network was used for the flower recognition function: Oxford’s 102 Flower
Dataset with 102 categories, each 40 - 200 images, allows to take a picture of any flower and
it tries to recognise the flower’s name [9]. Users can have their own account with email and
password, which are stored and encrypted on Google’s Firestore servers. The cloud database is
instantly accessible, which means saved data is instantly available for other users. For example,
registered users are able to send chat messages and save annotations. An API from Wikipedia
was used to retrieve flower data, allowing users to look up information about any flower.

3. Results and Discussion

A preliminary user evaluation had been created as an online survey. A total of 26 people
participated in it, 15 were beekeepers and 11 were non-beekeepers. They assisted in revising
the design and generated ideas for new functionalities. After this evaluation an alpha test was
made. Sergey Petrov from the company Pollenity asked 22 Bulgarian beekeepers to test the app
on an iPhone and give feedback. Each member of the group spent between 1 and 10 minutes
testing the app. The methodology of the test included a short verbal presentation and a video
tutorial on how to use the app. In the following pictures, you can see the app. Figure 1 depicts
an impression of the app. (Left) shows markers on the map that have theoretically been set by
users. Potential beekeeping locations are depicted here, along with plants of interest to bees. For
example, a beekeeper can see where other beekeepers are in the vicinity, if they have marked a
chosen location as already been occupied by the beekeeper, and where beekeepers should pay

114

attention to the protection of wild bees. (Right) shows the current weather with temperature,
humidity, air speed, UV index, as well as the current air quality values.

Figure 1: View of the application. Left: overview with annotations. Buttons: hamburger menu with
more functions; set focus to a specific city; adding and deleting annotations. Right: Slide up menu with
current weather and pollution data. Buttons here are the search button for displaying information of
a specific plant; camera for shooting pictures; tomorrow for future weather and air quality; current for
weather and air quality at the moment.

4. Conclusion

The preliminary user evaluation and the alpha test confirmed that such an app could be of interest
to beekeepers and environmentalists. The next steps would be to define some corrections to
the design and then test it again as a beta version to get further constructive feedback. Further
evaluation is needed to collect more meaningful reactions and constructive criticism from
beekeepers to be able to improve the app. Current ideas for improvements are: The most
important point is the implementation of Android. Another important point is localization,
so that the app works all over the world without language barriers. The authors are also
considering how gamification can be integrated to motivate users and bind them to the app.
Furthermore, there are still a lot of functions that could be implemented. For example, the

115

flowering times of the respective plants, so that beekeepers know when the flowers are usable
for them. And uploadable images so that users can see more of what the location looks like.
After some testing and improvements, the app could be made available to the public.

Acknowledgments

This work was supported by the EU H2020 program under grant agreement No. 824069
(HIVEOPOLIS).

References

[1] Ashley N. Mortensen at el. European honey bee apis mellifera linnaeus and subspecies
(insecta: Hymenoptera: Apidae). UF/IFAS Extension, EENY568, August 2013

[2] Jonas Geldmann and Juan P. González-Varo. Conserving honey bees does not help wildlife.
Science, 359(6374):392–393, January 2018

[3] Dave Goulson at el. Bee declines driven by combined stress from parasites, pesticides, and
lack of flowers. Science, 347(6229), March 2015

[4] Air pollution in the Western Pacific https://www.who.int/westernpacific/health-topics/
air-pollution Last access 1 July 2021

[5] Quinn S. McFrederick et al. Air pollution modifies floral scent trails. Atmospheric Environ-
ment, 42(10):2336–2348, March 2008

[6] Geetha G. Thimmegowda et al. A field-based quantitative analysis of sublethal effects of
air pollution on pollinators. Proceedings of the National Academy of Sciences, 117(34),
August 2020

[7] Futuristic Beehives For A Smart Metropolis https://cordis.europa.eu/project/id/824069 Last
access 1 July 2021

[8] Asya Ilgün et al. Bio-Hybrid Systems for Ecosystem Level Effects in Proceedings of the
Artificial Life Conference 2021 (ALIFE 2021) (to appear)

[9] Nilsback, M-E. and Zisserman, A. Automated flower classification over a large number of
classes Proceedings of the Indian Conference on Computer Vision, Graphics and Image
Processing (2008) https://www.robots.ox.ac.uk/~vgg/data/flowers/102/

116

Efficient Machine Learning Methods
over Pairwise Space (keynote)
Hung Son Nguyen

University of Warsaw

Keywords
Rough sets, Support Vector Machine, Factorization Machine, Distance Metric Learning, Context-Aware
Recommendation

Extended Abstract

In recent years many machine learning concepts and methods were developed on the set of
pairs of objects. In this paper, the set of all pairs of objects is called the pairwise space. Let us
notice that if the set of objects 𝒳 = {x1,x2, . . . ,x𝑛} consists of 𝑛 instances, then the pairwise
space contains 𝑂(𝑛2) pairs. Thus why the straightforward implementations of those methods
are not applicable for big data sets with millions of objects.

The main concepts in rough set theory (RS) such as reducts, lower and upper approximations,
decision rules or discretizations have been defined in term of the discernibility matrix, which
is a form of the pairwise space [1]. For example, in minimal decision reduct problem, we are
looking for the minimal subset of features that preserves the discernibility between objects
from different decision classes [2].

Support Vector Machine (SVM) is also a classification method described as an optimization
problem over the pairwise space [3]. The initial idea of looking for the linear classifier with
the maximal margin were transformed into the problem of looking for a set of coefficients
𝛼 = (𝛼1, 𝛼2, · · · , 𝛼𝑛) related to objects that maximizes an objective function

𝑊 (𝛼) =
∑︁

𝑖

𝛼𝑖 −
1

2

∑︁

𝑖,𝑗

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝐾(𝑥𝑖, 𝑥𝑗).

defined on the set of dot products of all pairs of objects. In the above formula 𝑦𝑖 denotes the
decision class of the object x𝑖 and 𝐾 is a kernel function chosen by the user.

Distance Metric Learning (DML) [4] is a machine learning discipline that looks for the best
distance function (also divergence or similarity) from certain available information about
similarity measures between different pairs or triplets of data. These similarities are determined

29th International Workshop on Concurrency, Specification and Programming (CS&P’21)
$ son@mimuw.edu.pl (H. S. Nguyen)
� 0000-0002-3236-5456 (H. S. Nguyen)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

117

by the sets

𝑆 = {(x𝑖,x𝑗) ∈ 𝒳 × 𝒳 : x𝑖 and x𝑗 are similar.}
𝐷 = {(x𝑖,x𝑗) ∈ 𝒳 × 𝒳 : x𝑖 and x𝑗 are not similar.}
𝑅 = {(x𝑖,x𝑗 ,x𝑙) ∈ 𝒳 × 𝒳 × 𝒳 : x𝑖 is more similar to x𝑗 than to x𝑙.}

With these data and similarity constraints, the problem to is to look for those distance functions
(belonging to a predefined family of distances 𝒟) that minimize a certain loss function ℓ
determined on the base of the sets 𝑆,𝐷 and 𝑅. In other words, the objective of DML is to solve
the optimization problem

min
𝑑∈𝒟

ℓ(𝑑, 𝑆,𝐷,𝑅)

In recent years, many efficient implementations for the mentioned above disciplines have
been proposed and developed. Most of them are based either on the approximation idea [5], [6]
or deep learning [7].

Context aware recommendation systems is another machine learning concept that were
defined on the pairwise space which was in fact defined as a regression problem over the set of
transaction pairs [8].

In this talk we compare different techniques for the mentioned above machine learning
concepts and we will pay an attention on application of factorization machine (FM). This
method has been successfully applied for context aware recommendation systems [9]. The
main idea is to transform the optimization problem established on the pairwise space into
an equivalent problem where the time complexity for each iteration has been reduced from
quadratic time into linear time [10]. We will show that factorization machine can be also applied
for some problems in rough set theory, SVM or distance metric learning.

References

[1] Z. Pawlak, Rough sets, International Journal of Information and Computer Sciences 11
(1982) 341–356.

[2] Z. Pawlak, A. Skowron, Rudiments of rough sets, Information Sciences 177 (2007) 3–27.
[3] C. Cortes, V. Vapnik, Support vector networks, Machine Learning 20 (1995) 273–297.
[4] J.-L. Suárez, S. García, F. Herrera, A tutorial on distance metric learning: Mathematical

foundations, algorithms, experimental analysis, prospects and challenges, Neurocomputing
425 (2021) 300–322.

[5] H. S. Nguyen, Approximate Boolean Reasoning: Foundations and Applications in Data
Mining, Springer-Verlag, Berlin, Heidelberg, 2006, p. 334–506.

[6] T. Joachims, Learning to Classify Text Using Support Vector Machines – Methods, Theory,
and Algorithms, Kluwer/Springer, 2002.

[7] P. H. Barros, F. Queiroz, F. Figueredo, J. A. dos Santos, H. S. Ramos, A new similarity
space tailored for supervised deep metric learning, CoRR abs/2011.08325 (2020). URL:
https://arxiv.org/abs/2011.08325. arXiv:2011.08325.

118

[8] S. Rendle, Z. Gantner, C. Freudenthaler, L. Schmidt-Thieme, Fast context-aware rec-
ommendations with factorization machines, in: Proceedings of the 34th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
’11, Association for Computing Machinery, New York, NY, USA, 2011, p. 635–644. URL:
https://doi.org/10.1145/2009916.2010002. doi:10.1145/2009916.2010002.

[9] X. Xin, B. Chen, X. He, D. Wang, Y. Ding, J. Jose, Cfm: Convolutional factorization
machines for context-aware recommendation, in: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19, International Joint
Conferences on Artificial Intelligence Organization, 2019, pp. 3926–3932. URL: https:
//doi.org/10.24963/ijcai.2019/545. doi:10.24963/ijcai.2019/545.

[10] S. Rendle, Factorization machines with libfm, ACM Trans. Intell. Syst. Technol. 3 (2012)
57:1–57:22. URL: http://doi.acm.org/10.1145/2168752.2168771. doi:10.1145/2168752.
2168771.

119

Influence of Data Dimension Reduction, Feature Scaling and
Activation Function on Machine Learning Performance

Grzegorz Słowiński

University of Technology and Economics, ul. Jagiellońska 82f, 03-301 Warsaw, Poland

Abstract

A dataset containing over 13k samples of dry beans geometric features is being
analysed using machine learning (ML) and deep learning (DL) techniques with
the goal to automatically classify the bean specie. The obtained geometrical data
has quite a lot redundancy. Many features are strongly correlated. This work
analyses the influence of data dimension reduction (DDR) (elimination of excess
strongly correlated features) and features scaling (FS), often called
normalization, on the machine learning performance (measured in terms of
accuracy and approximate training time). Additionally also an influence of
activation function (sigmoid vs. ReLU) on artificial neural network performance
has been checked.

Keywords 1

machine learning, deep learning, data dimension reduction, features scaling, activation
function

1. Introduction

Classification of dry beans is of some economic importance. Manual classification is labour
intensive, etc. Over 13 k samples of dry beans of 7 various species were photographed and their
geometry was measured via computer vision techniques in [1]. Then the set was analysed via several
machine learning (or data science) and deep learning (or artificial neural network) techniques. The
overall accuracy obtained was 87.92-93.13%, depending on technique used.

The dataset used in [1] has been published in the UCI machine learning repository [2]. In this
work, a collection of beans was used as material for investigation how machine learning process is
influenced by the following factors: 1) data dimension reduction, 2) features scaling (or data
normalization) and 3) in case of neural networks, how their performance depends on activation
function used (ReLU vs. sigmoid).

The research question examined in this work is: How do data dimension reduction, feature scaling
and activation function influence machine learning performance? The above question is related to
concurency, specification and programming in the following way. Among topics of CS&P 2021 one
can find: Model checking and testing - this work checks different ML models, knowledge discovery
and data mining - machine learning belong to this field, soft computing - artificial neural networks are
are categorized as a kind of soft-computing.

1.1. Data Dimension Reduction

129th International Workshop on Concurrency, Specification and Programming (CS&P'21)
EMAIL: grzegorz.slowinski@uth.edu.pl
ORCID: 0000-0001-9770-5063

© 2021 Copyright for this paper by its author.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org) CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

120

In the work [1] data dimension has not been reduced, although many features are strongly
correlated. This work investigates the effect of data dimension reduction on performance (computing
time and accuracy).

1.2. Feature scaling

In the handbook [4], page 72 Aurelien Geron, states: "One of the most important transformations
you need to apply to your data is feature scaling. With few exceptions, Machine Learning algorithms
don’t perform well when the input numerical attributes have very different scales." This work verifies
this statement and investigates what ML methods really needs feature scaling.

1.3. Activation Function

In work [1] ANN with sigmoid activation in hidden layers has been applied. This work
investigates how ANN performance depends on activation function used. Two activation function are
compared: ReLU and sigmoid.

2. Tools

The entire analysis was done using Python and its ML frameworks: numpy, pandas, matplotlib,
seaborn, scikit-learn and keras. Google Colab a free cloud version of jupyter notebook was used. The
reader can find the Python scripts under link [3]. Parameters of compute engine used were: Intel(R)
Xeon(R) CPU @ 2.30GHz, 12,69 GB RAM, no graphical processing unit (GPU) acceleration.
Majority of experiments performed were shallow learning that do not need GPU support. As the dry
beans dataset is relatively simple, the artificial neural network (ANN) applied was also rather simple
and GPU support was not crucial for ANN training. Training times were in range from milliseconds to
a few minutes.

3. Data

The dataset under study consists of 13611 samples. A sample amounts to 16 geometrical features
and a label identifying the specie of the bean. The species are as follows: Barbunya, Bombay, Cali,
Dermason, Horoz, Seker, and Sira. The features are: Area, Perimeter, MajorAxisLength,
MinorAxisLength, AspectRatio, Eccentricity, ConvexArea, EquivDiameter, Extent, Solidity,
Roundness, Compactness, ShapeFactor1, ShapeFactor2, ShapeFactor3, and ShapeFactor4. A detailed
explanation how the features were calculated is presented in [1].

Table 1.
Correlation between beans features

Area Extent Solidity

Area 1.000 0.967 0.932 0.952 0.242 0.267 1.000 0.985 0.054 -0.197 -0.358 -0.268 -0.848 -0.639 -0.272 -0.356

Perimeter 0.967 1.000 0.977 0.913 0.385 0.391 0.968 0.991 -0.021 -0.304 -0.548 -0.407 -0.865 -0.768 -0.408 -0.429

MajorAxisLength 0.932 0.977 1.000 0.826 0.550 0.542 0.933 0.962 -0.078 -0.284 -0.596 -0.568 -0.774 -0.859 -0.568 -0.483

MinorAxisLength 0.952 0.913 0.826 1.000 -0.009 0.020 0.951 0.949 0.146 -0.156 -0.210 -0.015 -0.947 -0.471 -0.019 -0.264

AspectRatio 0.242 0.385 0.550 -0.009 1.000 0.924 0.243 0.304 -0.370 -0.268 -0.767 -0.988 0.025 -0.838 -0.979 -0.449

Eccentricity 0.267 0.391 0.542 0.020 0.924 1.000 0.269 0.319 -0.319 -0.298 -0.722 -0.970 0.020 -0.860 -0.981 -0.449

ConvexArea 1.000 0.968 0.933 0.951 0.243 0.269 1.000 0.985 0.053 -0.206 -0.362 -0.270 -0.848 -0.641 -0.274 -0.362

EquivDiameter 0.985 0.991 0.962 0.949 0.304 0.319 0.985 1.000 0.028 -0.232 -0.436 -0.328 -0.893 -0.713 -0.330 -0.393

Extent 0.054 -0.021 -0.078 0.146 -0.370 -0.319 0.053 0.028 1.000 0.191 0.344 0.354 -0.142 0.238 0.348 0.149

Solidity -0.197 -0.304 -0.284 -0.156 -0.268 -0.298 -0.206 -0.232 0.191 1.000 0.607 0.304 0.153 0.344 0.308 0.702

Roundness -0.358 -0.548 -0.596 -0.210 -0.767 -0.722 -0.362 -0.436 0.344 0.607 1.000 0.768 0.230 0.783 0.763 0.472

Compactness -0.268 -0.407 -0.568 -0.015 -0.988 -0.970 -0.270 -0.328 0.354 0.304 0.768 1.000 -0.009 0.869 0.999 0.484

ShapeFactor1 -0.848 -0.865 -0.774 -0.947 0.025 0.020 -0.848 -0.893 -0.142 0.153 0.230 -0.009 1.000 0.469 -0.008 0.249

ShapeFactor2 -0.639 -0.768 -0.859 -0.471 -0.838 -0.860 -0.641 -0.713 0.238 0.344 0.783 0.869 0.469 1.000 0.873 0.530

ShapeFactor3 -0.272 -0.408 -0.568 -0.019 -0.979 -0.981 -0.274 -0.330 0.348 0.308 0.763 0.999 -0.008 0.873 1.000 0.484

ShapeFactor4 -0.356 -0.429 -0.483 -0.264 -0.449 -0.449 -0.362 -0.393 0.149 0.702 0.472 0.484 0.249 0.530 0.484 1.000

Peri-
meter

Major
Axis

Length

Minor
Axis

Length
Aspect
Ratio

Eccentri
-city

Convex
Area

Equiv
Diameter

Round-
ness

Compact
-ness

Shape
Factor 1

Shape
Factor 2

Shape
Factor 3

Shape
Factor 4

121

Correlation analysis (see table 1) has shown that several of the features are strongly (positively or
negatively) correlated. This is due to the fact that basically all of them are kind of geometric
measures. In the original work [1] the issue of strong correlation between features has not been
addressed. Generally strongly (over 0,9) features bring little extra information, so its elimination
should reduce computational complexity (speed up training) with little if any loss in classification
accuracy.

