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Preface

This volume contains the papers presented at CS&P 2016, the 25th International
Workshop on Concurrency, Specification and Programming, held on September
28 - 30, 2016 in Rostock, Germany.

Since the early seventies Warsaw University and Humboldt University have
alternately organized an annual workshop - since the early nineties known as
CS&P. Over time, it has grown from a bilateral seminar to a well-known meet-
ing attended also by colleagues from many other countries than Poland and
Germany.

This year marks an anniversary: we celebrate the quarter-centenary edition
of CS&P. We do so on the Baltic Sea coast, in one of the oldest universities in
the world, the University of Rostock, founded in 1419. The gathering is hosted
by Rostock University’s department of computer science, and the editor would
like to thank Prof. Karsten Wolf and his local team for their hospitality and
great organization.

During the three-day meeting, there are 14 sessions in two parallel tracks.
Additionally, there is a number of short presentations on current and emerging
topics, as well as tool demos and open discussions.

This volume contains 26 papers supplementing the presentations, selected
from the submissions by the program committee. Following the workshops tra-
dition, we strive to retain an informal working atmosphere. Therefore, the pro-
ceedings includes drafts and extended abstracts as well as fully elaborated con-
tributions.

The proceedings are published by Humboldt University and CEUR. The
editor would like to thank the university’s printing office, the team at CEUR
Workshop Proceedings, and EasyChair for their help in producing this publica-
tion.

Berlin, September 2016 Holger Schlingloff
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Trying to understand PEG

Roman R. Redziejowski

roman@redz.se

Abstract. Parsing Expression Grammar (PEG) encodes a recursive-
descent parser with limited backtracking. Its properties are useful in
many applications. In its appearance, PEG is almost identical to a gram-
mar in the Extended Backus-Naur Form (EBNF), but may define a dif-
ferent language. Recent research formulated some conditions under which
PEG is equivalent to its interpretation as EBNF. However, PEG has a
useful feature, namely syntactic predicate, that is alien to EBNF. The
equivalence results apply thus only to PEG without predicates. The pa-
per considers PEG with predicates. Not being able to investigate equiv-
alence, the paper turns to the limited backtracking that is the main
source of difficulty in understanding PEG. It is shown that the limita-
tion of backtracking has no effect under conditions similar to those for
PEG without predicates. There is, in general, no mechanical way to check
these conditions, but they can be often checked by inspection. The paper
outlines an experimental tool to facilitate such inspection.

1 Introduction

Parsing Expression Grammars (PEGs) have been introduced by Ford in [3] as
a new formalism for describing syntax of programming languages. The formal-
ism encodes a recursive-descent parser with limited backtracking. Backtracking
removes the LL(1) restriction usually imposed on top-down parsers. The back-
tracking being limited makes it possible for the parser to work in a linear time,
which is achieved with the help of ”memoization” or ”packrat” technology de-
scribed in [1, 2].

In addition to circumventing the LL(1) restriction, PEG can be used to define
parsers that do not require a separate ”scanner” or ”tokenizer”. All this makes it
useful, but PEG is not well understood as a language definition tool. Literature
contains many examples of surprising behavior.

In its appearance, PEG is almost identical to a grammar in the Extended
Backus-Naur Form (EBNF). Few minor typographical changes convert EBNF
to PEG. As EBNF is familiar to most, one expects that the identically-looking
PEG defines the same language. This is often the case, but the confusion comes
when it is not.

In [6], the author tried to construct exact formulas for the language defined
by a given PEG. This was a failure as the formulas became extremely complex
with increasing complexity of the grammar.
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In a pioneering work [5]1, Medeiros used ”natural semantics” to describe
both PEG and EBNF. Using this approach, he demonstrated that any EBNF
grammar satisfying the LL(1) condition defines exactly the same language as
its PEG counterpart. In [7], the author extended this result to a much wider
class of grammars. However, there is no general way to mechanically check the
conditions specified there. Some manual methods were suggested, based mainly
on inspection.

PEG has one feature that does not have a counterpart in EBNF: the syntactic
predicate. All results about the equivalence of PEG and EBNF must be thus
restricted to PEG without predicates. And this is the case for all results from
[5, 7]. But, predicates are useful in defining some features of the language like
the distinction between keywords and identifiers.

This paper is an attempt to better understand PEG even in the presence of
predicates. Because one can no longer investigate the equivalence of PEG and
EBNF, we concentrate on the main source of confusion: the limited backtracking.
We find that limited backtracking has no effect on choice expressions that can
be identified as ”disjoint”. The conditions for disjointness are similar to those
from [7], with LL(1) as the strongest one. Again, there is no general mechanical
way to check disjointness. We outline an experimental tool, called PEG Analyzer,
that combines the LL(1) test with heuristics to investigate disjointness of choice
expressions.

We start by recalling, in Section 2, the definition of Parsing Expression Gram-
mar and its formal semantics. In Section 3, we discuss limited backtracking and
disjoint expressions. Section 4 introduces the PEG Analyzer with the help of
three examples. The results obtained in Section 3 require a modification to the
relation Follow known from the classical literature. This modification involves
a rather tedious treatment not relevant for the main subject, so it is presented
separately in Section 5. Finally, Section 6 contains few comments.

2 The grammar

We start with a simplified Parsing Expression Grammar G over alphabet Σ.
The grammar is a set of rules of the form A = e where A belongs to a set N of
symbols distinct from the letters of Σ and e is an expression. Each expression is
one of these:

ε (”empty”), ! e (”predicate”),

a ∈ Σ (”terminal”), e1e2 (”sequence”),

A ∈ N (”nonterminal”), e1| e2 (”choice”),

where each of e1, e2, e is an expression. The set of all expressions is in the fol-
lowing denoted by E. There is exactly one rule A = e for each A ∈ N . The
expression e appearing in this rule is denoted by e(A). The predicate operator
binds stronger than sequence and sequence stronger than choice.