It is also sometimes suggested that feature scaling (often called normalization) can improve
performance [4], pages 72-73. This is also investigated. To give a brief visualisation of beans dataset,
the pair-plot with selected features (less correlated) has been done, see figure 1.

Figure 1: Pair-plot of selected (low corelated) bean features.

4. Shallow learning results

The methods tried were: Naive Bayes Classifier, Decision Tree, Random Forest, Support Vector
Classifier.

4.1.Naive Bayes Classifier

Results for Gaussian naive Bayes classifier are shown in table 2. One can see that DDR or FS has
small effect on training time. Using DDR or FS (or both) significantly increased accuracy from
77.23% to 89.83-91.00%.

122

Table 2.
Gaussian naive Bayes classifier performance

Data Accuracy Approx. training time

Full, not scaled 77.23% 18.2 ms
Dimension reduced, not scaled 91.00% 16.3 ms

Full, scaled 89.83% 17.0 ms
Dimension reduced, scaled 90.78% 15.8 ms

4.2.Decision tree

Results for decision tree are shown in table 3. Decision tree applied was limited to 16 leaf nodes
and maximum depth of 5. One can see that FS has no effect on accuracy and little effect on training
time. This probably connected with the fact that DT analyses one feature at the time, so it not cares
what is the ratio of specific feature range to other features. DDR shorten training time with limited
accuracy decrease.

Table 3.
Decision tree classifier performance

Data Accuracy Approx. training time

Full, not scaled 88.87% 128 ms
Dimension reduced, not scaled 88.24% 71 ms

Full, scaled 88.87% 129 ms
Dimension reduced, scaled 88.24% 70 ms

Decision tree is known to be sensitive for data “rotation”, see [4] p 188. DT analyses only one
feature at the time. Strongly correlated features gives little extra information, but can present
information in a slightly different manner, suitable for decision tree.

4.3.Random Forest Classifier

Results for the random forest (RF) are shown in table 4. The random forest consisted of 150 trees.
No limits (max leaves, max depth and etc.) were put on trees. One can observe that training times are
longer that for single decision tree (which is reasonable as here we have a set of decision trees). The
accuracies are high. DDR shortened training time and allowed for slightly higher accuracy (0,14-0,18
% point). This is quite interesting that although DDR slightly reduced accuracy on single tree it
improved accuracy on RF. Similarly to decision tree, SF practically has little effect on training time.

Table 4.
Random forest classifier performance

Data Accuracy Approx. training time

Full, not scaled 93.06% 4.69 s
Dimension reduced, not scaled 93.24% 2.69 s

Full, scaled 93.10% 4.79 s
Dimension reduced, scaled 93.24% 2.59 s

4.4.Support Vector Classifier

Results for support vector classifier (SVC) is shown in table 5. Polynomial kernel has been used.
Generally SVC is much more “heavier” model than gaussian classifier, decision tree or random forest.
Training times much longer. One can see that DDR or FS has small effect on SVC accuracy. DDR on

123

not scaled features reduced training time. Feature scaling significantly increased training time and
increased accuracy a little (about 1% point). The longest training time was observed for DDR and SF
data. The training time was 9 times longer than for DDR and not SF data. The author cannot
explained this effect.

Table 5.
Support vector classifier performance

Data Accuracy Approx. training time

Full, not scaled 91.81% 42 s
Dimension reduced, not scaled 91.81% 29 s

Full, scaled 93.24% 88 s
Dimension reduced, scaled 92.95% 266 s

5. Artificial neural network

For an artificial neural network (ANN) the data needs additional treatment. First, the names of
bean species were labelled with numbers and then these numbers 0-6 were codded as so called ”one-
hot”. The reason of using ”one-hot” encoding is well explained for example in [5] p. 376 or [6] pp.
190-194.

Three experiments has been performed to analyse: 1) influence of data dimension reduction,
2) influence of features scaling and 3) influence of activation function (sigmoid vs. ReLU). The ANN
architecture was kept similar (as much as possible) to described in [1]. All ANNs had 3 hidden layers
with 17, 12, 3, neurons respectively. However here ReLU function has be used as “default” option.
Output layer consisted of 7 neurons with softmax activation function – one for each class. Generally
training lasted for 16 epochs. However, as it was obvious that ANN with sigmoid activation is
undertrained, this net was trained for 48 epochs. The training process is presented in figure 2. The
performance summary is presented in table 6.

Table 6.
ANNs performance, 17-12-3 architecture, Adam optimiser, 16 epochs

Data Activation
function in

hidden layers

Epochs of
training

Approx. training
time

Accuracy

16 features, scaled ReLU 16 14 s 92.66%
8 features, scaled ReLU 16 8 s 93.24%
8 features, not scaled ReLU 16 9 s 26.74%

8 features, scaled sigmoid 48 41 s 88.14%

It can be visible that:
1. feature scaling (or data normalisation) is very important for ANN’s. An attempt to train

without prior data scaling failed. Only 55,82% accuracy has been obtained. Perhaps bigger
network can manage this issue by rescaling data in a few first layers, but it will influence
training time and accuracy.

2. ReLU works significantly better than sigmoid function as an activation function. ReLU
network trains faster and reaches better accuracy.

3. Data dimension reduction shortens training time nearly by half and increases accuracy by
about 0,58 % point.

124

Figure 2: Training of different ANNs

6. Conclusions

Influence of data dimension reduction, data scaling (or normalisation) and activation function has
been investigated. The influence depends on machine learning technique used.

Generally data dimension reduction reduces training time with rather limited influence on accuracy
Data scaling is a must in case of artificial neural network. Omitting data scaling decreased accuracy
from about 93% to about 56%. In case of shallow learning techniques its influence is smaller, it
sometimes help a little with accuracy, sometimes not.

Generally scaling had no effect on decision tree and random forest performance. In case of support
vector classifier scaling resulted in huge training time increase. Author cannot explain this effect.

The highest accuracy observed was 93,24%. It was obtained 3 times with: 1) random forest with 8
features (scaled and not scaled), 2) ANN, 8 features, scaled and 3) SVC, 16 features, scaled. It is quite
intriguing that exactly the same, maximum result repeated 3 time.

7. References

[1] Murat Koklu, Ilker Ali Ozkan, Multiclass classification of dry beans using computer vision and
machine learning techniques, Computers and Electronics in Agriculture 174 (2020) 105507

[2] Dry beans dataset at UCI repository: https://archive.ics.uci.edu/ml/datasets/Dry+Bean+Dataset,
access 23.06.2021

[3] Colab notebook containing computation scripts for this work:
https://colab.research.google.com/drive/1l5lH1QgesDX8CbbkqcnmlbqwcXfksGQB?usp=sharing

[4] Aurelien Geron, Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow, O’Reilly,
2019

[5] Jake VanderPlass, Python Data Science Handbook, O’Reilly, 2017
[6] Francois Chollet, Deep Learning with Python, Manning Publications, 2018

125

Sorting by Decision Trees with Hypotheses (extended
abstract)
Mohammad Azad1, Igor Chikalov2, Shahid Hussain3 and Mikhail Moshkov4

1Jouf University, Sakaka 72441, Saudi Arabia
2Intel Corporation, 5000 W Chandler Blvd, Chandler, AZ 85226, USA
3Institute of Business Administration, University Road, Karachi 75270, Pakistan
4King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Abstract
In this paper, we consider decision trees that use both queries based on one attribute each and queries
based on hypotheses about values of all attributes. Such decision trees are similar to ones studied in
exact learning, where not only membership but also equivalence queries are allowed. For 𝑛 = 3, . . . , 6,
we compare decision trees based on various combinations of attributes and hypotheses for sorting 𝑛
pairwise different elements from linearly ordered set.

Keywords
decision tree, hypothesis, dynamic programming, sorting

1. Introduction

Decision trees are widely used in many areas of computer science, for example, test theory
(initiated by Chegis and Yablonskii [1]), rough set theory (initiated by Pawlak [2, 3, 4]), and
exact learning (initiated by Angluin [5, 6]). These theories are closely related: attributes from
rough set theory and test theory correspond to membership queries from exact learning. Exact
learning also studies equivalence queries. The notion of “minimally adequate teacher” using
both membership and equivalence queries was discussed by Angluin in [7]. Relations between
exact learning and PAC learning proposed by Valiant [8] were considered in [5].

In [9, 10, 11], we added the notion of a hypothesis (an analog of equivalence queries) to the
model considered in both rough set theory and test theory and proposed dynamic programming
algorithms for the optimization of the decision trees with hypotheses. Note that the dynamic
programming algorithms for the optimization of the conventional decision trees that do not use
hypotheses were proposed earlier [12].

In the present paper, we consider an application of the dynamic programming algorithms
from [9, 10, 11] to the study of the problem of sorting. We compare the complexity of five types
of optimal (relative to the depth and relative to the number of realizable nodes) decision trees

29th International Workshop on Concurrency, Specification and Programming (CS&P’21)
" mmazad@ju.edu.sa (M. Azad); igor.chikalov@gmail.com (I. Chikalov); shahidhussain@iba.edu.pk (S. Hussain);
mikhail.moshkov@kaust.edu.sa (M. Moshkov)
� 0000-0001-9851-1420 (M. Azad); 0000-0002-1010-6605 (I. Chikalov); 0000-0002-1698-2809 (S. Hussain);
0000-0003-0085-9483 (M. Moshkov)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

126

based on various combinations of attributes and hypotheses for sorting 𝑛 pairwise different
elements from linearly ordered set, 𝑛 = 3, . . . , 6. Results obtained for the conventional decision
trees are known – see book [12]. Results obtained for the decision trees with hypotheses are
completely new.

Note that in the present paper we follow [11] when discuss the notions related to the decision
trees with hypotheses. Complete definitions of these notions can be found in the same paper.

2. Five Types of Decision Trees and Their Optimization

Let 𝑇 be a decision table with 𝑛 conditional attributes 𝑓1, . . . , 𝑓𝑛 that have values from the
set 𝜔 = {0, 1, 2, . . .}. Rows of this table are pairwise different and each row is labeled with a
decision. For a given row of 𝑇 , we should recognize the decision attached to it. To this end,
we will use decision trees based on two types of queries. We can ask about the value of a
conditional attribute 𝑓𝑖 ∈ {𝑓1, . . . , 𝑓𝑛} on the given row. As a result, we obtain an answer of
the kind 𝑓𝑖 = 𝛿, where 𝛿 is the number in the intersection of the given row and the column 𝑓𝑖.
We can also ask if a hypothesis {𝑓1 = 𝛿1, . . . , 𝑓𝑛 = 𝛿𝑛} is true, where the numbers 𝛿1, . . . , 𝛿𝑛
belong to the columns 𝑓1, . . . , 𝑓𝑛, respectively. Either this hypothesis is confirmed or we obtain
a counterexample of the kind 𝑓𝑖 = 𝜎, where 𝑓𝑖 ∈ {𝑓1, . . . , 𝑓𝑛} and 𝜎 is a number from the
column 𝑓𝑖 that is different from 𝛿𝑖. We will say that this hypothesis is proper if (𝛿1, . . . , 𝛿𝑛) is a
row of the table 𝑇 .

We study the following five types of decision trees:

1. Decision trees based on attributes only.
2. Decision trees based on hypotheses only.
3. Decision trees based on both attributes and hypotheses.
4. Decision trees based on proper hypotheses only.
5. Decision trees based on both attributes and proper hypotheses.

As time complexity of a decision tree we consider its depth, which is equal to the maximum
number of queries in a path from the root to a terminal node of the tree. We consider the
number of realizable relative to 𝑇 nodes in a decision tree as its space complexity. A node is
called realizable relative to 𝑇 if the computation in the tree will pass through this node for some
row and some choice of counterexamples. We use the following notation:

• ℎ(𝑘)(𝑇) denotes the minimum depth of a decision tree of the type 𝑘 for 𝑇 , 𝑘 = 1, . . . , 5.
• 𝐿(𝑘)(𝑇) denotes the minimum number of nodes realizable relative to 𝑇 in a decision tree

of the type 𝑘 for 𝑇 , 𝑘 = 1, . . . , 5.

In [9] and [10], dynamic programming algorithms for the optimization of decision trees of
all five types relative to the depth and the number of realizable nodes were proposed (see also
journal extension [11] of these papers that considers additionally two cost functions: the number
of realizable terminal nodes and the number of nonterminal nodes). Note that algorithms for
the minimization of the depth and number of nodes for decision trees of the type 1 were
considered in [12] for decision tables with one-valued decisions and in [13] for decision tables
with many-valued decisions.

127

Table 1
Experimental results for the depth

𝑛 ℎ(1)(𝑇𝑛) ℎ(2)(𝑇𝑛) ℎ(3)(𝑇𝑛) ℎ(4)(𝑇𝑛) ℎ(5)(𝑇𝑛)

3 3 2 2 2 2
4 5 4 4 4 4
5 7 6 6 6 6
6 10 9 9 9 9

Table 2
Experimental results for the number of realizable nodes

𝑛 𝐿(1)(𝑇𝑛) 𝐿(2)(𝑇𝑛) 𝐿(3)(𝑇𝑛) 𝐿(4)(𝑇𝑛) 𝐿(5)(𝑇𝑛)

3 11 13 9 14 9
4 47 253 39 254 39
5 239 15,071 199 15,142 199
6 1,439 2,885,086 1,199 2,886,752 1,199

Dynamic programming optimization algorithms are applicable to medium-sized decision
tables. These algorithms first construct a directed acyclic graph (DAG) whose nodes are some
subtables of the original decision table given by conditions of the type “attribute = value”. Then
they pass through all the nodes of the DAG, starting with the simplest subtables, and for each
subtable they find the minimum value of the considered cost function.

In the present paper, we use algorithms proposed in [9, 10, 11] to study decision trees of all
five types optimal relative to the depth and relative to the number of realizable nodes for the
sorting problem. Results for decision trees of the type 1 were obtained earlier [12]. Results for
decision trees of the types 2–5 are new.

3. Problem of Sorting

In this paper, we study the problem of sorting 𝑛 elements. Let 𝑥1, . . . , 𝑥𝑛 be pairwise different
elements from a linearly ordered set. We should find a permutation (𝑝1, . . . , 𝑝𝑛) from the set
𝑃𝑛 of all permutations of the set {1, . . . , 𝑛} for which 𝑥𝑝1 < · · · < 𝑥𝑝𝑛 . To this end, we use
attributes 𝑥𝑖 : 𝑥𝑗 such that 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, 𝑖 < 𝑗, 𝑥𝑖 : 𝑥𝑗 = 1 if 𝑥𝑖 < 𝑥𝑗 , and 𝑥𝑖 : 𝑥𝑗 = 0 if
𝑥𝑖 > 𝑥𝑗 .

The problem of sorting 𝑛 elements can be represented as a decision table 𝑇𝑛 with 𝑛(𝑛 −
1)/2 conditional attributes 𝑥𝑖 : 𝑥𝑗 , 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, 𝑖 < 𝑗, and 𝑛! rows corresponding to
permutations from 𝑃𝑛. For each permutation (𝑝1, . . . , 𝑝𝑛), the corresponding row of 𝑇𝑛 is
labeled with this permutation as the decision. This row is filled with values of attributes 𝑥𝑖 : 𝑥𝑗
such that 𝑥𝑖 : 𝑥𝑗 = 1 if and only if 𝑖 stays before 𝑗 in the tuple (𝑝1, . . . , 𝑝𝑛).

For 𝑛 = 3, . . . , 6 and 𝑘 = 1, . . . , 5, we find values of ℎ(𝑘)(𝑇𝑛) and 𝐿(𝑘)(𝑇𝑛) using dynamic
programming algorithms described in [9, 10, 11] – see results in Tables 1 and 2.

From the obtained experimental results it follows that the decision trees of the types 2–5 can

128

have less depth than the decision trees of the type 1. Decision trees of the types 3 and 5 can
have less number of realizable nodes than the decision trees of the type 1. Decision trees of the
types 2 and 4 have too many nodes.

4. Conclusions

In this paper, we found the minimum depth and the minimum number of realizable nodes of
five types of decision trees for sorting 𝑛 elements, 𝑛 = 3, . . . , 6.

In the future, we are planning to study joint behavior of the depth and the number of nodes in
such decision trees. It would be also interesting to compare the complexity of optimal decision
trees of the considered five types constructed by dynamic programming algorithms and the
complexity of decision trees constructed by entropy-based greedy algorithm proposed in [14].

Acknowledgments

Research reported in this publication was supported by King Abdullah University of Science
and Technology (KAUST). The authors are indebted to the anonymous reviewers for interesting
comments.

References

[1] I. A. Chegis, S. V. Yablonskii, Logical methods of control of work of electric schemes,
Trudy Mat. Inst. Steklov (in Russian) 51 (1958) 270–360.

[2] Z. Pawlak, Rough sets, Int. J. Parallel Program. 11 (1982) 341–356.
[3] Z. Pawlak, Rough Sets - Theoretical Aspects of Reasoning about Data, volume 9 of Theory

and Decision Library: Series D, Kluwer, 1991.
[4] Z. Pawlak, A. Skowron, Rudiments of rough sets, Inf. Sci. 177 (2007) 3–27.
[5] D. Angluin, Queries and concept learning, Mach. Learn. 2 (1988) 319–342.
[6] D. Angluin, Queries revisited, Theor. Comput. Sci. 313 (2004) 175–194.
[7] D. Angluin, Learning regular sets from queries and counterexamples, Inf. Comput. 75

(1987) 87–106.
[8] L. G. Valiant, A theory of the learnable, Commun. ACM 27 (1984) 1134–1142.
[9] M. Azad, I. Chikalov, S. Hussain, M. Moshkov, Minimizing depth of decision trees with

hypotheses (to appear), in: International Joint Conference on Rough Sets (IJCRS 2021),
19–24 September 2021, Bratislava, Slovakia, 2021.

[10] M. Azad, I. Chikalov, S. Hussain, M. Moshkov, Minimizing number of nodes in decision
trees with hypotheses (to appear), in: 25th International Conference on Knowledge-Based
and Intelligent Information & Engineering Systems (KES 2021), 8–10 September 2021,
Szczecin, Poland, 2021.

[11] M. Azad, I. Chikalov, S. Hussain, M. Moshkov, Optimization of decision trees with hy-
potheses for knowledge representation, Electronics 10 (2021) 1580. URL: https://doi.org/10.
3390/electronics10131580.

129

[12] H. AbouEisha, T. Amin, I. Chikalov, S. Hussain, M. Moshkov, Extensions of Dynamic
Programming for Combinatorial Optimization and Data Mining, volume 146 of Intelligent
Systems Reference Library, Springer, 2019.

[13] F. Alsolami, M. Azad, I. Chikalov, M. Moshkov, Decision and Inhibitory Trees and Rules for
Decision Tables with Many-valued Decisions, volume 156 of Intelligent Systems Reference
Library, Springer, 2020.

[14] M. Azad, I. Chikalov, S. Hussain, M. Moshkov, Entropy-based greedy algorithm for decision
trees using hypotheses, Entropy 23 (2021) 808. URL: https://doi.org/10.3390/e23070808.

130

On Reliable Wireless Streaming of Real-time Sensor
Data
Agnieszka Boruta1, Pawel Gburzynski2 and Ewa Kuznicka1

1Warsaw University of Live Sciences, ul. Nowoursynowska 166, 02-787 Warsaw, Poland
2Vistula University, ul. Stokłosy 3, 02-787 Warsaw, Poland

Abstract
We discuss a practical problem related to wireless transmission of a continuous stream of readings from
a sensor. The problem arose in the context of a contraption devised for monitoring the behavior patterns
of working canines with the intention of spotting signs of their stress, exhaustion, or any indication of
the animal’s fatigue or discomfort that would call for the attention of its human companion. The device
has been (is being) designed primarily as a vehicle for research in collaboration between the University of
Live Sciences and Vistula University. The point we are trying to make is this paper is that tiny embedded
systems aimed at specific applications within the realm of the so-called Internet of Things (IoT) come
out best when built following a “holistic” approach. By “holistic” we mean taking into account, from
the very bottom, the idiosyncratic aspect of the application instead of blindly relying on ready, layered,
standardized, library solutions. In addition to reducing the footprint of the application, and enabling it
to run in a cheaper and resource-frugal device, such an approach also translates into better performance.
With the right selection of tools, it may in fact speed up the development process while resulting in a
better quality of the product.

Keywords
wireless communication, remote sensing, wireless telemetry, streaming

1. The context

This paper deals with a subset of the technical aspects of a wider project aiming at researching
simple and reliable automated methods for assessing the well-being of working dogs, including
service dogs (military, police, disaster-response) as well as assistance dogs (guide, therapy).
While the goals of our research probably need no long arguments in defense of their compas-
sionate motivation, there are also solid remunerative reasons why an effective assessment of the
animal’s “quality” in providing its service matters. The dog training process is lengthy, complex,
and expensive [1, 2] and good quality service/assistance dogs are extremely valuable [3, 4]. This
stimulates studies along two lines: (1) to establish reliable criteria for early assessment of a dog’s
suitability for a particular kind of work/service [5, 6, 7, 8]; (2) to make sure that the animal is
well taken care of and, in particular, any problems related to its work stress and generally health
are quickly detected, diagnosed, and addressed [9, 10]. The latter issue can be reformulated as

29th International Workshop on Concurrency, Specification and Programming (CS&P’21)
Envelope-Open agnieszka_boruta@sggw.edu.pl (A. Boruta); p.gburzynski@vistula.edu.pl (P. Gburzynski);
ewa_kuznicka@sggw.edu.pl (E. Kuznicka)
Orcid 0000-0002-3471-025X (A. Boruta); 0000-0002-1844-6110 (P. Gburzynski); 0000-0002-3760-1622 (E. Kuznicka)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

131

that of an effective communication in the animal-to-human direction [11], as opposed to the
more popular direction inherent in dog training.

While anomalies in a dog’s behavior indicative of deficiencies in its well-being can be spotted
by an expert human (veterinarian, behaviorist) through direct observation, our primary interest
is in harnessing to this task sensing devices that, ideally, should be able to detect such problems
automatically and signal them to the human supervisor. The issue can be viewed as falling under
themore general domain of sensor-based diagnostics, e.g., similar to taking and interpreting ECG
readings [12]. While it is obviously possible to subject the animal to extensive and authoritative
veterinary assessments, including tests and sensor data collection interpreted by a human expert,
we are interested in completely automated monitoring carried out by an inconspicuous and
(basically) maintenance-free device being (basically) unnoticeable by the animal. Such a device,
a wearable Tag, would be permanently carried by the dog, e.g., attached to a collar, and would
convey wirelessly sensor data to a nearby access point for automated interpretation [13, 14].

The unobtrusiveness premise of the sensing/monitoring device trades off against the overt
information content of the data that it can possibly collect. For example, it may seemworthwhile
to try to obtain an EKG/ECG chart of the animal, which is a valuable source of information
about the heart activity. One can expect such a chart to reasonably easily translate into a
representation of the dog’s tiredness or stress. While there exist experimental techniques
for collecting this kind of data through “wearable” sensors [15], they overtax our premise by
requiring direct access to the animal’s skin. Even the less ambitious task of taking reliable heart
rate without skin contact proves challenging [16].

Our long-term goal is to investigate how much one can accomplish with a completely
unobtrusive device, requiring no skin contact and, preferably, no rigid attachment to the
animal (in a specific position or place). The most natural sensor to try in this context is
the Inertial Measurement Unit (IMU) being a combination of an accelerometer, a gyro, and a
compass. Previous studies have reported various degrees of success in using the sensor (most
notably the accelerometer component) for diagnosing various behavioral anomalies/problems
in dogs [10, 17, 18]. We want to establish criteria for the classification of IMU data into simple
signals indicative of some threshold levels of the animal’s well-being in relation to its level of
fatigue or stress that can be easily communicated to the human companion. The next step will
be to built an actual practical device and application based on the outcome of our studies.

2. The setup

Our end goal being to fabricate a practically useful device, it makes sense to start with a view
of the target application in mind. Ideally, we should use the same hardware for the experiments
and for the final application. As the classification of the animal’s activity patterns will be carried
out based on the indications of an IMU, the embodiment of the sensor (the weight of the device
and the mode of its attachment to the animal) is likely to matter because of its own (inherent)
inertia component which will tend to influence the readings. This aspect of the project makes it
similar to one of our earlier endeavors [19] where a series of research experiments carried out
with an IMU-based sensor provided data to drive the design of a classification algorithm that
could be subsequently implanted into the same device to a more practical end.

132

Having agreed that the experimental device should be identical to the target one, we still
have to understand that the experimental version of the application (the software run by the
device) is going to be drastically different from its target version. The role of the experiments is
basically raw data collection. We want to amass a large amount of sensor readings, taken at the
maximum rate that we can afford, from various representative animals acting under controllable
conditions where experts can annotate the collected data with authoritative labels indicative of
the dog’s state. That data will be later used off-line to search for patterns that can guide the
classification algorithms to be applied on the data collected by the target incarnation of the
device. That part of the research methodology is beyond the scope of the present paper; we
merely want to clarify the technical requirements for the experimental guise of the application.

The nature of the experiments, demanding that the animals act within environments ap-
pearing as close to their natural work conditions as possible, is an additional argument for
the experimental devices being identical to the target ones, and it obviously precludes wired
connectivity of the devices to external equipment. The footprint of the target device makes it
impossible to store large volumes of data directly on it. Besides, the data must be annotated
in real time, which makes it natural to use an external computer (a laptop or a tablet) for the
actual collection and simultaneous annotation. Therefore, the sensor device is going to stream
its readings wirelessly to the external computer. The streaming protocol is the aspect of the
application discussed in the remainder of this paper.

The device used for data collection (and envisioned for the target application) is the CC1350
SensorTag1 manufactured by Texas Instruments and featuring an ARM-based CC1350 microcon-
troller [20]. The SensorTag comes equipped with a number of sensors including the MPU9250
IMU by TDK InvenSense.2 The complete device weights ca. 20 g (including a CR 2032 battery)
and its dimensions are 44×32×6mm. When attached to a dog’s collar, it is not more obtrusive
than a (slightly oversized) name tag.

The experimental setup consists of a pair of CC1350-based devices, one of them being the
Tag worn by the dog, the other a CC1350 LaunchPad,3 dubbed the Peg, connected over USB to
the computer and acting as the RF access point (data sink) for the Tag. While the RF module of
CC1350 can be configured to operate in Bluetooth mode, thus eliminating the need for a special
access point, we opt for the so-called proprietary mode of the radio which gives us access to
the raw channel. We prefer to circumvent the Bluetooth standard to: 1) increase the range of
communication (to provide for a larger separation between the animal and the access point),
2) implement our private reliability scheme to increase the delivery fraction of the collected
data. The proprietary mode operates within the 915 MHz ISM band offering parameterizable
transmission power up to 14 dBm and (raw) transmission rates up to 500 kbps. Data exchanged
over the RF channel is organized into packets with the maximum packet length (practically)
limited to 60 bytes. The Bluetooth capability of the device will become handy in the target
application where the device will be able to communicate directly with a smartphone. The
essential classification will then be carried out in the Tag [19], so there will be no need for
reliable streaming of large volumes of readings to the access point.

1https://dev.ti.com/cc1350stk
2https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/
3http://dev.ti.com/launchxl-CC1350

133

3. The problem

In its most general formulation, independent of the hardware and application context, the
problem is that of implementing reliable communication across an unreliable channel. We deal
with an asymmetric link where the Tag continuously sends a stream of data to the Peg. Ideally,
we would like all the data generated by the Tag to (eventually) reach the Peg, in the proper
order, such that the complete, timed, and annotated stream of sensor readings produced by the
Tag is stored at the collection computer.

Figure 1: The channel model

Standard solutions to this problem involve a feedback channel operating in the Peg-to-Tag
direction, as shown in Figure 1. The simplest of them has been known as the Alternating
Bit Protocol [21, 22] and consists in explicitly acknowledging every single packet received by
the Peg from the Tag. Various generalizations and improvements upon this simple scheme,
including the one underlying TCP, are known under the name of ARQ protocols [23, 24]. Their
primary objectives are: 1) to reduce the amount of feedback traffic, 2) to improve the continuity
of the forward traffic when the losses are low and/or the bandwidth-delay product of the link is
large [25].

The problem of absolutely reliable data transmission primarily concerns information whose
utmost integrity is essential, i.e., the transmission of files. With streaming, the data is assumed
to be created continuously and the problem of its reliable delivery receives a different flavor.
In many cases the information is not stored at the source in the form of a complete file whose
missing fragments could be requested at random by the recipient and retransmitted later. But
even if this happens to be the case, the issue of its reliable delivery is conditioned by the real-time
character of the reception where the data often become obsolete and useless if not delivered
within a certain time window (like in streaming of voice and/or video). Consequently, while
standard streaming applications may insist on high-quality of delivery, they typically are (and
usually must be) prepared to deal with acceptable (innate) data loss [26, 27].

Our problem is specific in that: 1) the information collected by the Tag cannot be entirely
stored at the source, so the availability of its undelivered fragments is restricted; 2) there is no
issue of real-time playback at the recipient (unlike in streaming audio or video); 3) we can be
prepared to deal with (acceptable) losses (and seemingly have to because of 1). The problem is
reminiscent of one we dealt with before [28] (the hardware context was similar), and it may
be worthwhile to emphasize the difference. In the case of [28] the entire collected data set
was stored at the source Tag, and the problem was formulated as minimizing the time of its
complete delivery to the Peg (the completeness of delivery was essential, so we were basically
interested in reliable and fast file transfers). In the present case, we are inclined to deal with
occasional data loss (the stream is infinite for all practical purposes) and the issue is to maximize
the delivery fraction thus maximizing the feasible data collection rate.

134

If losses are unavoidable, one can often simplify the solution by eliminating the feedback
channel altogether focusing instead on enhancing the reliability of communication in the
physical layer, e.g., through forward error correction (FEC) techniques [29]. The proprietary
mode of the RF module of CC1350 comes with a number of options that can be applied to this
end. They effectively trade the transmission range and bit rate for reliability and amount to
an important set of parameters that have to be tuned for best performance regardless of any
other tools. However, depending solely on them would be too restrictive from our point of
view. The dynamic nature of the propagation environment, including the variable distance
between the Tag and the Peg, would lock the channel into a conservative setting, offering an
acceptable (or passable) loss rate for the worst case scenario, while unnecessarily reducing the
opportunities for collecting more data in a friendlier environment. Our hope is to achieve a
much better flexibility with a properly designed feedback scheme: the bandwidth to be sacrificed
for reliability will only be sacrificed when needed.

In a high-level discussion of ARQ schemes (and in many implementations of such schemes
in the wired world) it is assumed that the feedback channel (Figure 1) is separate from the
forward (data) channel. This is to say that the feedback messages do not disrupt the data stream
and, in particular, they can be sent at any rate up to some maximum with their impact being
solely positive. This is seldom true in wireless communication. Even if the two channels are in
fact separate, which they mostly aren’t, they will tend to interfere. Generally, setting aside a
sizable portion of the RF bandwidth for a “frivolous” feedback channel makes that bandwidth
unavailable for the proper use which is transmitting data. For example, in Bluetooth, e.g., within
the framework of an ACL link [30], the essentially single channel must be partitioned (time-
divided) into two parts to provide for two-way communication. Realizing that the feedback
channel is going to directly coexist with the forward data channel, we would like to make it
flexible and, in particular, avoid a rigid, time-division-based pre-allocation of bandwidth for the
two channels. Our goal is to try to reduce the impact of the feedback channel on data bandwidth
to the minimum needed by the application and demanded dynamically by the temperamental
RF medium.