1 This work is in Portuguese. An extended English version is available in [4].
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The expressions represent parsing procedures, and rules represent named
parsing procedures. In general, parsing procedure is applied to an input string
from Σ∗ and tries to recognize an initial portion of that string. If it succeeds,
it returns ”success” and usually consumes the recognized portion. Otherwise,
it returns ”failure” and does not consume anything. The actions of different
procedures are specified in Figure 1.

ε Indicate success without consuming any input.

a If the text ahead starts with a, consume a and return success.
Otherwise return failure.

A Call e(A) and return result.

! e Call e. Return failure if succeeded.
Otherwise return success without consuming any input.

e1 e2 Call e1. If it succeeded, call e2 and return success if e2 succeeded.
If e1 or e2 failed, backtrack: reset the input as it was before the invocation
of e1 and return failure.

e1| e2 Call e1. Return success if it succeeded. Otherwise call expression e2 and
return success if e2 succeeded or failure if it failed.

Fig. 1. Actions of expressions as parsing procedures

We note the limited backtracking: once e1 in e1| e2 succeeded, e2 will never
be tried. The backtracking done by the sequence expression may only roll back
e1| e2 as a whole.

The actions of parsing procedures can be formally defined using ”natural
semantics” introduced in [4, 5]. For e ∈ E, we write [e] xy PEG y to mean that e
applied to string xy consumes x, and [e] x PEG fail to mean that e fails when
applied to x. One can see that [e] xy PEG y, respectively [e] x PEG fail , holds if
and only if it can be formally proved using the inference rules shown in Figure 2.

The PEG parser may end up in an infinite recursion, the well-known nemesis
of top-down parsers. Formally, it means that there is no proof according to the
rules of Figure 2. It has been demonstrated that if the grammar G is free from
left-recursion, then for every e ∈ E and x ∈ Σ∗ there exists a proof of [e] x PEG 
fail or [e] x PEG y for some y ∈ Σ∗. This has been shown in [4,5] by checking that
PEG defined by natural semantics is equivalent to that defined by Ford in [3]
and using the result from there. An independent proof for grammar without
predicates is given in [7]. It is easily extended to grammar with predicates. We
assume from now on that G is free from left-recursion.

For e ∈ E, we denote by L(e) the set of words x ∈ Σ∗ such that [e] xy PEG y
for some y ∈ Σ∗. This is the language accepted by e. Note that, in general,
x ∈ L(e) does not mean [e] xy PEG y for each y.
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[ε] x PEG x
(empty)

[e(A)] xy PEG Y

[A] xy PEG Y
(rule)

[e] xy PEG y

[! e] xy PEG fail
(not1)

[e] x PEG fail

[! e] x PEG x
(not2)

[a] ax PEG x
(letter1)

b ̸= a

[b] ax PEG fail
(letter2)

[a] ε PEG fail
(letter3)

[e1] xyz
PEG yz [e2] yz

PEG Z

[e1e2] xyz
PEG Z

(seq1)
[e1] x

PEG fail

[e1e2] x
PEG fail

(seq2)

[e1] xy
PEG y

[e1| e2] xy PEG y
(choice1)

[e1] xy
PEG fail [e2] xy

PEG Y

[e1| e2] xy PEG Y
(choice2)

where Y denotes y or fail and Z denotes z or fail .

Fig. 2. Formal semantics of PEG

We define the EBNF interpretation of G as the language LE(e) accepted by
expression e ∈ E. It is defined recursively as

LE(ε) = {ε}, LE(! e) = {ε},
LE(a) = {a}, LE(e1e2) = LE(e1)LE(e2),

LE(A) = LE(e(A)), LE(e1| e2) = LE(e1) ∪ LE(e2).

By defining LE(! e) = {ε}, we extended the interpretation to PEG with predi-
cates. This is not what one can expect looking at the grammar, just an approx-
imation. The following result from [4,5] is easily extended to our interpretation
of predicates:

L(e) ⊆ LE(e) for any e ∈ E . (1)

The opposite of (1) does not, in general hold. This is, to some extent, due
to the different interpretation of predicates, but the main cause is limited back-
tracking.

3 Disjoint choice and limited backtracking

We say that choice e = e1| e2 is strictly disjoint if

L(e1)Σ∗ ∩ L(e2)Σ∗ = ∅. (2)

Such choice is not affected by the limitation of backtracking. Indeed, suppose
that e is applied to some string s and e1 succeeds. This means s ∈ L(e1)Σ∗.
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After this, any attempt to backtrack must result in a failure. It would mean
applying e2 to s, and a success would mean s ∈ L(e2)Σ∗, which is excluded
by (2). So, not attempting it does not make any difference.

The choice aa|a is not disjoint in the sense of (2). However, it is not af-
fected by partial backtracking when it appears in some contexts, for example, in
(aa|a)b. A success of aa means that input has the form aaΣ∗, so backtracking
to a is useless as it will later result in a failure by not finding b.

We are going to look at limited backtracking in the context of our grammar G
successfully parsing a complete input string. Thus, we assume that G has a
unique start symbol S ∈ N with the corresponding rule S = e # where e is an
expression and # is a unique end-of-text marker that appears only in this rule.
We say that a string w ∈ Σ∗ is accepted by S to mean that [S] w PEG ε.

For an expression e ∈ E, we define Tail(e) to be the set of strings y such that
[e] xy PEG y appears as partial result in the proof of [S] w PEG ε for some w. We
say that the choice e = e1| e2 is disjoint (in the context of G) if

L(e1)Σ∗ ∩ L(e2) Tail(e) = ∅. (3)

The same argument as before shows that such choice is not affected by the
limitation of backtracking. If e is applied to some string s in a proof [S] w PEG ε
and e1 succeeds, we have s ∈ L(e1)Σ∗. An attempt to backtrack would mean
applying e2 to s, and a success would mean s ∈ L(e2)Tail(e), which is excluded
by (3).

A mechanical checking of (3) is in general impossible because of complexity of
L(e) and Tail(e), and because it may involve checking emptiness of intersection
of context-free languages - known to be undecidable. However, it can be often
checked using approximation.

With (1), we can approximate L(e1) and L(e2) by LE(e1) respectively LE(e2).
This gives a stronger condition:

LE(e1)Σ
∗ ∩ LE(e2)Tail(e) = ∅. (4)

It was shown in [7] that if this condition holds for all choice expressions in a
grammar without predicates, we have L(e) = LE(e) for all e ∈ E.

To approximate Tail(e), we need to modify the relation Follow known from
the classical literature. The modification is described in Section 5, where it
is shown (Proposition 1) that with the modified relation, we have Tail(e) ⊆
LE(Follow(e))Σ∗ where LE(Follow(e)) = ∪x∈Follow(e)LE(x). This gives an even
stronger condition:

LE(e1)Σ
∗ ∩ LE(e2)LE(Follow(e))Σ∗ = ∅. (5)

Using known methods one can compute the sets of symbols that appear as
first in strings from LE(e1)Σ

∗ respectively LE(e2)LE(Follow(e))Σ∗. Condition
(5) is then obviously satisfied if these sets are disjoint. This is the familiar LL(1)
condition.

5



As suggested in [7, 8], one can obtain a weaker condition by approximating
LE(e1)Σ

∗ and LE(e2)LE(Follow(e))Σ∗ with sets of the form FΣ∗ where F is
some suitably chosen subset using the classical relation First. Some ways of
choosing F have been suggested, but they can not, in general, be mechanized.
Another approximation was suggested by Schmitz in [9].

The grammar G considered up to now is a simplified version of full PEG. This
latter allows expressions such as e1| e2| . . . | en, e1e2 . . . en, e∗, e+, and e? . The
expression E = e1| e2| . . . | en is a syntactic sugar for E = e1|E1, E1 = e2|E2,
. . . , En = en so (3) must hold for all of E,E1, . . . , En−1. One can verify that
this is true if

L(ei)Σ∗ ∩ L(ej) Tail(E) = ∅ for 1 ≤ i < j < n. (6)

The expressions E = e∗, E = e+, and E = e? constitute syntactic sugar for,
respectively E = eE/ε, E = eE/e, and E = e/ε so (3) must hold for each of
them. One can verify that this is true if

L(e)Σ∗ ∩ Tail(E) = ∅. (7)

The rules for computing Follow(e) given in the Section 5 can be similarly
extended to the full PEG.

The terminals in full PEG are not necessary single letters, and may be multi-
letter quoted strings. Instead of sets of ”first letters” used in the test for LL(1),
one has to compute sets of ”first terminals” and check their disjointness.

4 PEG Analyzer

Giving up all hope for an automatic verification of (3), the author created an ex-
perimental tool, the PEG Analyzer, that combines the LL(1) check with heuris-
tics. It takes a grammar, tests all choice expressions for LL(1) using (5), and
presents for inspection those that did not pass the test. To facilitate inspec-
tion, it gradually expands the involved expressions by replacing them with their
definitions, somewhat in the spirit of what was suggested in [7, 8].

4.1 Example 1: Simple calculator

To give some idea of the Analyzer, we apply it to the grammar shown in Figure 3.
The grammar defines the syntax of a simple calculator.

When Analyzer is applied to this grammar, it indicates that the choice be-
tween the first two alternatives of Factor does not satisfy LL(1), and opens a win-
dow shown in Figure 4. It is an invitation to verify (3) for e1 = Digits? Fraction,
e2 = Digits, and Tail(Factor).

The first two lines show these two expressions. The second is, in fact, a
pseudo-expression, with pseudo-expression Tail(Factor) representing the tail.
The third line tells that both expressions have [0-9] as ”first terminal”.

6



Start = Sum #

Sum = Product (AddOp Product)*

Product = Factor (MultOp Factor)*

Factor = Digits? Fraction | Digits | Lparen Sum Rparen

Fraction = "." Digits

AddOp = [-+]

MultOp = [*/]

Lparen = "("

Rparen = ")"

Digits = [0-9]+

Fig. 3. A simple calculator

Factor.1 = Digits? Fraction

Factor.2 = Digits Tail(Factor)

[0-9] <==> [0-9]

Digits? Fraction

Digits Fraction

[0-9] [0-9]* "." Digits

<==>

Digits Tail(Factor)

Digits (AddOp Product | MultOp Factor | Rparen) ...

[0-9] [0-9]* (AddOp Product | MultOp Factor | Rparen) ...

Fig. 4. Presentation of a non-LL(1) case

The subsequent lines show the two expressions in more detail. Thus, the first
expression stands for two alternative expressions, Digits Fraction and Fraction.
Since this latter does not start with [0-9], only Digits Fraction appears, with
an indentation showing that it is one of alternatives. In the next line, Digits is
expanded following its definition to [0-9] [0-9]* and Fraction to "." Digits.
The result is supposed to give an idea of strings starting with [0-9] that are
accepted by Digits? Fraction.

In the second expression, Tail(Factor) is replaced by the approximation
LE(Follow(Factor))Σ∗ in the form of pseudo-expression. Again, Digits is ex-
panded to [0-9] [0-9]*.

Verifying (3) means checking if any string represented by e1 can be a prefix
of any string in L(e2)Tail(Factor). One can easily see that Digits in the first
expression is always followed by a dot, while in the second it can be only followed
by AddOp, MultOp, or Rparen, none of which is a dot. The condition (3) is thus
satisfied.
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4.2 Example 2: Grammar with predicates

The second example illustrates treatment of predicates. The grammar in Figure 5
is a fragment of larger grammar that uses identifiers, with some of them being
reserved as ”keywords”. Only one keyword, "print" is shown. Its definition is
followed by ! Letter to make sure it is not recognized as a prefix of an identifier.
The definition of Identifier is preceded by ! Keyword to ensure that keyword is
not recognized as an identifier.