4. The solution

We propose a protocol for improving the reliability of conveying sensor data from the Tag
to the Peg. The improvement will be evaluated in reference to the reliability achievable with
purely hardware means, by assuming a unidirectional data channel (no feedback). The solution
illustrates how application constraints can influence the design of low-level communication
schemes stimulating a holistic approach to programming the application.

Owing to the lack of real-time requirements, the possibility of unrecoverable losses results
solely from the finite buffers at the Tag. Whatever buffer space is available will be allocated to a
shifting window of the collected data. The Peg will be able to request retransmission of those
lost packets that are still present within the window.

The Tag side of the protocol is described by two threads: the generator of blocks of sensor
readings (dubbed the generator thread) and the transmitter of those blocks on the RF channel.
The blocks are stored in a singly-linked queue, denoted by 𝑄 and depicted in Figure 2, whose

135

Figure 2: The block queue

size is limited. The queue is represented by two pointers: 𝑄ℎ (the head), and 𝑄𝑡 (the tail). When
𝑄 is empty, we have 𝑄ℎ = 𝑄𝑡 = n𝑢𝑙𝑙. One block contains readings to be expedited in a single RF
packet. In addition to the readings (whose number is the same for all blocks), a block 𝑏 contains
a link to the next block in 𝑄 (or null if the block is the tail one) and the sequence number of
the block in the stream, which we shall denote by 𝑏→𝑛. This number starts with 1 (for the first
block generated in a session) and is incremented by 1 for every new block issued by the thread,
as explained below. The maximum size of the queue (i.e., the maximum number of blocks that it
can contain at a time) is determined by the amount of storage available at the Tag and denoted
by Q𝑆m𝑎𝑥. Q𝑆m𝑎𝑥 can be assumed to be (roughly) equal to𝑀/𝑠)where𝑀 is total amount of RAM
available at the Tag for storing 𝑄 and 𝑠 is the (fixed) block size. When the streaming operation
starts, 𝑄 is initialized to empty and 𝑁 (the current block number) is initialized to 1.

4.1. The generator thread

Every 1/𝑓𝑠 seconds, where 𝑓𝑠 is the sampling frequency, a sensor reading is taken. The reading
is stored in the current buffer denoted by CB. CB is filled by consecutive readings (𝑓𝑠 times per
second) until it becomes complete (its capacity is reached).

When CB becomes complete, the thread executes a function named add_CB which sets C𝐵→𝑛
to 𝑁, increments 𝑁 by 1, and appends CB at the end of 𝑄 (updating 𝑄𝑡 and possibly 𝑄ℎ as needed).
Before adding the new block to the queue the function makes sure that, after the addition of CB,
𝑄 will not exceed its two limitations (of which both are necessary). Limitation 1 says that the
total number of blocks in the queue is never bigger than Q𝑆m𝑎𝑥. Limitation 2 requires that
𝑄𝑡→𝑛 − 𝑄ℎ→𝑛, i.e., the difference between the first and the last block number in the queue, be
less than or equal to 𝑂𝑚𝑎𝑥 which we call the maximum block offset. The first limitation simply
makes sure that 𝑄 never exceeds its allotted storage. The second limitation constrains the age
difference of the blocks kept in the queue. This is needed for two reasons. The first (informal)
reason is that, in the face of the storage limitations, it makes little sense to keep around old
blocks that (for one reason or another) have not made it to the collection point. The second
reason is that we want to be able to reference past blocks relative to the current place (block
number) within the session, for which we want to restrict the range of requisite offsets.

Note the CB is appended at the tail of 𝑄 becoming new 𝑄𝑡. To enforce the limitations, add_CB

136

examines the block at the front of 𝑄 (pointed to by 𝑄ℎ) and discards it for as long as any of the
two limitations is violated when CB is included the queue. One invariant of the queue is that
the numbers of blocks stored in it are strictly increasing (they need not be consecutive as we
shall shortly see). Thus, looking at 𝑄ℎ and the total number of blocks stored in 𝑄 is enough to
verify the limitations. Having added CB to 𝑄, the function opens a new empty version of CB
which the thread will now be filling from scratch.

The blocks stored in 𝑄 will be transmitted to the Peg by the second thread (as explained
below), but not immediately discarded, unless new blocks, containing most recent readings,
cannot be accommodated into 𝑄 because of the limitations. When that happens, the sampling
thread will be removing blocks from the front of the queue thus giving preference to fresh
readings.

4.2. The transmitter thread

The thread operates in rounds where it transmits a train of blocks to the Peg and then reverses the
channel for a short while [28] to allow the Peg to acknowledge the train. Once the transmission
of a train is started, it is carried out back-to-back with a minimum inter-packet spacing, just to
enable the recipient to accept the individual packets from the channel.

A train always consists of the same number of packets (blocks) which we shall denote by 𝑇.
When commencing a train, the thread starts by scanning consecutive packets from 𝑄 (beginning
from 𝑄ℎ) and transmitting them in sequence. When the last packet (the one pointed to by 𝑄𝑡)
has been handled and the train is still incomplete, the transmitter thread will simply wait until
the generator thread delivers the next block, i.e., the remaining packets in the train will be sent
as new blocks materialize in 𝑄. Note that the blocks are not removed from 𝑄 as they are being
transmitted.

A train packet contains the block number 𝑏→𝑛 of the block carried by the packet, and
the packaged sensor readings copied from the block. The block number always allows the
Peg to authoritatively place the contents of a received packet within the complete stream of
readings, regardless of how many packets have been lost and how the received packets have
been misordered with respect to the original stream.

Having completed the current train, the transmitter thread enters a loop in which it expects
to receive a response (an acknowledgment packet) from the Peg. Within that loop, the thread
periodically sends a short EOT (end of train) packet (to make sure that the Peg has recognized
that the train has ended and a response is expected) and waits for a short while for the ACK
(which should normally arrive after a minimum delay). The EOT packet carries three items of
information: the train number modulo 256 (a single byte) used to match trains to acknowledg-
ments, the number of the last block transmitted in the train (denoted by 𝐿), and the back offset
(𝑂𝑏) from 𝐿 to the oldest packet still held in 𝑄 (𝑂𝑏 = 𝐿 − 𝑄ℎ→𝑛 + 1).

The idea is that having received an EOT packet, the Peg can assess which blocks have been
missing (it knows the number of the last block sent by the Tag) and it also knows the minimum
number of the block that it can still ask the Tag to retransmit. The reason why the latter is
specified as an offset with respect to 𝐿 is technical: the offset information can be conveyed
in two bytes instead of four (needed for a full block number). It illustrates one practical and
seemingly mundane aspect of real life in the embedded world where it always makes sense to

137

try to save on individual bytes. Note that the generator thread enforces a limitation reducing
the maximum difference between the numbers of blocks stored in 𝑄.

The number of the oldest block still available in 𝑄 conveyed by the Tag in the EOT packet
reflects the state of 𝑄 at the moment the EOT packet is constructed and scheduled for trans-
mission. This information may become outdated by the time the Peg builds and transmits its
response and, more importantly, by the time that response arrives and is interpreted by the
Tag, because 𝑄 can be trimmed by the generator thread independently of the transmitter thread.
This is OK. The possibility that a block may be irretrievably lost is factored into the scheme. It
can happen that the Peg asks for the retransmission of a block that is no longer available. At
the end of the next train the Peg will learn (from the new EOT packet) that the block is no more,
so it will know that it makes no sense to keep asking for it.

The transmitter thread will keep retransmitting the EOT packet (possibly updating its param-
eters) until an acknowledgment arrives from the Peg. Normally this should happen right away,
but in a pathological scenario, if the connectivity has been broken for a long time, the contents
of 𝑄 may evolve to the point where 𝐿 is no longer available. This is why the minimum value of
𝑂𝑏 for the situation when 𝑄 still contains the block number 𝐿 is 1. When 𝑂𝑏 in an EOT packet is
0, it means that none of the blocks up to (and including) the end of the last train is available any
more, so the Peg need not ask for any retransmissions.

4.3. The acknowledgment

The role of the acknowledgment (ACK) packet is to indicate to the Tag which blocks have
been missing with respect to the end of the last train and relative to the Peg’s knowledge
regarding the blocks that it can still hope to receive. Again, mundane technical constraints
force us to be frugal about the representation of information within the ACK. For one thing,
the entire message should fit into a single packet whose useful (payload) size is limited to 60
bytes. Organizing the ACK message into multiple packets would introduce obscure reassembly
problems complicating things beyond practical [28]. Consequently, the ACK format should
allow the Peg to maximize the population of (independent) block numbers that it can specify
in a single packet to cover worst-case scenarios and, more generally, to minimize the size of
the (typical) ACK packet. As the ACK traffic interferes with an otherwise smooth series of
back-to-back transmissions of useful data (causing channel reversals [28]), its impact (and the
incurred reduction of bandwidth) should be minimized.

One mandatory item carried in an ACK packet is the train number (modulo 256) to which
the acknowledgment applies. Any other data included in the packet pertain to the blocks that
the transmitter thread of the Tag should retain in 𝑄 before commencing the next train. In other
words, these are the blocks that the Peg wants retransmitted. If the ACK contains no data
beyond the single mandatory byte (which is the ideal case), the message to the Tag is simple:
erase 𝑄 up to and including 𝐿, i.e., the end of the last train.

The structure of an ACK packet is best explained by the way the information is interpreted
by the Tag upon its arrival. The interpretation is carried out by function handle_ACK invoked
by the transmitter thread. Following the train number stored as the first byte of the packet, the
function interprets consecutive bytes as descriptors of the blocks that have been missing by the
Peg and, if possible, should be retransmitted. Those blocks are specified within the ACK packet

138

Figure 3: Descriptors of missing blocks

in the increasing order of their numbers.
While interpreting the descriptors, the function stores in 𝑟 the last block number mentioned

by a previous descriptor, to be used as a reference. The value of 𝑟 is initialized to 𝐿 − 𝑂𝑚𝑎𝑥 − 1
where 𝑂𝑚𝑎𝑥 is the maximum legal difference between block numbers in 𝑄 (see above). The ACK
bytes are interpreted in the following way (see Figure 3):

1. If the two most significant bits of the byte are zero, then its remaining six bits are
interpreted as a forward offset from 𝑟 minus 1, i.e., 𝑟 is incremented by the nonnegative
integer value stored on those bits plus 1, and block number 𝑟 is marked to be retained in
𝑄. Note that the minimum sensible value of an offset is 1.

2. If the two most significant bits of the byte are 01, then the remaining six bits of the byte
are prepended (on the left) to the next byte and the two bytes form together a 14-bit
(forward) offset from 𝑟 minus 1.

3. If the most significant bit of the byte is 1, then the remaining seven bits are treated as a
bit map, each bit indicating an individual block relative to the value of 𝑟. For this purpose,
the bits are numbered from 1 to 7 (right to left), and when bit number 𝑖 is set, the block
number 𝑟 + 𝑖 is marked to be retained. At the end of processing the byte, 𝑟 is set to 𝑟 + 7,
i.e., the last block number covered by the bit map, regardless of whether the block was
marked as retained or not.

The important point is that the interpretation of the consecutive bytes, starting from the front
of the packet’s payload, produces increasing values of 𝑟 which eases the operation of updating
𝑄. The queue is scanned in place, in the most natural manner, starting from 𝑄ℎ, and any blocks
whose numbers are not mentioned in the ACK are discarded. Before interpreting the first byte
of the ACK, handle_ACK initializes 𝑟 to 𝐿 − 𝑂𝑚𝑎𝑥 − 1 to provide a sensible, default, initial value
(so the first byte of the ACK can be a forward offset). It might seem natural to initialize 𝑟 to
𝐿 − 𝑂𝑏 (based on the value of 𝑂𝑏 passed in the EOT packet), which would make the range of
the initial offset better contained. However, while the value of 𝐿 is nailed to the train, 𝑂𝑏 may
change in the different (retransmitted) versions of the EOT packet for the same train. As the
Tag cannot know which particular copy of EOT served the Peg as the basis for its ACK, 𝑂𝑏 is
not a well-known value that both parties can always agree on.

Following the reception of an ACK packet from the Peg, the transmitter thread will start
the next train with a trimmed-down version of 𝑄. The queue will have been emptied of all
blocks that 1) have numbers less than or equal to 𝐿 from the previous train, and 2) have not
been mentioned in the ACK packet.4

4Strictly speaking, the packet carries a negative acknowledgement.

139

Table 1
A tentative setting of protocol parameters

Parameter Value Units

Channel transmission rate 50 kbps
Samples per block 12 3-vectors
Max. 𝑄 size: 𝑄𝑆𝑚𝑎𝑥 128 blocks
Train length: 𝑇 64 packets
Max. block offset: 𝑂𝑚𝑎𝑥 2047 blocks
Packet space (within train) 5 ms
End of train space (for the ACK) 20 ms

4.4. The Peg

The device passes the received blocks to the computer, locally keeping track of the holes in
the received sequence, down to the maximum negative offset from the end of the last train.
The blocks are tallied in a bit map whose fixed size covers the interval 𝑂𝑚𝑎𝑥. For the ease of
calculations, the actual momentary coverage of the map is described by the current base block
number 𝐵 which is shifted to the newest value of 𝐿 − 𝑂𝑏 learned by the Peg. As 𝐵 is updated,
the (logical) beginning of the bit map shifts automatically (in a circular fashion), so the bit map
itself is not shifted (no copying is involved), except for clearing the obsolete entries at the tail.

Having received an EOT packet, the Peg updates the base of its bit map to 𝐿 − 𝑂𝑏, sets its
reference block number 𝑟 to 𝐿 − 𝑂𝑚𝑎𝑥 − 1, and begins constructing the consecutive bytes of the
ACK packet. Given the next missing block to be accounted for, there are these possibilities
which are greedily examined in this order: 1) the last entry in the ACK packet is a bit map byte
and the block number falls under its coverage, 2) the block number is within a bit-map range
from the current value of 𝑟, 3) the block number can be represented by a short offset from 𝑟,
4) a long (two byte) offset is needed. In the first case, the block is simply added to the bit map
byte without extending the ACK packet. In the second case, if the difference between the block
number and 𝑟 is less than 7, a new bit map byte is added to the packet. Note that a bit map byte
comes at the same storage expense as a short offset from 𝑟, so there is no point in looking ahead
(a greedy approach works fine). Preference is given to the bit map when, based on the current
block number alone, the map stands a chance of accommodating at least one more block.

In the unlikely case when the ACK packet becomes filled up to the limit of its size, the
receiving Tag will assume that all the blocks falling behind the last block number represented in
the ACK are implicitly marked as missing. Note that this will only happen in highly abnormal
conditions where pessimistic assumptions regarding the unknown are probably warranted.

5. Performance

The first implementation of our scheme addresses a planned series of experiments with animals
aimed at collecting 128 acceleration samples per second. Our intention was to tune the parame-
ters of the protocol until we get a satisfying performance for the task at hand. Table 1 lists the
numerical values of the parameters assumed for the initial tests.

140

While the values in Table 1 must be treated as tentative, they were produced by confronting
our expectations with the parameters and capabilities of hardware. One sample of acceleration
amounts to three scalars which we pack into 30 bits (10 bits per value). With some modest
creativity, a 50-byte packet encodes 12 samples plus the 32-bit block number. The collection rate
of 128 samples per second translates into about 11 packets per second, the total (transmitted)
length of every packet being 60 bytes. This implies the (continuous) rate of 5280 bits per second
and clearly suggests that the raw RF channel bandwidth of 50 kbps is more than sufficient to
accommodate the transfers.

Our experiments have demonstrated, at first sight somewhat surprisingly, that it is virtually
impossible to lose data in a streaming session for as long as the session operates within the
framework of raw technical feasibility. We can easily cater to sampling frequencies up to 512
samples per second (which is just one notch below the maximum capacity of the the sensor)
without increasing the channel rate, and up to the maximum of 1024 samples per second at a
slight increase of the channel rate, practically without losing any samples!

This can be argued quite formally. Let 𝑅 denote the raw rate at which blocks can be transmit-
ted, back-to-back, assuming smooth operation and no errors (we shall ignore the ACKs for a
while). Let 𝑟𝑎 denote the target effective rate corresponding to the frequency at which we would
like to reliably collect samples of sensor readings. Let 𝑟𝑒 be the block error rate of the channel.
The system can be modeled as a server shown in Figure 4.