Statement = (Keyword Number | Identifier Number) ";" #

Keyword = "print" !Letter

Identifier = !Keyword Letter+

Letter = [a-z]

Number = [0-9]+

Fig. 5. Grammar with predicates

The Analyzer applied to this grammar indicates that the choice in Statement

does not satisfy LL(1), and opens the window shown in Figure 6.
To check LL(1), the Analyzer approximated L("print"! Letter) with LE("print")
and L(! Keyword Letter+) with LE(Letter+):

L("print"! Letter) ⊆ LE("print"!Letter) = LE("print") ,

L(! Keyword Letter+) ⊆ LE(! Keyword Letter+) = LE(Letter+) .

It found their first terminals to be, respectively, "print" and [a-z]. As they are
not disjoint, the choice does not satisfy LL(1) and is signaled as such. But, this
is a false alarm. One can easily see that

L("print" ! Letter ...) ∩ L(! Keyword Letter+ ...) = ∅

showing that the expression satisfies (3).

Statement.1.1 = Keyword Number

Statement.1.2 = Identifier Number Tail(Statement.1)

"print" <==> [a-z]

Keyword Number

"print" !Letter Number

<==>

Identifier Number Tail(Statement.1)

Identifier Number ";" ...

!Keyword Letter+ Number ";" ...

Fig. 6. Presentation of a non-LL(1) case

8



4.3 Example 3: Non-disjoint expressions

Suppose now that in the calculator from Example 1, we want sometimes to skip
the multiplication sign and write, for example 2(.3+4) instead of 2*(.3+4). To
achieve this, we replace the definition of MultOp by MultOp = "*"? | "/".

The Analyzer applied to the modified grammar shows now two cases not
satisfying LL(1). The first produces the window shown in Figure 7. It says that
[0-9] in [0-9]+ is followed by something that may start with [0-9], namely any
of two different alternatives of Factor after omitted first alternative of MultOp.
Clearly, [0-9] is a prefix of each alternative. The condition (3) is not satisfied.

Digits.1 = [0-9]

Tail(Digits)

[0-9] <==> [0-9]

[0-9]

<==>

Tail(Digits)

MultOp Factor ...

Factor ...

Digits? Fraction ...

Digits Fraction ...

[0-9] [0-9]* Fraction ...

Digits ...

[0-9] [0-9]* ...

Fig. 7. Presentation of a non-LL(1) case

How does this happen and what does it mean? A look at the grammar shows
that the offending [0-9]+ is one appearing at the end of the first Factor in
Factor (MultOp Factor)*. With omitted MultOp it will gobble up any digits at
the beginning of the second Factor, without any attempt to backtrack. Thus, for
example, 234 will be treated by PEG as a single Factor, and not as shorthand
for 2*3*4.

In this example, the grammar interpreted as EBNF has an ambiguity, and
PEG just selects one of the possible parses.

The second case not satisfying LL(1) is the same as for the original grammar:
the choice between the first two alternatives of Factor, and is reported exactly
as shown in Figure 4. However, MultOp in MultOp Factor that appears in the tail
of Factor may be omitted. And Factor has an alternative that begins with a
dot. Thus, Digits in Digits Tail(Factor] can be followed by a dot and (3) is
not satisfied. It means that, for example, 2.34 will be treated by PEG as a single
Factor, and not as shorthand for 2*.34.

Here the grammar interpreted as EBNF has another ambiguity and PEG
chooses one possible parse. In both cases, we may accept the PEG’s choice
because it corresponds to the perception of a human reader.
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5 Computation of Follow

We define a number of relations R ⊆ E×E, writing e′ ∈ R(e) to mean (e, e′) ∈ R.

• Derivess(e) is the set of all e′ ∈ E such that [e′] x′y PEG y can be derived
from [e] xy PEG y using one inference rule.
Thus, e′ ∈ Derivess(e) if and only if:

– e′ = A ∈ N where e(A) = e,
– e′ = e e2 for some e2 such that ε ∈ L(e2),
– e′ = e1 e for some e1,
– e′ = e| e2 for some e2,
– e′ = e1| e for some e1.

• Derivesf (e) is the set of all e′ ∈ E such that [e′] xy PEG fail can be derived

from [e] xy PEG y using one inference rule.
Thus, e′ ∈ Derivesf (e) if and only if:

– e′ =! e,
– e′ = e e2 for some e2.

• Deriveff (e) is the set of all e′ ∈ E such that [e′] x PEG fail can be derived

from [e] x PEG fail using one inference rule.
Thus, e′ ∈ Deriveff (e) if and only if:

– e′ = A ∈ N where e(A) = e,
– e′ = e1 e for some e1,
– e′ = e e2 for some e2,
– e′ = e| e2 for some e2,
– e′ = e1| e for some e1 that can fail.

• Nexts(e) is the set of all e′ ∈ E such that ε /∈ L(e′) and there exists e e′ ∈ E.
• Nextf (e) = {ε} for all e such that there exists ! e ∈ E or e| e2 ∈ E for some e2.

Define Follow = Derive∗ss ×Nexts ∪Derive∗ss ×Derivesf ×Derive∗ff ×Nextf .

Proposition 1. For each partial result [e] xy PEG y in the proof of [S] w PEG ε
holds y ⊆ LE(Follow(e))Σ∗ where LE(Follow(e)) =

∪
e′∈Follow(e) LE(e′).

Proof. Consider any partial result [E1] xy
PEG y in the proof of [S] w PEG ε. It is

the first in a chain of n ≥ 1 partial results derived successively using the rules of
Figure 2 and other partial results. The chain ends with final result [S] w PEG ε
derived from [En #] xn #

PEG ε. In this chain, the first j ≥ 1 partial results are
of the form [Ei] xiy

PEG y. By definition of Derivess, we have Ei ∈ Derive∗ss(E1)
for 1 ≤ i ≤ j. The first partial result in a different form must be one of these:

(a) [Ej e2] xjuv
PEG v where y = uv, u ̸= ε, and [e2] uv

PEG v.

(b) [!Ej ] xjy
PEG fail .

(c) [Ej e2] xjy
PEG fail where [e2] xjy

PEG fail .
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In case (a) we have e2 ∈ Nexts(Ej), so e2 ∈ (Derive∗ss ×Nextf )(E1) ⊆ Follow(E1).
We have also y = uv where u ∈ L(e2) ⊆ LE(e2) ⊆ LE(Follow(E1)), so y ∈
LE(Follow(E1))Σ

∗.
In cases (b) and (c), we have partial result [Ej+1] x

PEG fail . According to
the definition of Derivesf , we have Ej+1 ∈ Derivesf (Ej). It is first in the chain

of k ≥ 1 partial results in the form [Ei] x
PEG fail derived successively using

the rules of Figure 2 and other partial results. By definition of Deriveff , we have
Ei ∈ Derive∗ff (Ej) for j + 1 ≤ i ≤ j + k. The first partial result in a different
form must be one of these:

(d) [!Ej+k] uv
PEG uv.

(e) [Ej+k| e2] uv PEG v where [e2] uv
PEG v,

where uv = x. We only know that the original y is a suffix of uv, but is very
unlikely to be the same as v. We can only approximate it as y ∈ Σ∗. In each of
(d)-(e), we have Nextf (Ej+k) = {ε}, so

{ε} = (Derive∗ss ×Derivesf ×Derive∗ff ×Nextf )(E1) ⊆ Follow(E1).

We have ε ∈ LE(Follow(E1)), so y ∈ LE(Follow(E1))Σ
∗. ⊓⊔

Note that the very rough approximation of Tail(e) by Σ∗, changing (5) into
a strict disjointness, applies to e that appears in a partial proof resulting in a
failure (which is eventually needed to prove [S] w PEG ε).

6 Final remarks

The fact that EBNF does not have predicates spoils the useful correspondence
with PEG. The basic conditions for absence of effects of limited backtracking
remain in principle unchanged, but there is no way of talking about equivalence.

There is no way to just include the recognition-oriented predicates as part
of the construction-oriented EBNF. But one may consider some more natural
extensions to EBNF that could serve the same purpose as predicates in defining
useful grammars.

The example of PEG Analyzer shows that disjointness can often be checked
by inspection. The tool as described here is quite primitive. One can improve it
by letting the user interactively choose specific parts of expressions for detailed
inspection.

The subject for further research is a careful analysis of what happens in the
case of non-disjoint choice.
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Laboratoire I3S, Université de Nice - Sophia Antipolis (Oct 2006)

12



Timed Processes of Interval-Timed Petri Nets

Elisabeth Pelz
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Abstract. In this paper we use partial order semantics to express the
truly concurrent behaviour of interval-timed Petri nets (ITPNs) in their
most general setting, i.e. with autoconcurrency and zero duration, as
studied with its standard maximal step semantics in [?]. First we in-
troduce the notion of timed processes for ITPNs inductively. Then we
investigate if the equivalence of inductive and axiomatic process seman-
tics - true for classical Petri nets - could hold for ITPNs too. We will see
that the notions of independence and immediate firing obligation seem to
be antagonistic ones, and that local axioms, adequate to define processes
of classical Petri nets, are not sufficient to caracterize timed Processes of
IITPNs. We propose several original ”global” axioms which reveal to be
an effective solution. Thus we yield finally a full axiomatic definition of
timed processes for ITPNs.

1 Introduction

Petri nets are an algebraic and graphical formalism, proposed by Carl Adam
Petri [?], used to represent complex interactions and activities in a system, they
model situations like synchronisation, sequentiality, concurrency and conflict.
Classical Petri nets do not carry any time information and so they are not
suitable for quantitative analysis of the performance and reliability of systems
with respect to time.

Several time extensions of Petri nets have been proposed in the literature,
[?,?]. In this paper, we consider Interval-Timed Petri Nets (ITPNs) with auto-
concurrency which are a generalisation of Timed Petri Nets. The main feature
of Interval-Timed Petri Nets is that transitions which are enabled need to start
immediately their firing, and the firing lasts some time within an (integer) in-
terval. Thus in the observation the startfiring and the endfiring of a transition
are considered as two distinct events. Furthermore, in the class of ITPNs we
consider here, we allow transitions to take no time (i.e. to have zero duration).
This obligation of immediate firing led to the standard execution of Timed Petri
Nets in (simultanous) maximal steps.

Let us state precisely the concepts which lead to the describtion of the be-
haviour of ITPNs under maximal step semantics, cf. [?]. Each transition has its
own clock. The progress of time is managed by a global clock by means of (dis-
crete) ticks which increment all local clocks. Inbetween two ticks, we must fire as
many transitions as possible, i.e., for a maximal number of enabled transitions
there are startfiring events; but also, we have to endfire every fired transition
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which reach its maximal duration (i.e., which must endfire) plus an arbitrary
multiset of fired transitions which may endfire. The maximal multiset of events
which occur between two time ticks is called a global step. In [?] such standard
semantics of ITPNs in terms of firing step sequences are exhaustively defined.

By convention, we only consider ITPNs with zero duration which are well-
formed, as in [?], i.e. where no infinite global step is possible.

Partial order semantics allow to describe the behaviour of concurrent systems
by expressing explicitly concurrency, seen as independency. Processes are the
usual partial order semantics for classical Petri nets [?,?]. They are also defined
for time Petri nets [?,?,?] as well as for high level Timed Petri nets (with one-
safe markings) [?]. Processes of classical Petri Nets can be defined by axiomatic
definitions or by inductive ones using firing sequences, as discussed in [?].

Inspired by this approach, we define in this paper timed processes for ITPNs,
inductively using firing step sequences. To our knowledge processes have never
been introduced for this class. Our definitions will be coherent with the approach
in [?], albeit arbitrary markings and auto-concurrency introduce new challenges.
We propose a way to respect also the above quoted concepts of immediate firing
obligation and global tick in the inductive definition.

But when trying to define timed processes axiomatically, some antagonism
appears. Let us remind that the axiomatic definition (for classical Petri Nets)
states local properties which are true for all events in the process, indepen-
dently of all other events and independently of any particular cut (or marking).
Now, for ITPNs, events have to satisfy global contraints too, they are no longer
independent but inter-dependent and cuts (before ticks) will play the role of syn-
chronisation barriers. In particular, each tick event depends on the set of events
which precede it. We will see the limits of an axiomatization where only local
properties are defined and illustrate them with an example. Then gradually the
global constraints are discussed and formulated in ”global” axioms. Such global
axioms are something original in Petri Net semantics. We succeed to give them
in first order logic without quantification on sets (or cuts). Finally we are able
to present a group of local and global axioms which form a total axiomatization
of timed processes.