Figure 4: The performance model

The bottom path represents the traffic incurred by errors and the consequent retransmissions
requested by the Peg in its acknowledgments. This is what the queue 𝑄 is really for: to
accommodate blocks that have to be retransmitted because of errors.

Consider the system at equilibrium and note that the upper path is stable and deterministic:
blocks arrive at a steady rate 𝑟𝑎, their processing time is fixed, and they leave the server at the
same rate. Consequently, we can ignore the dynamics of the upper part assuming that its impact
consists in removing from 𝑅 a fixed portion amounting to 𝑟𝑎. Whatever is left, i.e., 𝑅 − 𝑟𝑎 can be
treated as the bandwidth available for the bottom part of the traffic, i.e., for retransmissions.

Suppose that the errors are independent and they occur at the same probability 𝑃𝑒 for every
transmitted block. Then we have:

𝑟𝑒 = 𝑟𝑎 ×
∞
∑
𝑖=1

𝑃𝑒𝑖 =
𝑟𝑎 × 𝑃𝑒
1 − 𝑃𝑒

(1)

The bottom part of the service can be approximated as an M/D/1 queue where 𝜌 = 𝑟𝑒/(𝑅 − 𝑟𝑎)
(the utilization parameter) indicates the fraction of the spare bandwidth (whatever remains after

141

accounting for 𝑟𝑎) taken by the retransmissions. The expected occupancy of the queue is then:

𝐶 = 𝜌 + 1
2
(

𝜌2

1 − 𝜌
) (2)

The graph of 𝐶 versus 𝜌 (Figure 5) is quite illuminating. It shows that unless the utilization
factor becomes very close to unity, i.e., the retransmissions fill all the bandwidth left to them,
the demand for queue space is extremely modest. Consequently, to see the queue overflow (for
any size above the train length 𝑇), and actual losses start to materialize, we have to bring the
system to the very edge of its equilibrium. Then, of course, there is no surprise that the system
refuses to cooperate: it could not possibly do any better under the best possible scheme.

Figure 5: 𝐶 = the average occupancy of 𝑄 versus the utilization factor 𝜌

The above model is oversimplified a bit by its abstraction from the acknowledgments. Their
main impact is in stealing a fraction of 𝑅 proportional to the total portion of the bandwidth
used by the trains. To factor them in, we should express the utilization parameter as:

𝜌 =
𝑟𝑒

𝑅 − 𝑟𝑎 − 𝑓𝐴 × (𝑟𝑒 + 𝑟𝑎)
(3)

where 𝑓𝐴 is the amount of bandwidth (expressed in blocks) used up by the exchange of one
acknowledgment.

6. Summary

We have presented a protocol for reliable streaming of telemetric data over an unreliable wireless
channel. Our scheme seems to make a good use of the available bandwidth, especially in the
specific context of its inspiring application. On the sender’s side, this is accomplished by an
efficient organization of storage for the outstanding (unacknowledged) packets. The feedback
sent by the recipient is minimized to reduce the impact of channel reversals on the bandwidth
available for the forward traffic. The proposed scheme is intended for small-footprint wireless
sensing devices where the amount of memory for packet buffers is drastically limited.

142

References

[1] B. J. Cooke, L. B. Hill, D. P. Farrington, W. D. Bales, A beastly bargain: A cost-benefit
analysis of prison-based dog-training programs in Florida, The Prison Journal 101 (2021)
239–261.

[2] R. A. Yount, M. D. Olmert, M. R. Lee, Service dog training program for treatment of
posttraumatic stress in service members., US Army Medical Department Journal (2012).

[3] G. Lippi, G. Cervellin, M. Dondi, G. Targher, Hypoglycemia alert dogs: a novel, costeffective
approach for diabetes monitoring?, Alternative therapies in health and medicine 22 (2016)
14.

[4] R. Schoenfeld-Tacher, P. Hellyer, L. Cheung, L. Kogan, Public perceptions of service dogs,
emotional support dogs, and therapy dogs, International journal of environmental research
and public health 14 (2017) 642.

[5] G. S. Berns, A. M. Brooks, M. Spivak, K. Levy, Functional MRI in awake dogs predicts
suitability for assistance work, Scientific reports 7 (2017) 43704.

[6] E. E. Bray, K. M. Levy, B. S. Kennedy, D. L. Duffy, J. A. Serpell, E. L. MacLean, Predictive
models of assistance dog training outcomes using the canine behavioral assessment and
research questionnaire and a standardized temperament evaluation, Frontiers in veterinary
science 6 (2019) 49.

[7] C. Byrne, J. Zuerndorfer, L. Freil, X. Han, A. Sirolly, S. Cilliland, T. Starner, M. Jackson,
Predicting the suitability of service animals using instrumented dog toys, Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1 (2018) 1–20.

[8] J. M. Slabbert, J. S. Odendaal, Early prediction of adult police dog efficiency—a longitudinal
study, Applied Animal Behaviour Science 64 (1999) 269–288.

[9] M. Brložnik, V. Avbelj, A case report of long-term wireless electrocardiographic moni-
toring in a dog with dilated cardiomyopathy, in: 2017 40th International Convention on
Information and Communication Technology, Electronics and Microelectronics (MIPRO),
IEEE, 2017, pp. 303–307.

[10] G. J. Jenkins, C. H. Hakim, N. N. Yang, G. Yao, D. Duan, Automatic characterization of
stride parameters in canines with a single wearable inertial sensor, PloS one 13 (2018)
e0198893.

[11] J. M. Alcaidinho, The internet of living things: enabling increased information flow in
dog-human interactions, Ph.D. thesis, Georgia Institute of Technology, 2017.

[12] M. Brložnik, Š. Likar, A. Krvavica, V. Avbelj, A. Domanjko Petrič, Wireless body sensor for
electrocardiographic monitoring in dogs and cats, Journal of Small Animal Practice 60
(2019) 223–230.

[13] Pet Pace Pets Remote Monitoring System, User Manual, PetPace Ltd., 2020. URL: https:
//petpace.com/.

[14] Animo Quick Start Guide, SureFlap Ltd., 2019. URL: https://www.surepetcare.com/en-au/
animo.

[15] M. Foster, R. Brugarolas, K. Walker, S. Mealin, Z. Cleghern, S. Yuschak, J. Condit, D. Adin,
J. Russenberger, M. Gruen, et al., Preliminary evaluation of a wearable sensor system for
heart rate assessment in guide dog puppies, IEEE Sensors Journal (2020).

[16] M. Foster, S. Mealin, M. Gruen, D. L. Roberts, A. Bozkurt, Preliminary evaluation of a

143

wearable sensor system for assessment of heart rate, heart rate variability, and activity
level in working dogs, in: 2019 IEEE SENSORS, IEEE, 2019, pp. 1–4.

[17] F. M. Duerr, A. Pauls, C. Kawcak, K. K. Haussler, G. Bertocci, V. Moorman, M. King,
Evaluation of inertial measurement units as a novel method for kinematic gait evaluation
in dogs, Veterinary and Comparative Orthopaedics and Traumatology 29 (2016) 475–483.

[18] M. Foster, J. Wang, E. Williams, D. L. Roberts, A. Bozkurt, Inertial measurement based
heart and respiration rate estimation of dogs during sleep for welfare monitoring, in:
Proceedings of the Seventh International Conference on Animal-Computer Interaction,
2020, pp. 1–6.

[19] E. Kuźnicka, P. Gburzyński, Automatic detection of suckling events in lamb through
accelerometer data classification, Computers and Electronics in Agriculture 138 (2017)
137–147.

[20] Texas Instruments, CC1350 SimpleLink Ultra-Low-Power Dual-Band Wireless MCU, 2019.
URL: http://www.ti.com/lit/ds/symlink/cc1350.pdf, technical document SWRS183B.

[21] K. A. Bartlett, R. A. Scantlebury, P. T.Wilkinson, A note on reliable full-duplex transmission
over half-duplex links, Communications of the ACM 12 (1969) 260–261.

[22] W. Lynch, Reliable full-duplex transmission over half-duplex telephone lines, Communi-
cations of the ACM 11 (1968) 407–410.

[23] J. F. Kurose, K. W. Ross, Computer Networking: A Top-Down Approach Featuring the
Internet, Addison-Wesley, 2004.

[24] S. Lin, D. Costello, M. Miller, Automatic-repeat-request error-control schemes, IEEE
Communications Magazine 22 (1984) 5–17.

[25] T. Lakshman, U. Madhow, The performance of TCP/IP for networks with high bandwidth-
delay products and random loss, IEEE/ACM transactions on networking 5 (1997) 336–350.

[26] C. Baransel, W. Dobosiewicz, P. Gburzyński, Routing in multi-hop switching networks:
Gbps challenge, IEEE Network Magazine (1995) 38–61.

[27] R. Pereira, E. G. Pereira, Video streaming considerations for internet of things, in: 2014
International Conference on Future Internet of Things and Cloud, IEEE, 2014, pp. 48–52.

[28] P. Gburzynski, B. Kaminska, A. Rahman, On reliable transmission of data over simple
wireless channels, Journal of Computer Systems, Networks, and Communications 2009
(2009).

[29] A. Nafaa, T. Taleb, L. Murphy, Forward error correction strategies for media streaming
over wireless networks, IEEE Communications Magazine 46 (2008) 72–79.

[30] Bluetooth SIG, Bluetooth technology, 2020.

144

Graph-based Sparse Neural Networks for Traffic
Signal Optimization
Lukasz Skowronek2, Pawel Gora1,2, Marcin Mozejko2 and Arkadiusz Klemenko2

1Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Poland
2TensorCell

Abstract
We investigate the performance of sparsely connected neural networks, with connectivity determined
by road network graphs, for solving the Traffic Signal Setting optimization problem. We conducted
experiments on three realistic road network topologies and found these types of graph neural networks
superior to fully connected ones, both in terms of generalization properties on fixed test sets and - more
importantly - near target function minima obtained in the gradient descent optimization process. We
additionally confirm the soundness of our method by showing that random perturbations of the actual
graph lead to consistent deterioration of model performance.

Keywords
traffic optimization, graph neural networks, Traffic Signal Setting problem, surrogate modelling

1. Introduction

Traffic optimization problems have a natural underlying graph structure, determined by the
topology of the corresponding road network. In this paper, we introduce a neural network
architecture based on a road network graph adjacency matrix to solve the so-called Traffic
Signal Setting (TSS) problem, in which the goal is to find the optimal traffic signal settings for
given traffic conditions (as defined in [1]). Some variants of this problem were proven to be
NP-hard even for very simple traffic models ([2]), and therefore, heuristics and approximations
have been used to solve it ([1]), but the existing approaches still have some drawbacks. For
example, evaluating the quality of traffic signal settings using accurate traffic simulations (which
is a standard evaluation method) can be too time-consuming, especially for large-scale road
networks and/or online evaluation ([3, 4]). Also, the size of the space of possible solutions is
so large that it turns out infeasible, in any reasonable time, to obtain global minima (or even a
relatively good signal settings) of the simulator output by checking all the possible solutions or
doing a random search ([1]), as most points in the input space are far from the optimal solutions.

A strategy used for solving these two difficulties was presented in [1] and consists of generat-
ing a reasonably sized training set using a traffic simulator and then fitting a machine learning

29th International Workshop on Concurrency, Specification and Programming (CS&P’21)
" p.gora@mimuw.edu.pl (P. Gora)
~ https://www.mimuw.edu.pl/~pawelg (P. Gora)
� 0000-0002-8037-5704 (P. Gora)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

145

model to approximate the outcomes of traffic simulations very fast and accurately. The output of
these models can be then minimized using an optimization algorithm, such as gradient descent,
in hope to obtain close to optimal traffic signal settings. This strategy turned out to be quite
successful ([1, 5, 4]), yet the models’ accuracy degraded close to points considered as minima
by the optimization algorithm and the model, making further optimization far more difficult
([3, 4]).

In this paper, we show that the graph-based neural networks (GNN) that we use, built based on
road network graphs, can outperform feed-forward fully connected neural networks (FCNN) on
this task. Comparing to the standard FCNNs, the introduced GNNs have most of the connections
deleted, keeping only the crucial connections between neurons (making the information flow
corresponding to the traffic flow in the road network), which makes this architecture relatively
sparse, easier to train and generalize. As a consequence, GNNs have better accuracy on the test
set, as well as close to the local optima found using gradient descent optimization applied to
the TSS problem. We also prove that GNN architectures work better than analogous ones built
based on perturbed adjacency matrices.

The rest of the paper is organized as follows. Section 2 puts our work in the context of
a research in the domain of building surrogate models for complex processes, solving TSS
problem and using graph neural networks. Section 3 presents the two types of graph neural
network architectures we used. In Section 4, we describe the setup of our main experiments
including a description of the used datasets and their generation. Section 5 summarizes our
main experiment results showing that neural network architectures introduced in this paper
outperform other models used in such a task. In Section 6, we summarize the results of several
’sanity checks’ we performed in order to confirm that our results were not obtained by chance.
Moreover, the results in Section 6 can be especially interesting for researchers in graph neural
networks, e.g. we show that out-of-sample performance of graph-based sparse neural nets
decreases (almost) monotonously as a function of the distance of the adjacency matrix we use
for constructing the network from the true adjacency matrix. We summarize the presented
research in Section 7, outlining some possible future research directions.

2. Related works

Complex processes, such as road traffic in cities, are difficult to study due to large number
of interacting components (e.g., vehicles), nondeterminism or sensitive dependence on initial
conditions. Very often, the only reasonable method to accurately predict the behaviour of such
systems is to apply computer simulations which can be time-consuming and usually can’t be
simplified due to computational irreducibility. However, in many tasks related to complex
processes it is not necessary to obtain very accurate predictions, it can be sufficient to get
approximate outcomes but as fast as possible (due to stochasticity or sensitive dependence on
initial conditions, it may be impossible to predict the exact value anyway). Therefore, in such
cases it is natural to build the so-called surrogate models (metamodels) approximating outcomes
of simulations very fast and with a good accuracy ([6]). Such applications are especially common
in the case of optimization tasks, in which quite often it is necessary to run multiple simulations
in order to evaluate many different input settings ([7, 8, 9]). This is the case of traffic optimization

146

problems [10], such as the TSS problem. Many such surrogate models are based on machine
learning methods, such as neural networks [7, 8], and also some previous works on solving
TSS [1, 5, 3, 4] use various machine learning techniques (e.g., based on neural networks or
gradient boosted decision trees) to build metamodels of traffic simulations, which were used to
evaluate quality of traffic signal settings. Such metamodels were able to approximate outputs of
simulations (the total times of waiting on red signals) with a very good accuracy (e.g., values
of the MAPE metrics were at the level 1 − 2%) and a few orders of magnitude faster than by
running microscopic simulations [1, 5]. Thanks to that, it was possible to use optimization
algorithms such as genetic algorithms or gradient descent, to find heuristically optimal signal
settings without performing extensive parameter space searches that would take weeks to
complete [1, 5, 3, 4]. However, information about the road network structure has never been
used in those experiments, even though it should naturally be relevant when optimizing traffic.

Introducing the direct connection between the network architecture and the graph structure
can help to leverage additional information represented by a graph. Similarly to our work, [11]
introduces a graph NN layer in which each vertex has specific parameters assigned to combine
information from its neighbors. However, differently to our method, this layer uses only an
original graph matrix and skips the dual graph structure when performing computations. The
notable usage of a dual structure can be found in [12], where it is compressed to a PPMI matrix
using aggregated statistics from a random graph walk procedure. This aggregation is used to
introduce a vertex neighborhood context similarly to a popular T-SNE method [13]. [14] provides
an extensive overview of different graph neural networks architectures and applications.

Due to their capability to capture a road-network structure, GNNs were used in multiple
traffic applications. In [15, 16, 17] authors used spatio-temporal GNNs for a traffic situation
prediction, whereas [18] used the same technique in order to predict the TAXI demand. However,
our application of graph neural networks in the traffic optimization domain and the Traffic
Signal Setting problem seems to be the first such approach.