The remaining of the paper is organized as follows: Section 2 contains formal
definitions about Interval-Timed Petri Nets. In Section 3 basic definitions around
partial order structures can be found. Section 4 gives an inductive definition
of timed processes and Section 5 details the discussion and formulation of an
axiomatic one. Section 6 presents some concluding remarks.

2 Some Definitions

Let us start to define classical Petri nets.

Definition 1
(
Petri Nets

)
A Petri net is a 3-tuple N = (P, T, v) such that
- P and T are finite sets of places and transitions respectively with P ∩ T = ∅
- v : (P × T ) ∪ (T × P ) −→ N is its valuation function. �
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The states of Petri nets are described by markings M : P −→ N which are
represented by vectors of dimension |P |.

Let x be a node such that, x ∈ P ∪ T . The preset of x is denoted by •x,
with •x = {y ∈ P ∪ T | v(y, x) > 0}. Similarly, x• denotes the postset of x,
with x• = {y ∈ P ∪ T | v(x, y) > 0}. In the same manner, the preset of a net N
is defined by •N = {x ∈ P ∪ T | •x = ∅}, the postset of a net N is defined by
N• = {x ∈ P ∪ T | x• = ∅}.

Formally, a multiset U of events E is a mapping U : E → N, such that, for
e ∈ E the natural number U(e) is called the multiplicity of e. The multiset U
can be written in the extended set notation U = {eU(e) | e ∈ E and U(e) 6= 0}.

Several time extensions of classical Petri nets have been proposed to integrate
temporal modeling properties, time Petri nets [?], timed Petri nets [?] and causal
time Petri nets [?].

In this paper, Interval-Timed Petri Nets (ITPNs) are considered in their most
general setting, i.e. allowing zero duration and autoconcurrency. ITPNs are an
extension of Timed Petri Nets in which the firing duration of each transition is
given within an interval. We recall shortly the definitions of [?], which contains
much more details and examples.

Definition 2
(
Interval-Timed Petri Nets

)
An Interval-Timed Petri Net is a 5-tuple N = (P, T, v,M0, I) such that
- (P, T, v) is a Petri net, called skeleton of the net N
- M0 : P −→ N is its initial marking
- I : T −→

[
N,N

]
is its interval function. �

We suppose that the set of transitions is enumerated: T = {t1, t2, .., t|T |}.
The time interval associated with a transition t is given by
I(t) =

[
sfd(t), lfd(t)

]
, where sfd(t) is called the shortest firing duration and

lfd(t) ≥ sfd(t) the longest firing duration.
Only ITPNs are considered whose transitions have a non empty preset and
postset i.e., for each transition t ∈ T holds that | •t| > 0 and |t•| > 0.

In Interval-Timed Petri Nets a marking is not sufficient to describe com-
pletely the state of a net. The state must also include temporal informations.
This is given by a matrix which codes the transitions clocks.

Definition 3
(
State

)
A state of an ITPN N = (P, T, v,Mo, I) is a pair S = (M,h) such that
- M is a marking.
- h is a clock matrix which has |T | rows and d columns s.t. d = max

ti∈T

(
lfd(ti)+1

)
.

The value hi,j+1 represents the number of active transitions ti with age j (i.e.
fired since j time ticks). �

The set of all possible states of N is denoted by States(N ). The initial state
of N is denoted S0 = (M0, h0) where M0 is the initial marking of the skeleton
and h0 is a zero matrix, i.e. no transition is active.
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2.1 Firing rules for ITPNs

Definition 4
(
Autoconcurrently enabled transitions

)
Let N be an ITPN and S = (M,h) its current state. Then a transition t is enabled
at the marking M n times autoconcurrently if ∀p ∈ P, n · v(p, t) 6 M(p). If
n = 1 this is the usual definition of (single) enabling.
For each transition the value Ei(M) tells how many times (at most) transition
ti can be fired autoconcurrently at marking M . Thus Ei(M) = ni if
∀p ∈ P, (ni · v(p, ti) 6M(p) and ∃p ∈ P, (ni + 1) · v(p, ti) > M(p)

)
. �

When transitions may fire, firing starts immediately ; this is done by remov-
ing input tokens from the preplaces of the chosen transitions. A startfired tran-
sition t stays active for some time delay in between its associated time interval[
sfd(t), lfd(t)

]
, until it may or must endfire by delivering the output tokens to

its postplaces.
Three types of events are distinguished : startfire, endfire and tick events. The
effect of each of these events on the state of an ITPN is given below.

Definition 5
(
State change rules

)
Let N be an ITPN and (M,h) its current state.

1. Startfire events : A startfire event, denoted by [ti, may occur immediately,
even up to n times, if ti is enabled at M , resp. if Ei(M) = n. For each occur-
rence of [ti the needed input tokens of ti are removed from their preplaces,
the clock associated with ti will count this occurrence by incrementing the
number hi,1.

(M,h)
[ti−→ (M ′, h′) with M ′ = M −

∑
p∈ •ti

v(p, ti) and h′i,1 = hi,1 + 1.

There may be conflicts between enabled transitions, and the way they are
solved is arbitrary. Tick events may not occur when there are still enabled
transitions, i.e., if for some i, Ei(M) > 0.

2. Endfire events : An endfire event, denoted by ti〉 must occur (even n times)
if the clock associated with some ti reach the upper bound of its associated
interval i.e. hi,j+1 ≥ 1 with j = lfd(ti). An endfire event ti〉 may occur if
there is an active transition ti with age in [sfd(ti), lfd(ti)[ . The corresponding
hi,j+1 is then decremented.

(M,h)
ti〉−→ (M ′, h′) if

∑
sfd(ti)6j6lfd(ti)

hi,j+1 > 1 with

M ′ = M +
∑
p∈t•i

v(ti, p) and h′i,j+1 = hi,j+1 − 1 for some j with hi,j+1 > 0.

If this new state enables some transitions, one or more startfire events must
then occur, and if endfire events(of zero duration) must occur in the sequel,
they have to be handled, and so on.

3. Tick events : A tick event, denoted by X, is enabled once neither a startfire
event nor a must endfire event have to occur. The tick event increments the
clocks for all active transitions and models the passing of time.

(M,h)
X−→ (M ′, h′) with M ′ = M and for all i holds if

Ei(M) = 0 and hi,lfd(ti)+1 = 0 then h′i,j =

{
hi,j−1 if 1 < j 6 d

0 if j = 1
. �
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The ITPN N presented in Fig.1. is used as a running example.

5

p1
t1

[0, 2]

t2

[1, 1]

p2

p3

t3

[0, 0]

t4

[1, 3] p4

t5

[1, 2]2

Fig. 1: ITPN N

The condition of the occurrence of a tick event ensures that what have oc-
curred since the previous tick event (i.e. in between two ticks) is maximal. In
the case of transitions which may late zero time, which is allowed in the net
class considered here, the notion of start firing event which need to occur ”im-
mediately”, means ”before the next tick”. There is no time scale within zero
time. The following definition will precise the notion of global step which hap-
pens in between two ticks and where multisets of startfire and endfire events will
alternate until nothing more need to occur.

We only consider wellformed ITPNs in this article. They ensure to have
always only a finite number of events which appear between two ticks. If there
is no firing sequence of transitions of possible zero duration which increases
a marking, the ITPN is wellformed. This property is decidable on the subnet
restricted to transitions whose sfd is zero.

All results given here could be easily extended to ITPNs which are not neces-
sarily wellformed: they allow infinite global steps where no tick event can follow.
Thus such an infinite global step would be the ”end” of a step firing sequence.
We just like to limite the considerations here to the standard wellformed case.

2.2 Maximal Step Semantics for ITPNs

The executions of wellformed ITPNs with zero duration and autoconcurrency
under maximal step semantics are given by the so called firing step sequence
as defined in [?], where a firing step sequence is an alternating sequence of
globalsteps and ticks.

A globalstep is a multiset of firing events of an ITPN in between two tick
events, it consists on two principal multisets, the first one is called Endstep and
the second one is called Iteratedstep. So a firing step is a triplet
(Endstep, Iteratedstep, tick), or a couple (globalstep, tick).

An Endstep at state S contains all endfire events which must occur at S and
an arbitrary multiset of endfire events which may occur at S. At the beginning, at
initial state S0, it is always empty as no transition has startfired. In the following
steps, it can be empty; then the whole global step can be empty and one tick
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event follows immediately the previous one. An Iteratedstep is an alternating
sequence of multisets of startfire events (not necessarily maximal) and multisets
of endfire events with zero duration (containing all must endfire ones). The
alternation ends if neither a transition is enabled nor an endfire event with zero
duration must occur, thus the iterated step is maximal and finite. This situation
happens because of the wellformedness.

Thus a firing step sequence σ of length n is given by

σ = S0

globalstep1

−−−−−→ S̃0

X
−→ S1

globalstep2

−−−−−→ S̃1

X
−→ S2 · · ·Sn−1

globalstepn

−−−−−→ S̃n−1
X
−→ Sn.

If in S̃n−1 = (M̃n−1, h̃n−1) no transition is active, i.e. if h̃n−1 is the Zero-matrix,
then we have a deadlock , and the last tick and Sn do not exist.

The following example illustrates firing steps.

Example 1 Consider the ITPN N , one possible initial firing step from its ini-
tial state S0 is given in the sequel.

The first Endstep is necessarily empty (Endstep1 = ∅). Then, suppose that

we fire two times t1 and one time t2, i.e. {[t12, [t2} then we choose to endfire t1
at zero duration, i.e. {t1〉}, after that we fire {[t4}, no further startfire event is
possible now, so a tick event is executed. The first iterated step is the union of
all these multisets :
Iteratedstep1 = {[t12, [t2} ] {t1〉} ] {[t4} = {[t12, [t2, t1〉, [t4}.

Thus a possible first firing step of N is
(
{}, {[t21, [t2, t1〉, [t4},X

)
. �

3 True concurrent semantics

In this paper we plan to study the behaviour of ITPNs without sequentializ-
ing the observation. Thus we will use partial order semantics to express true
concurrency and in particular, nonsequential processes [?,?,?].

Processes have been defined and investigated for classical Petri nets and for
some other net classes like time Petri Nets [?,?,?]. The only known contribution
on process semantics of a timed Petri Net class is [?], but in a context of high
level nets with one-safe markings. Arbitrary markings, zero durations of events
and auto-concurrency give us new challenges. Also, no axiomatic approach exists
until now for time or timed Petri nets.

3.1 Partial order structures

Concurrent runs or executions of an ITPN are usually represented by condi-
tion/event nets where all arcs have an arc weight 1.

N ′ = (B,E,G) is a condition/event net if B ∩ E = ∅ and G ⊆ (B × E) ∪
(E×B). The places of B are called conditions and the transitions of E are called
events.

A causal net is a condition/event net N ′ = (B,E,G) such that

– for every b ∈ B, | •b| 6 1 and |b•| 6 1,
– G∗, the transitive closure of G is acyclic,
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– N ′ is finitly preceded, i.e., for every x ∈ B ∪ E the set {y | (y, x) ∈ G∗} is
finite.

Causal nets do not allow any branching at conditions. In a causal net N ′ =
(B,E,G), the transitive closure of the flow relation G is acyclic and therefore a
partial order. We call it the precedence relation and denote it by ≺. The symbol
� denotes the reflexive and transitive closure of G.

A homomorphism φ is a mapping that preserves the nature of nodes and
the environment of events. A homomorphism is used to connect conditions and
events of a causal net to places and transitions of the executed net whose be-
haviour is observed.