3. Network architecture

The key idea in defining our sparse graph-based neural network architecture is an intuitively
compelling rule that information/signal should propagate locally between the net layers. By
locality, we mean the presence of only those neuron connections that have a corresponding non-
zero entry in the adjacency matrix of the corresponding graph. In the case of the road network,
in order to implement such a rule, the neurons in the successive layers of the neural network
should be linked to the neurons corresponding to vertices and/or edges of the corresponding
graph. Thus, we propose the following general ways to build a graph neural network (see
Section 1 of Supplementary materials ([19]) for mathematical formulas):

1. Neurons in the even numbered layers, starting with the input layer as layer 0, correspond
to graph vertices (in our case - road crossings). Neurons in the odd numbered layers
correspond to graph edges (in our case - road segments). An exception should be the final
layer with just one neuron. Connections from a vertex-localized layer to an edge-localized
layer should only be present if a given vertex is an end of a given edge in the corre-
sponding road network graph. There are exactly two such connections for every edge

147

neuron. Connections from an edge-localized layer to a vertex-localized layer should only
be present if the edge has the vertex as its end in the corresponding road network graph.
The number of such connections is equal to the number of particular vertex neighbors.

or
2. Neurons in all layers, with the exception of the output layer, correspond to road network

graph vertices. Connections from a neuron in one layer to a neuron in the next one
should only be present if the corresponding vertices are neighbors in the road network
graph. The number of connections for the vertex node is equal to the number of the
vertex neighbors.

Although architecture 2 might seem to be more basic, architecture 1 appears to naturally
model a traffic flow through the road networks (see Supplementary materials ([19]), Section 2,
for a detailed explanation). In the rest of this paper, we focus solely on GNNs of the architecture
type 1.

It should also be pointed out that GNNs can have multiple channels at each edge/vertex. The
number of channels in each layer is a hyperparameter of the network. In the following part, we
always assume the number of channels to be constant across the hidden layers of the network.

One may also notice a similarity between our GNN architecture 2 and the graph neural
networks proposed by Thomas Kipf [20]. However, we do not share any weights in our model,
as we aim to focus on local patterns connected to roads / crossroads. Theoretically, we could
introduce some weight sharing in the ’edge’ layers of GNNs of type 1, but our first experiments
using this approach led to highly disappointing results.

In typical ML literature terminology, our GNNs should likely be called ‘NNs with a fixed
sparse connectivity mask’. In case of multi-channel networks, sparsity is applied in the ‘spacial’,
but not in the ‘channel’ dimension.

4. Experiment setup

In order to train the surrogate models, it was necessary to generate datasets first. For this task,
we simulated vehicular traffic on 3 realistic road networks, corresponding to selected districts
in Warsaw: Centrum, Ochota and Mokotów, including 11, 21 and 42 intersections with traffic
signals, respectively. The simulations were run using a microscopic traffic simulator, Traffic
Simulation Framework [21], for which a road network description for Warsaw was obtained
from the OpenStreetMap service [22]. The inputs to the simulator were vectors of lengths 11,
21 and 42, respectively. Each position in a vector represented an offset of a traffic signal on a
corresponding intersection. The offsets are shifts with respect to a global two minute traffic
signal cycle start - times from the beginning of the simulation to the first switch from the green
signal state to the red signal state (it was assumed for simplicity that the duration of a green
signal phase is always equal to 58 seconds, while duration of a red signal phase is equal to 62,
constituting a 120-second cycle). The offsets were provided as integers, measured in seconds,
hence they ranged from 0 to 119 (note the periodicity of these variables). The simulator output
in each case was the total waiting time on red signals, summed for all the cars participating in
the simulation on a considered area (finding the inputs minimizing this output value was the
optimization goal of the considered TSS problem instance).

148

Each simulation lasted 10 minutes and consisted of 42000 cars on the whole road network of
Warsaw. The datasets for Ochota, Mokotów and Centrum were generated using approximately
100000 randomly selected inputs for the TSF simulator (the input offset values from the set
{0, 1, . . . , 119} were sampled from the uniform distribution independently). These datasets are
publicly available to enable further research ([23]).

After preparing the datasets, we trained GNN and FCNN networks as metamodels to solve
TSS using gradient descent. Before training, we scaled the inputs to [−1, 1] using the following
mappring 𝑥 ↦→ sin (2𝜋𝑥/120) and 𝑥 ↦→ cos (2𝜋𝑥/120), thus doubling the input size (actually,
increasing the number of input channels). This is motivated by the periodicity of the problem -
the neural network may learn that the offsets are periodic and values 0 and 120 correspond to
the same setting and this can improve the training [3, 4]. For the output, we used a standard
scaler that divides the data by its standard deviation and shifts the mean to zero.

For each of the 3 considered road networks, we tested 9 different GNN architectures and 9
FCNN architectures. The 9 selected GNN architectures corresponded to all combinations of
values from the following parameter sets:

• number of hidden GNN layers: 2, 3, 4 (not counting input and output layers);
• number of channels per layer: 3, 4, 5.

The activation function we used was tanh, indicated as superior to ReLU in preliminary
experiments and in previous works [4].

For comparison, we also tested 9 FCNN architectures with tanh activation function, covering
all combinations of parameter values from the following sets:

• number of hidden layers: 2, 3, 4

• number of neurons per layer: 20, 40, 100

For each of the 3 datasets, we used the same 90/10 train/test split for each of the considered
18 hyperparameter settings (9 GNN architectures and 9 FCNN architecture). For each of the
architectures, we ran the following procedure:

1. Train a model on the training set for about 1100 epochs (concretely, minimize on 105

random mini-batches of size 997 (997 is the closest prime to 1000 - a prime number was
chosen to assure better randomization, although it was not expected to have any real
effect) using Adam optimizer ([24]) and a learning rate of 0.0035).

2. Evaluate the trained model on the test set using the mean relative error with respect to
the original outputs as the core metrics.

3. Generate 100 gradient descent trajectories of the trained model output with respect to its
inputs (in the original input space, backpropagating through the sin/cos transformation).
Gradients were evaluated at inputs rounded in the original parameter space (our traffic
simulator (TSF) accepts only integer inputs). Nesterov updater ([25]) with a learning rate
of 0.01 and momentum of 0.9 is used. Each trajectory had 3000 steps. This is similar to
approach used in [4].

4. Every 30 steps, transform the current trajectory point to the original parameter space,
round and send to the TSF simulator. Save the inputs and the simulator outputs to a new
‘simulation’ test set.

149

5. Evaluate the trained model on the ‘simulation’ test set using various metrics (cf. the
discussion in Section 5).

All the experiments were run on virtual machines in the Azure cloud (NC6 with NVIDIA
Tesla K80 ([26])). The code used in the experiments can be found at ([27]). All of the models
trained for the main experiment and all the out-of-sample simulation datasets can be found at
[28]. The core dataset can be obtained at [23].

5. Experiment results

Table 1
Core results for the three best GNN and the three best FCNN architectures according to the accuracy
(MAPE) on the test set (i.e. gradient descent results did not affect the selection of these models).

Measure Model Ochota Mokotów Centrum

Min. MAPE GNN 1.33% 0.76% 0.80%
on the test set FCNN 1.71% 0.94% 0.87%

Min. simulation output GNN 32,205 265,129 63,606
FCNN 32,587 266,237 63,553

Avg MAPE on the lowest GNN 1.26% 0.53% 0.76%
5% sim. outputs FCNN 5.35% 3.04% 2.49%

Avg MAPE on the lowest GNN 1.75% 0.84% 1.22%
10% sim. outputs FCNN 4.53% 2.74% 2.25%

Avg MAPE on the lowest GNN 1.51% 1.00% 1.11%
15% sim. outputs FCNN 4.65% 2.56% 2.04%

The key results of our experiments with GNNs are shown in Table 1, as well as in Figure 1,
complemented by the tables and figures in Section 3 of Supplementary Materials [19]. Table 1
shows a summary of core performance measures, calculated for three top GNN and three FCNN,
ranked based on the average accuracy on the test set (MAPE). The core measures presented are:

• Minimum MAPE (mean absolute percentage error) on the test set. This number can be
obtained before doing gradient descent. The minimum is taken among the 3 top ranked
GNNs or FCNNs (according to the row description). Because of the model selection
criterion we use for Table 1, this minimum is global within the respective 9-element
model universe (GNN or FCNN).

• Minimum simulation output obtained when doing gradient descent (note that while being
interesting from a traffic optimization perspective, this measure lacks robustness, as it
can be distorted by a single data point).

• Average MAPE on 𝑥% (for 𝑥 = 5, 10, 15) gradient descent trajectory ends, selected
according to the corresponding simulator output value (sorted lowest first). An average
is taken over the three models selected, GNN or FCNN, according to the row description.

First, let us note that the results of Table 1 show a better performance of GNNs comparing to
FCNNs, particularly in terms of minimum MAPE of the test set and average MAPE on the lowest

150

points from the gradient descent trajectory according to the simulation. The improvement is
visible for all the 3 road maps (Ochota, Mokotów, Centrum) and all the 5 core measures (with
the exception of the minimum simulation output value obtained for Centrum, where one FCNN
turned out to yield slightly (less than 0.1%) lower result than all the GNNs).

To summarize, the core improvement areas are:

• Much lower error on the test set.
• Lower minimum simulator output value obtained when doing the gradient descent (except

for Centrum, for which we can count a draw).
• Much lower approximation error obtained on the trajectory ends corresponding to 5%,

10% and 15% lowest simulator output values.

Figure 1 as well as similar figures for Ochota and Mokotów (see Section 3 of Supplementary
Materials [19]) show the density of gradient descent trajectory points as heatmap plots. The
horizontal axis corresponds to gradient descent trajectory point number (recorded every 30
steps), and the vertical axis corresponds to the simulator output. Each trajectory had 3000 steps,
but we recorded points every 30 steps. The plots show a heatmap of these points on the (point
number, simulator output) plane. Thus, the more points in some area, the brighter the color.
Also, if one architecture reaches a lower minimum than another, the resulting heatmap is taller.

Besides confirming some of the quantitative conclusions from Table 1, the heatmaps also
show that in many cases, the gradient descent is less ‘noisy’ for GNN, suggesting a smoother
function surface, less prone to overfit noise (this is best visible in the plots in Section 3 of [19]).

6. Consistency checks

The findings of the previous section call for some careful consistency checks before reaching
final conclusions. In particular, it is not fully clear that the actual adjacency matrix gives any
value. Perhaps, any similar graph, even not related to the problem at hand, can do equally well.

To address that question, we decided to fix the number of layers to 3 and the number of
channels to 4 per layer (for GNN of type 1), and built our nets using random graphs with
various degrees of resemblance to the true problem graph (we repeated this for all the three
road networks we considered). As a measure of graph similarity, we used the symmetric
difference between the sets of graph edges. The random graphs were generated in two ways.
The first method (referred later as ‘Edge/Non-edge switching’) used random edge insertions
and deletions, with the desired value of the symmetric difference kept fixed. The second method
(referred later as ‘Vertex label permutation’) used random permutations of the vertex labels
while keeping the connection graph structure exactly the same. Graphs generated by this
method were isomorphic, but not identical to the original one.

It is worth mentioning that although the first method generates truly random graphs similar
to the original one, the new graph might not represent a plausible road network. The second
method, on the contrary, always keeps the same, realistic road network graph structure, but it
provides spurious insights to the training algorithm as crossroads are switched.

Results obtained by the two methods are shown in Figure 2, including Ochota, Mokotów and
Centrum. The plots show that the mean relative error achieved on the test sets by neural nets

151

Figure 1: Gradient descent trajectory density plots for Warsaw Ochota for the 3 best GNN and FCNN
models. Horizontal axis corresponds to trajectory point number (recorded every 30 steps), vertical axis
to simulator output value.

based on random graphs, after roughly 330 epochs of training, as a function of the distance of
the graph used for constructing the net to the true graph. The distance was measured using the
symmetric difference between the respective edge sets.

As we can see, the median of the mean relative error, denoted with a red dot, grows almost
monotonously as a function of the distance of the graph we use to the actual problem graph.
This is visible for both graph sampling methods. The minimum average relative error attained
for a particular value of the distance also grows, perhaps with a bit more of noise.

152

(a) Edge/Non-edge switching (b) Vertex label permutation

Figure 2: Mean relative error achieved by a GNN on test set after roughly 330 epochs of training,
shown as a function of the distance of a random graph to the true one. In subfigure 2(a), edge/non-
edge switching (described in the text) was used for generating random graphs. In subfigure 2(b), vertex
label permutation was used. Red dots denote median result. Errorbars correspond to 5% quantiles.

7. Conclusions

We demonstrated the usefulness of sparsely connected neural networks, with sparsity based on
an adjacency graph, in a problem from the traffic optimization domain. GNN consistently out-
performed FCNN on fixed test sets for the three realistic road networks we considered (Ochota,
Mokotów and Centrum districts in Warsaw). More importantly, GNN achieved approximation
quality far superior to FCNN near unseen simulator output value minima. By using randomly
perturbed graphs, we also showed that the choice of the proper graph when constructing a
GNN is important for achieving good results on a test set.

153

The kind of NN sparsity considered in this paper, where only some of the connections are
allowed, may be regarded as a kind of a regularizer based on the problem graph. It is similar
to L1 regularization of a fully connected neural network in that it keeps only some weights
non-zero in the trained model. The resulting networks have much fewer parameters than
analogous fully connected networks and turn out to generalize significantly better than any
architecture we considered so far for solving the TSS problem.

Acknowledgments

The presented research was supported by Microsoft’s “AI for Earth” computational grant.

References

[1] P. Gora, K. Kurach, Approximating traffic simulation using neural networks and its
application in traffic optimization, in: NIPS 2016 Workshop on Nonconvex Optimization
for Machine Learning: Theory and Practice, 2016.

[2] C. Yang, Y. Yeh, The model and properties of the traffic light problem, in: Proc. of
International Conference on Algorithms, 1996, pp. 19–26.

[3] P. Gora, M. Brzeski, M. Możejko, A. Klemenko, A. Kochański, Investigating performance
of neural networks and gradient boosting models approximating microscopic traffic simu-
lations in traffic optimization tasks, in: "NeurIPS 2018 Workshop "Machine Learning for
Intelligent Transportation Systems", 2018.

[4] M. Możejko, M. Brzeski, L. Madry, L. Skowronek, P. Gora, Traffic signal settings optimiza-
tion using gradient descent, Schedae Informaticae 27 (2018).

[5] P. Gora, M. Bardoński, Training neural networks to approximate traffic simulation out-
comes, in: 2017 5th IEEE International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS), IEEE, 2017, pp. 889––894.

[6] J. Zhang, S. Chowdhury, J. Zhang, A. Messac, L. Castillo, Adaptive hybrid surrogate
modeling for complex systems, AIAA J (2013) 643–656.

[7] D. Rijnen, J. Rhuggenaath, P. R. d. O. d. Costa, Y. Zhang, Machine learning based simulation
optimisation for trailer management, in: 2019 IEEE International Conference on Systems,
Man and Cybernetics (SMC), 2019, pp. 3687–3692. doi:10.1109/SMC.2019.8914329.

[8] R. D. Hurrion, A sequential method for the development of visual interactive meta-
simulation models using neural networks, The Journal of the Operational Research Society
51 (2000) 712–719.

[9] R. R. Barton, M. Meckesheimer, Chapter 18 metamodel-based simulation optimization, in:
S. G. Henderson, B. L. Nelson (Eds.), Simulation, volume 13 of Handbooks in Operations
Research and Management Science, Elsevier, 2006, pp. 535 – 574.

[10] C. Osorio, M. Bierlaire, A surrogate model for traffic optimization of congested networks:
an analytic queueing network approach, in: EPFL-REPORT-152480, 2009.

[11] A. Micheli, Neural network for graphs: A contextual constructive approach, IEEE
Transactions on Neural Networks 20 (2009) 498–511.

[12] C. Zhuang, Q. Ma, Dual graph convolutional networks for graph-based semi-supervised

154

classification, in: Proceedings of the 2018 World Wide Web Conference, WWW ’18,
International World Wide Web Conferences Steering Committee, Republic and Canton
of Geneva, CHE, 2018, p. 499–508. URL: https://doi.org/10.1145/3178876.3186116. doi:10.
1145/3178876.3186116.

[13] L. van der Maaten, G. Hinton, Visualizing data using t-SNE, Journal of Machine Learning
Research 9 (2008) 2579–2605. URL: http://www.jmlr.org/papers/v9/vandermaaten08a.html.

[14] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P. S. Yu, A comprehensive survey on
graph neural networks, CoRR abs/1901.00596 (2019). URL: http://arxiv.org/abs/1901.00596.
arXiv:1901.00596.

[15] Y. Li, R. Yu, C. Shahabi, Y. Liu, Graph convolutional recurrent neural network: Data-driven
traffic forecasting, CoRR abs/1707.01926 (2017). URL: http://arxiv.org/abs/1707.01926.
arXiv:1707.01926.

[16] B. Yu, H. Yin, Z. Zhu, Spatio-temporal graph convolutional neural network: A deep
learning framework for traffic forecasting, CoRR abs/1709.04875 (2017). URL: http://arxiv.
org/abs/1709.04875. arXiv:1709.04875.

[17] S. Guo, Y. Lin, N. Feng, C. Song, H. Wan, Attention based spatial-temporal graph convolu-
tional networks for traffic flow forecasting, in: AAAI, 2019.

[18] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, Z. Li, Deep multi-view spatial-
temporal network for taxi demand prediction, CoRR abs/1802.08714 (2018). URL: http:
//arxiv.org/abs/1802.08714. arXiv:1802.08714.

[19] Supplementary, Supplementary materials, 2021. URL: https://drive.google.com/file/d/1sba_
cunGhao4z4-loIfQYV7u4cXCdnWk/view?usp=sharing.

[20] T. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in:
5th International Conference on Learning Representations, ICLR 2017, Conference Track
Proceedings, 2017.

[21] P. Gora, Traffic simulation framework - a cellular automaton based tool for simulating
and investigating real city traffic, in: Recent Advances in Intelligent Information Systems,
2009, pp. 641–653.

[22] OSM, Openstreetmap, 2021. URL: https://www.openstreetmap.org.
[23] Dataset, Dataset used for experiments, 2021. URL: https://drive.google.com/file/d/

1aLUL3QPxGxeUVmqds6HWeGnVnQ5O4Mxr/view?usp=sharing.
[24] D. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Proceedings of the 3rd

International Conference on Learning Representations (ICLR), 2015.
[25] Y. Nesterov, A method for unconstrained convex minimization problem with the rate of

convergence o (1/𝑘2), Doklady AN USSR 269 (1983) 543—-547.
[26] VMs, Description of virtual machines used in experiments, 2021. URL: https://docs.

microsoft.com/en-us/azure/virtual-machines/sizes-gpu.
[27] Code, Zipped repository of the code used in our experiments, 2021. URL: https://drive.

google.com/file/d/1FF6q8GTJljkYjKSNMYsL5neoXbOqPIcm/view?usp=sharing.
[28] Models, Models trained for the main experiment and all the out-of-sample sim-

ulation datasets, 2021. URL: https://drive.google.com/file/d/1mPnFt1Y1wGLGE-ha2_
JiYsuJEebnfBYx/view?usp=sharing.

155

© 2021 Copyright for this paper by its authors. Use permitted under
 Creative Commons License Attribution 4.0 International (CC BY 4.0)

Prediction of Football Games Results

Roman Nestoruk 1 and Grzegorz Słowiński
2

1 Sollers Consulting Sp. z o.o., ul. Koszykowa 54, Warsaw 00-675, Poland
2 University of Technology and Economics, Engineering Department, ul. Jagiellońska 82f, Warsaw 03-301, Poland

Abstract

For creation of 3 machine learning models, dataset of 50, 100 and 200 games are being used. All the models are

built, using deep learning (DL) and machine technology (ML) technique with the goal to prove, that even ML

algorithms can be used to predict football games result. The data set consists of different real games results,

collected from the most recognizable tournaments, such as: English Premier League, Italian Seria A, German

Bundesliga, Spanish La Liga and French League 1. The target values of the work are prediction of exact game

score (Average accuracy obtained after the last wave of testing – 11.6%) and prediction of game result (Average

accuracy obtained after the last wave of testing – 39%).

Keywords

machine learning, football games prediction, deep learning

1. Introduction

Mainly, the regular person thinking that football is unpredictable and sometimes, analogical game, but we

are living in the 21st century, where technologies have become one of the biggest parts of our lives.

We are using virtual assistance, image and voice recognition, autopilots, we almost meet the era of self-

driving cars. The brain of all these discoveries is Artificial Intelligence, with neural networks inside. We

think these technologies are very helpful for achieving the main target of this work – proving that even

football, where every match consists of thousands of different moments, can be predicted by Artificial

Intelligence better than by benchmark.

2. Used Tools and technology

As football statistic is not available in the format of data files, or API communication response, scraping

algorithm is needed. To not enhance existing stack with extra languages, scrapping algorithm was written

in Python and with use of Selenium Web Driver framework & BeautifulSoup4 library. For machine learning

processes TensorFlow and keras frameworks has been used and CSV library for storing data.

3. Data for training and validation

One of the most recognized kinds of statistics in football games are possession and shots, but for this

algorithm, some more data are also useful:

• Average game mark: Shows the performance of the team, during the season.

• The average amount of goals, per game: Result of dividing the number of goals, scored by the look

at team, by the number of played games.

• Average possession: Average percentage of possession of the ball during the games.

• Pass accuracy: Counting by diving number of all successfully completed passes, by the number of

all passes of the team.

• Shots per game: Anyone, who is connected to football knows, that goals are mainly the result of

shots.

• Average players mark from most possible starting line up: Shows the performance of every single

player, during the season.

156

[Введите текст]

Figure 1: Table with player’s mark

4. Model creation

For this experiment, model with 3 dense layers is being used. As shown on figure 2, model is consisting of:

Figure 2: Model summary

• Hidden layer 1

Consist of 56 units, with RELU activation.

• Hidden layer 2

Consist of 28 units, with RELU activation.

• Output layer

Consist just of 2 units, with Linear activation.

157

[Введите текст]

Figure 3: ReLU activation function graph [Source: 8]

For the first two layers, RELU activation helps to decrease all negative values, as team can not score -1

goals.

4.1. Data preparation

Considering that almost never in football one team is scoring more than 10 goals, expected result was

transformed to the format of 0-1 value by dividing it by 10. For example: Actual score: 1:3, score after

transformation: 0.1:0.3.

To be able, to better validate the result, extra 10% of the data was used for testing and validation of the

model.

5. Models structure and usage

As a result of experiment, 3 models where created:

• Model 1: Trained on 50 examples of games with no unexpected result and validated on 5 extra

examples.

• Model 2: Trained on 100 examples of games with no unexpected result and validated on 10

extra examples.

• Model 3: Trained on 200 examples and validated on 20 extra examples.

To make a summary, how effective are models in daily games prediction. Upcoming days games statistic

were taken as input data for model.

Figure 4: Example of information, used for the result prediction

To simplify the process of validation, result of models prediction is stored table with following format:

• Team playing home as t1

• Team playing away as t1

• Number of goals predicted by the first model, for the home teams as m1t1

• Number of goals predicted by the first model, for the away teams as m1t2

• Number of goals predicted by the second model, for the home teams as m2t1

• Number of goals predicted by the second model, for the away teams as m2t2
158

[Введите текст]

• Number of goals predicted by the last model, for the home teams as m3t1

• Number of goals predicted by the last model, for the away teams as m3t2

Figure 5: Data stored into the “results” variable.

6. Models evaluation

After all matches, we were interested in, have been finished. We can start comparing our predictions with

the actual result. To simplify the result verification, we should transfer output of DL model to the integer,

for that purpose, values where multiplied by. As a standard for this transformation, regular rules of rounding

where used:

• Values are less than integer and half will be rounded to closes lower integer. For example: 1.5252-

>2, 2.9842->3, 0.5->1

• Values are less then integer and half, will be rounded to closes lower integer. For example: 0.4999-

>0, 1.1->1, 2.332->2.

Following these rules, a result like 0.5 vs 0.49 will be considered as 1 vs 0, but a result of 1.49 vs 0.5 will

be considered as 1 vs 1.

The most known kind of prediction is a white guessing. Considering that probability of randomly guessing

the result of any football game is 1 by the amount of possible – 3 (Winning of the home team, draw, or

winning of away team), technically it is 33.3%.

The possibility of predicting the exact score of the game is more complicated because all possible

combinations of the score should be considered. The chance of scoring more than 4 goals is too small, to

be considered. So, to calculate the chance of predicting the exact score of the game, we should calculate

the combination of 5 elements (score from 0 to 4) into 2 places (for 2 playing teams, home and away). We

can calculate it by using the formula 6 – 1. The result of this calculation gives as 15 and the chance of

prediction of the exact score of the game is 1 by 15 or 6.7%.

𝐶(𝑛 + 𝑟 − 1, 𝑟) =
(𝑛 + 𝑟 − 1)!

𝑟! (𝑛 − 1)!

Formula 6: Combination with repetition

6.1. Model 1 evaluation

As mentioned in Chapter 6, model 1 was trained on the smallest amount of real data – 50 games.

• The average percentage of the predicted exact score of the games is on the level 10.3%. It's around

1.5 times more than mathematical chances to predict it. Of course, 0 predicted games for the 02-

07-20 is looking not promising, but we had a very small amount of data to predict. Next days, this

amount increased and was more than 2 times greater than the mathematical probability.

• The average percentage of the predicted winner or draw category is much higher. Of course, in

Picture 8.2 we can see that the first day was failed again. Next days we can see results 4 and 3 times

higher than on the 02-07-20, but this time average is below mathematical.

159

[Введите текст]

Figure 7: Statistic of prediction from model 1

Figure 8: Diagram for the statistic of prediction from model 1

6.2. Model 2 evaluation

Model 2 was trained on the higher amount of real data – 100 games.

• This time we can see good progress on the average percent of predicted games, mainly because of

the predicted games from day 02-07-20. The average percentage for the exact score category was

much more stable and stands on the level 2 times more than mathematical probability.

• For the Predicted winner or draw category we can again see a big difference on the first row, but

almost similar results on the day two and three. The average prognosis stands on the level 44.2%,

it's now 33% more effective than mathematical probably for games prediction.

Figure 9: Statistic of prediction from model 2

160

[Введите текст]

Figure 10: Diagram for the statistic of prediction from model 2

6.3. Model 3 evaluation

Model 3 was trained on the highest amount of real data – 200 games.

• The last model, we are taking into the evaluation shows a very interesting result. The average

percentage of predicting the exact score is above the mathematical chances, average percentage

against stands on the level of around 10%, but much more stable than the first model.

• On the Predicted winner or draw category we can see a big difference in percentages, the first day

was amazingly predicted with 6 out of 8 games. This is more than two times higher than the random

guess probably. But after the checking next two days we can see, that this percentage drops so

much to an extremely low level.

Figure 11: Statistic of prediction from model 3

Figure 12: Diagram for statistic of prediction from model 3

161

[Введите текст]

6.4. Models comparison

For the model's comparison, we are using predictions, they made for real games. To discuss mainly the

advantages and disadvantages of the model, we will be concentrated only on those 3 dates: 02-07-20, 11-

07-20 and 12-07-20

All of them are very useful, in terms of finding the problems, which can be improved during the training of

the future model.

6.4.1. First day of experiment

After the first look at the model's result, we can be somehow disappointed about their prediction for the

first day. Two of them were doing very well and predicted more than 60% of the games, but one completely

failed the experiment. To find the reason for this situation we should look at the games, we were trying to

predict Figure 15.

Figure 13: Games, took place at the date of the experiment (02-07-20)

Most of these games were very important because it was games between the table "place mates". The

difference between the data was very small, but for almost all the games, except the game Roma vs Udinese,

we have seen the success of a team, having a little bit better statistic.

After this analysis, we can assume that our model 1 is having a very small amount of data with different

quality, which impacts a bigger range of possible results. For example:

Let's imagine the ball falls to the ground, we need to predict the height at which the ball will rise after

falling. If we have seen too few examples, with different results we will think like this: The ball might have

small pressure and will raise only for 40% of the initial height or this ball might have different materials

and jump for 60% or even higher. Neural networks trying to consider as most data, as it can, so some of the

examples from the data set can make only mistakes in prediction.

Now, we can investigate model 3, For the first day we have an amazing result, but why we have such a big

drop for the next days? The problem is very similar to the one above. Because we have a big amount of

data, saying for example: "Ball almost every time jumps to the 50% of the initial height", the model will

162

[Введите текст]

ignore extra data and always trying to make a prediction without caring about extra data. This problem is

usually called overtraining.

Let us finally discuss model 2. There we have an average amount of data, so after the training model

"thinks", usually the ball jumps for 50% of the initial height, but let us consider materials, this ball was

created from, etc. This is the reason, why this model is not failing very much during all the games.

6.4.2. Second day of experiment

After reviewing day 2, we can see, how the overtraining problem having an impact on forecasting.

According to our statistics, the best prediction for this day was made by the first model. To make the right

conclusion about this day, we should investigate the games and their results (Figure 15) from football

analytics way. Some of them finished with the surprising and hardly predictable result even for the

specialists in analytics, like draw in the game between the English champion and the team, from the second

part of the table.

Figure 14: Games, took place at the date of the experiment (11-07-20)

The first model showed us the best result 12 out of 25 or 48% of correct predictions for the "Predicted

winner or draw" category, while the second model was working also well, with 40% of predicted games.

The worst result was shown by the third model. 7 out of 25 and 28%, which is also fine if it happens rarely.

6.4.3. Third day of experiment

All of the models having similar results, but they have predicted different games. Because of 20 games with

different kinds of teams, we can see a very good percent of exact prediction on the 10-15%. But as well this

variety of teams is having a big impact on the amount of predicted winner/draw. All of them are on the 25-

30%. For this day, as well as the previous one, we can see the worst result is made by model 3.

163

[Введите текст]

Figure 15: Games, took place at the date of the experiment (12-07-20)

7. Summary

The main idea of this work – is to create a new kind of working model, for football result prediction. While

other peoples are trying to predict the winner of the game, we decided to look more for trying to predict the

number of goals each team should score.

After the following experiments, we can conclude that amount of data, taken for the training is not having

the main impact on successful predictions. Mainly the quality of the data and a little bit of luck are making

success in this field. For getting these 3 different neural networks, we have done more than 500 tries to fit

them, because, for such kind of sport like football, the models should have some understanding about the

usability of every component and not every time we can receive the same result even with the same statistic.

164

[Введите текст]

8. References

[1] Maureen Caudill, Neural Network Primer: Part I", February 1989

[2] Francois Chollet, Deep Learning with Python Paperback, 10 January 2018

[3] Andreas C. Müller, Sarah Guido, Introduction to Machine Learning with Python: A Guide for Data

Scientists, 2015

[4] Sebastian Raschka, Vahid Mirjalili, Python Machine Learning: Machine Learning and Deep Learning

with Python, scikit-learn, and TensorFlow, 2 December 2019

[5] Yann LeCun, Gökhan BakIr, Thomas Hofmann, Bernhard ,Alexander J. Smola, Predicting Structured

Data (Neural Information Processing series), July 2007

[6] David J. Livingstone, Artificial Neural Networks, 2009

[7] https://medium.com/@toprak.mhmt/activation-functions-for-deep-learning-13d8b9b20e Access date:

11.07.2021

165

Dry Beans Classification Using Machine Learning

Grzegorz Słowiński

University of Technology and Economics, ul. Jagiellońska 82f, 03-301 Warsaw, Poland

Abstract
A dataset containing over 13k samples of dry beans geometric features is being analysed
using machine learning (ML) and deep learning (DL) techniques with the goal to
automatically classify the bean species. First the original dataset was reduced to eliminate
redundant features (too strongly correlated and echoing others). Then the dataset was
visualised and analysed with machine learning techniques: Multinomial Bayes, Support
Vector Machines, Decision Tree, Random Forest, Voting Classifier and Artificial Neural
Network. The overall accuracies obtained were in range: 88.35 – 93.61%.

Keywords 1

machine learning, deep learning, classification of dry beans.

1. Introduction

Classification of dry beans is of some economic importance. Manual classification is labour
intensive, etc. Over 13 k samples of dry beans of 7 various species were photographed and their
geometry was measured via computer vision techniques in [1]. Then the set was analysed via several
machine learning (or data science) and deep learning (or artificial neural network) techniques. The
overall accuracy obtained was 87.92-93.13%, depending on technique used.

The dataset used in [1] has been published in the UCI machine learning repository [2]. This work
analyses the same dataset using slightly different techniques. Data dimensionality has been reduced.
Slightly better accuracies has been achieved. Discussion and comparison to [1] has been carried out.

2. Tools

The entire analysis was done using Python and its ML frameworks: numpy, pandas, matplotlib,
seaborn, scikit-learn and keras. Google Colab a free cloud version of jupyter notebook was used. The
reader can find the Python scripts under link [3].

3. Preliminary analysis and visualisation of the dataset

The dataset under study consists of 13611 samples. A sample amounts to 16 geometrical features
and a label identifying the species of the bean. The species are as follows: Barbunya, Bombay, Cali,
Dermason, Horoz, Seker, and Sira. The features are: Area, Perimeter, MajorAxisLength,
MinorAxisLength, AspectRatio, Eccentricity, ConvexArea, EquivDiameter, Extent, Solidity,
Roundness, Compactness, ShapeFactor1, ShapeFactor2, ShapeFactor3, and ShapeFactor4. A detailed
explanation how the features were calculated is presented in [1].

The geometrical data carry no information about the bean colour. From the practical point of view
it is unfortunate, as different dry bean species tend to vary in colour. On the other hand, it makes little
difference if we just want to treat the dry beans classification problem as an exercise in building and
comparing machine learning models.
129th International Workshop on Concurrency, Specification and Programming (CS&P'21)
EMAIL: grzegorz.slowinski@uth.edu.pl
ORCID: 0000-0001-9770-5063

© 2021 Copyright for this paper by its author.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org) CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

166

3.1. Correlation analysis and feature reduction

Correlation analysis has shown that several of the features are strongly (positively or negatively)
correlated. This is due to the fact that basically all of them are kind of geometric measures. The
decision was taken to drop some features to avoid correlations over 0.9 (or negative correlation
below -0.9) between them. The benefits of such a decision should be: 1) a significant reduction of the
computational complexity 2) a lower risk of overfitting 3) ease of visualisation. The disadvantage is a
limited risk of loosing some valuable information and, as a result, a decrease in accuracy.

Table 1
Correlation between selected beans features

MajorAxis
Length

MinorAxis
Length

Aspect-
Ratio

Extent Solidity Roundness Shape
Factor2

Shape
Factor4

MajorAxis
Length

1.0000 0.8261 0.5503 -0.0781 -0.2843 -0.5964 -0.8592 -0.4825

MinorAxis
Length

0.8261 1.0000 -0.0092 0.1460 -0.1558 -0.2103 -0.4713 -0.2637

AspectRatio 0.5503 -0.0092 1.0000 -0.3702 -0.2678 -0.7670 -0.8378 -0.4493
Extent -0.0781 0.1460 -0.3702 1.0000 0.1914 0.3444 0.2380 0.1485
Solidity -0.2843 -0.1558 -0.2678 0.1914 1.0000 0.6072 0.3436 0.7022

Roundness -0.5964 -0.2103 -0.7670 0.3444 0.6072 1.0000 0.7828 0.4721
Shape-
Factor2

-0.8592 -0.4713 -0.8378 0.2380 0.3436 0.7828 1.0000 0.5299

Shape-
Factor4

-0.4825 -0.2637 -0.4493 0.1485 0.7022 0.4721 0.5299 1.0000

Thus, in this work it was decided to limit the set of features list to these 8 members:
MajorAxisLength, MinorAxisLength, AspectRatio, Extent, Solidity, Roundness, ShapeFactor2,
ShapeFactor4, and to exclude: Area, Perimeter, Eccentricity, ConvexArea, EquivDiameter,
Compactness, ShapeFactor1, ShapeFactor3. The issue of high correlations among some features was
not addressed in [1]. The visualisation of the data was done by pair-plot, and is presented in figure 1.

It shows that the Bombay species is trivial to classify as its beans are significantly bigger than
others. the classification of other species seems to be much more difficult, and we can expect more
errors. The correlations between pairs of the selected features are listed in Table 1.

4. Machine Learning techniques used and results

In this work the following techniques were used: Multinomial Gaussian Classifier, Support Vector
Classifier, Decision Tree, Random Forest, Voting Classifier, Artificial Neural Network (Multilayer
Perceptron or MLP).

The full dataset was divided into the training and test subsets. 80% of samples were used for
training and 20% for testing. Division of all available samples into the training and test subsets is
crucial for a correct methodology. The aim of all ML or DL methods is to achieve a ”generalization”
ability. Thus it is important to check the accuracy of classifying new samples, ones that have not been
used during training. Otherwise, there is a very serious risk that the model will suffer form overfitting.
Overfitted models perform very well on the training data but much worse on new data. Overfitting (as
one of the most important issues in ML) is widely discussed in ML handbooks [4-6].

4.1. Multinomial Naive Bayes classifier

Naive Bayes models are based on Bayes's theorem. They are extremely fast and simple, but on the
other hand, their performance is usually limited. They can be used as a baseline for classification
problems (see [4], p. 382).

The overall accuracy obtained with Multinomial Bayes Classifier was 64,30 %. The problem was
to classify into 7 different classes. Thus the blind (random) classification should result in about 1/7 =

167

14,29% accuracy. As one can see, classification is more difficult if there are more classes. Random
classification should give accuracy equal to about 1/(number of classes). Thus we can see that even
this simple model perform about 50 percent points better than the random approach.

Figure 1: The selected features of dry beans (pairplot)

4.2. Support Vector Classifier

Support vector machines (SVM), which can be used as regressors or classifiers, are considered a
very powerful and flexible algorithms. On the other hand. they may need a lot of computing power
(see [4] p.405). The SVM principle is to partition the classes by ”drawing a line” (or plane) in a way
that maximises the margin between classes. As straight lines (or planes) do not usually produce the
best solution, SVC can apply different kernels (polynomial, radial and others). SVC is wider
explained in [4,5]. SVCs with different kernels were tried. Table 2 presents the parameters used and
the accuracy obtained.

The results are quite similar for all kernels. The accuracy can be further improved to some extent
(tenths of %, maybe 1%) by increasing C, but this will also significantly increase the training time.

168

Table 2
The parameters for SVM (other parameters have default values).

Kernel type C parameter Approx. computing time* Overall accuracy
Linear function 105 41 s 91.55%

Polynomial,
degree=3

105 21 s 91.26%

Radial basis 107 34 s 92.18%
*- computation was done on colab: Intel(R) Xeon(R) CPU @ 2.20GHz and 12,69GB RAM

4.3. Decision Tree

A decision tree (DT) belongs to the class of so called non-parametric algorithms. The term non-
parametric can be misleading. In fact, a decision tree has parameters, but their number is not constant.

During the learning phase, a decision tree tries to find the best questions partitioning the dataset in
order to reduce information impurity (the measure is the Gini index or information entropy). The great
advantage of decision trees is that they are extremely intuitive. On the other hand, a decision tree has
no limited degrees of freedom, so it is easy to overfit (if the user is not aware of that). The splits made
by a decision tree are always orthogonal (made on one feature at a time), so the decision tree is very
sensitive to data rotation (see [5], p.188).

In [1] the authors created a decision tree with the depth of 4 (4 questions max) and 9 leaves. We
decided to limit the depth of our decision tree to 5 and to 16 leaves max in order to get a decision tree
that has size similar to DT obtained in [1].

Figure 2 shows the decision tree obtained under the above limits. The overall accuracy is 88.35%.
Preliminary tests showed that a better accuracy of about 92,3% could be obtained with a bigger
decision tree; however, the bigger the decision tree, the less intuitive it becomes, and the more
difficult it is to visualise.

Figure 2: Visualisation of the obtained decision tree produced with the plot_tree method from sci-kit
learn.

In another experiment with a big decision tree we set max depth =10 and max leaf nodes =30. The
accuracy improved and reached 91.59% (Table 3).

169

Table 3
Decision trees parameters and performance

Decision tree Max depth Max leaf nodes Overall accuracy
small 5 16 88.35%

big 10 30 91.59%

It can be seen that to obtain an accuracy similar to that reported in [1] with a decision tree, the tree
would have to be much bigger (losing the main advantage of decision trees, i.e., the intuitive
interpretation). One should keep in mind that in this work the amount of features has been reduced
from 16 to 8. The excluded features were highly correlated to the retained features (being other
geometrical measures of the same beans), so they accounted for little additional information.
However, they present this information in a slightly different manner (”rotated”), making the task
easier for the decision tree.

To see this better, assume that in some dataset we have two parameters A and B, and the
classification is obvious, but it depends on the A/B ratio that is not explicitly present in the dataset.
This can be hard for a decision tree to solve. The addition of an extra column, A/B, will add no new
information to the dataset, but it will help the decision tree quite a bit. It can be supposed that in the
dry bean case, the 8 removed categories contained little extra information, but they presented
essentially the same information in a way more appropriate for the decision tree.

4.4. Random Forest

The random forest idea is as follows: take many decision trees (employing some randomness, so
the trees differ) and let them vote. So the classification decision taken by a random forest is a decision
taken by the most numerous group of decision trees in a random set of trees.

Usually a random forest performs better than a single decision tree. However, a random forest is
considered a ”black-box” model being very hard to interpret.

A random forest of 150 decision trees was created. No restrictions on trees were applied. The
accuracy obtained was 93.61%, the best so-far, better than the best accuracy reported in [1]. In
addition, the training process was fast and took about 2 s, which 10-20 times faster than for SVC.

4.5. Voting Classifier

The idea of ”voting”, which by default is used in random forests, can be applied to any classifiers.
There are 2 main ways of voting: ”hard” (straightforward, direct voting) and ”soft” (the votes are
weighted depending on how confident the classifier is with its choice). Like in the case of a random
forest, there is a good chance that the voting result will be more accurate than for any particular
classifier.

The hard voting classifier was implemented using 3 classifiers described above: the radial kernel
SVC, the ”big” decision tree, and the random forest.

The obtained accuracy was 92.80%. Thus in this case it is worse than for the random forest. This
gives us a clue that voting should be used carefully and preferably with models exhibiting similar
performance; otherwise ”stupid” models can outvote ”smart” models. It seems that this flaw of
democracy does not only apply to human societies, but is more universal in nature.

4.6. Artificial Neural Network

Besides the (shallow) machine learning/data science methods presented above, a deep learning
technique, the so-called dense artificial neural network, has also been tried.

For an artificial neural network the data needs additional treatment. First, the names of bean
species were labelled with numbers and then these numbers 0-6 were codded as so called ”one-hot”.

170

The reason of using ”one-hot” encoding is well explained for example in [4] p. 376 or [6] pp. 190-
194. The other operation is scaling, a standardisation or normalisation of the training data. The data
(each feature) is centred around zero (by subtracting the average) and normalised (by dividing by the
standard deviation). Standardisation is said to ease the training process and tends to bring in
improvement in performance [5] p. 72.

Two architectures of ANN were tried. The first one is similar to the one described in [1], except
that the input layer size in our case is 8 not 16. The network has 3 hidden layers with 17, 12, 3,
neurons, respectively. Rectified Linear Unit was used as an activation function in hidden layers. The
output layer has 7 neurons, one for each bean species. Sigmoid is the activation function for the output
layer. The optimiser used was: RMSprop, and the loss function was the categorical cross entropy. The
validation set was 20% of training set. The network was trained for 24 epochs. The architecture of this
network and the training process are presented in figure 3.

Figure 3. The architecture (left) and the training process (right) of the first ANN.

The overall accuracy was 92.58%. In an attempt to improve it, another ”bigger” ANN was tried.
Besides the normal layers, a dropout layer was added. A dropout layer only works during the training
and randomly ”cuts off” (sets to zero) some inputs. It is expected that dropout layers reduce the risk of
overfitting [6] p.109. The architecture of the network and its training are shown in figure 4. The same
optimiser and loss function were used: RMSprop and the categorical cross entropy, respectively. The
network was also trained for 24 epochs. The overall accuracy was 92.77%, thus the improvement was
not much.

5. Results and Conclusions

The dry beans dataset has been analysed by different machine learning and deep learning
techniques. Table 4 shows the summary results.

It can be seen that in general the task of beans classification is a relatively simple task in terms of
the necessary computing power. All training times were shorter than 1 minute using a free google-
colab computer.

171

The accuracy of Naive Bayes is much worse than for the other methods. This is not surprising, as
this method is known to be fast but not very accurate, and is suggested as a preliminary method to
check if there is „something” in the data, rather than to do a full analysis. The other methods give
accuracy in a relatively close range of 88.3-93.6%. This is comparable to [1] where the accuracy was
in range 87.9-93.13%.

The authors in [1] trained their models with all 16 features. Here, some strongly correlated features
were eliminated. The results show that this elimination has not decreased the accuracy.

The only technique, that suffered from this elimination to some extend seems to be decision tree.
This is due to the fact that decision tree operates on one feature at a time and cannot ”combine”
features. See also the discussion in p. 4.3 devoted to the decision tree section.

Figure 4. The architecture (left) and the training process (right) of the second ANN.

One can see that the models vary strongly in the terms of the computing time. SVC and ANN (and
also Voting Classifier, because it includes SVC) are the slowest learners. Random forest seems to be
the best method in this case, as it perform best and its training time is also reasonable.

Confusion matrices provide a comfortable way to visualise results in more details and compare
actual values with predicted ones. The confusion matrix for the random forest classifier (the best
performer) will be discussed further. It is presented in figure 5. The most frequent mistakes were
between Dermason and Sira (38 + 44). On the other hand, Bombay was classified perfectly which is
not surprising. It is easy to notice that Bombay beans are significantly bigger than other species.

The dry beans dataset appeared to be an interesting dataset to demonstrate and compare ML
techniques. Two ideas for further research:

172

 Deeper insight how and if the elimination of correlated features influences the ML training
process. This study shows that there is little, if any, performance decrease. One may try to
investigate if the elimination reduces the training time and how much.
 Despite ”manual” feature reduction, as done in this work, on may try to use PCA (the primary
component analysis) to reduce the dimensionality of data and also analyse its influence on model
performance (accuracy and training time)

Figure 5. Test subset confusion matrix for the random forest classifier.

6. References

[1] Murat Koklu, Ilker Ali Ozkan, Multiclass classification of dry beans using computer vision and
machine learning techniques, Computers and Electronics in Agriculture 174 (2020) 105507

[2] Dry beans dataset at UCI repository: https://archive.ics.uci.edu/ml/datasets/Dry+Bean+Dataset,
access 23.06.2021

[3] Colab notebook containing computation scripts for this work: https://colab.research.google.com/
drive/11X6VevSMybenGkRqK1Xj_1EJmU3vomFB?usp=sharing

[4] Jake VanderPlass, Python Data Science Handbook, O’Reilly, 2017
[5] Aurelien Geron, Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow, O’Reilly,

2019
[6] Francois Chollet, Deep Learning with Python, Manning Publications, 2018

173

Author Index

Ali
Aliyu Tanko, 93

Azad
Mohammad, 126

Bergmann
Andre, 18

Boruta
Agnieszka, 131

Bozhenkova
Elena, 60

Calleja Garćıa
Emilio José, 18

Chikalov
Igor, 126

Czaja
Ludwik, 31

Dutta
Soma, 46

Gburzynski
Pawel, 131

Gora
Pawel, 145

Grunske
Lars, 2

Gruska
Damas, 83, 93

Gröpler
Robin, 18

Hafner
Verena V., 106, 113

Heiden
Simon, 2

Hussain
Shahid, 126

Klemenko
Arkadiusz, 145

Knapp

Alexander, 1

Kuznicka

Ewa, 131

Mellmann

Heinrich, 106, 113

Milewski

Roman, 2

Moshkov

Mikhail, 126

Mozejko

Marcin, 145

Nestoruk

Roman, 156

Nguyen

Hung Son, 117

Puzynin

Eugen, 113

Redziejowski

Roman R., 72

Ruiz

M. Carmen, 83

Skowron

Andrzej, 46

Skowronek

Lukasz, 145

Sudhi

Viju, 18

S lowiński

Grzegorz, 120, 156, 166

Taliaronak

Volha, 106

Virbitskaite

Irina, 60

	Preface
	Table of Contents
	Specifying Event/Data-based Systems (keynote)
	Evaluating Fault Localization Techniques with Bug Signatures and Joined Predicates
	NLP-Based Requirements Formalization for Automatic Test Case Generation
	Cause-Effect Structures Behaving like Reaction Systems
	Interactive Granular Computing Connecting Abstract and Physical Worlds: An Example
	On Semantics for Testing in Time Petri Nets
	Left Recursion by Recursive Ascent
	Process Opacity and Insertion Functions
	Attack Trees with Time Constraints
	Extended Abstract: Simulation of Interactions between Beehives
	Extended Abstract: A Novel Mobile App for the Next Generation of Beekeepers
	Efficient Machine Learning Methods over Pairwise Space (keynote)
	Influence of Data Dimension Reduction, Feature Scaling and Activation Function on Machine Learning Performance (short paper)
	Sorting by Decision Trees with Hypotheses (extended abstract)
	On Reliable Wireless Streaming of Real-time Sensor Data
	Graph-based Sparse Neural Networks for Traffic Signal Optimization
	Prediction of Football Games Results
	Dry Beans Classification Using Machine Learning (short paper)
	Author Index