A chain c of a causal net is a set of totally ordered events, i.e.,
c ⊂ E and ∀e ∈ c ∀e′ ∈ c

(
(e′ � e) ∨ (e � e′)

)
. It can be seen as a sequence of

events that occurred during the run of the system.
A set AC of nodes of a causal net is an antichain if

∀x ∈ AC ∀x′ ∈ AC (¬(x ≺ x′) ∧ ¬(x′ ≺ x)). An antichain AC is a maximal
antichain or a cut if ∀x /∈ AC the union AC ∪ {x} is not an antichain.

Note that usually, cuts are considered restricted to conditions or restricted
to events. In particular, a cut restricted to conditions is called cut of conditions
or B-cut. Note that each B-cut of a process of a classical Petri Net represent
a possible marking that may occur during the concurrent execution for some
observer.

4 Process semantics for ITPNs

A timed process of an ITPN N will be defined as a pair (N ′, φ) where N ′ is a
causal net and φ a homomorphism which labels the causal net with information
from the ITPN N . The set of clock labels is introduced to capture information
about time elapsed since a transition is active. It is defined by

CL = {(t, j) | t ∈ T and j 6 lfd(ti)} and P ∩ CL = ∅.

A clock label (t, j) means that t is active and has age j.
The following set of firing events denoted by FE will label the events:

FE = {[t | t ∈ T} ∪ {t〉 | t ∈ T} ∪ {X} and P ∩ FE = ∅.

Thus in a causal net where conditions are labeled in P ∪ CL a B-cut is able
to represent a time-state (M,h). Note that for any set B′ ⊆ B the image φ(B′)
defines a multi-set of labels.

4.1 Inductive definition

Let N = (P, T, v,M0, I) be an ITPN. A timed process π of N is constructed
along a possible firing step sequence σ of N , whose length is no, as follows.
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We construct successively labeled causal nets πi = (N ′i , φi) = (Bi, Ei, Gi, φi)
where φi : Bi ∪ Ei → (P ∪ CL) ∪ FE by induction on i by using three Add-
procedures given below for the creation of events. The i−th induction step cor-
responds to the i−th firing step of a σ. We stop if π = (N ′, φ) = πno

.
The sets BCL and BP will be the sets of conditions whose postset is currently

empty and which are labeled by clock labels and by places respectively.
Base of induction i = 0: •π0 = B0 will be a set of conditions with

φ0 : B0 → P representing the initial marking such that
∀p ∈ P |φ0−1(p) ∩B0| = M0(p). We set E0 = G0 = ∅, BP = B0 and BCL = ∅.

Hypothesis: Let n > 1. We suppose that ∀i < n, πi = (Bi, Ei, Gi, φi) has
been constructed and the current BCL and BP are known.

Induction step i = n: We start by setting Bi = Bi−1, Ei = Ei−1, Gi =
Gi−1 and φi = φi−1. Then πi is constructed as follows:

a) (Treatment of the first Endstep of the current globalstep)
For each condition b ∈ BCL:

- If φi(b) = (t, j) for some t with j = lfd(t) then Add
(
b, t〉, i

)
.

- If φi(b) = (t, j) for some t with sfd(t) 6 j < lfd(t) then Add
(
b, t〉, i

)
or

do nothing.
b) (Treatment of the Iteratedstep of the current globalstep)
b.1) (Treatment of Startfirings)

If there exists a set B′ ⊆ BP with φi(B
′) = •t for some t ∈ T , then

Add
(
B′, [t, i

)
.

Repeat b.1) or goto to b.2) .
b.2) (Treatment of an Endstep)

For each condition b ∈ BCL:
- If φi(b) = (t, 0) for some t with lfd(t) = 0, then Add

(
b, t〉, i

)
.

- If φi(b) = (t, 0) for some t with sfd(t) = 0 and lfd(t) 6= 0, then Add
(
b, t〉, i

)
or do nothing.

( Maximality of the globalstep)
Repeat step b) until ∀t ∈ T : •t * φ(BP )) (i.e. until no startfire event is
possible) , then go to c).

c) (Treatment of a Tickevent)
If BCL 6= ∅ then Add

(
X, i

)
. �

End (If i = no)

The three Add-procedures are as follows:
The startfire event creation Add

(
B′, [t, i

)
:

– We add an event e with φi(e) = [t: Ei = Ei ∪ {e} .
– We add arcs Gi = Gi ∪ {(b, e)|b ∈ B′}.
– We add a condition b′ with φi(b

′) = (t, 0): Bi = Bi∪{b′};BCL = BCL∪{b′}.
– We add an arc Gi = Gi ∪ (e, b′) and reset BP = BP \B′.

The endfire event creation Add
(
b, t〉, i

)
:

– We add an event e with φi(e) = t〉: Ei = Ei ∪ {e} .
– We add an arc Gi = Gi ∪ (b, e) and redefine BCL = BCL \ {b}.
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– For each p ∈ t•, we add v(t, p) conditions B′ = {b′1, .., b′v(t,p)} with φi(b
′) = p

for all b′ ∈ B′: Bi = Bi ∪B′ and BP = BP ∪B′.
– We add arcs Gi = Gi ∪ {((e, b′)|b′ ∈ B′}.

The tick event creation Add
(
X, i

)
:

– We add an event e with φi(e) = X: Ei = Ei ∪ {e}.
– We add arcs Gi = Gi ∪ {(b, e)|b ∈ BCL}.
– For each b ∈ BCL, if φi(b) = (t, j) for some t and j, then we add a condition
b′ with φi(b

′) = (t, j + 1): Bi = Bi ∪ {b′} and an arc Gi = Gi ∪ (e, b′).
– We redefine BCL = e•.

We observe that c) happens at each step because of the wellformedness of
the executed ITPN. If BCL = ∅ then a deadlock appeared; otherwise a tick is
added. A process construction stops after the creation of some tick event, except
for deadlock. Thus global steps are fully included. It is easy to see, that for
each i the cut π•i is a B-cut and represents the time-state Si+1 reached after the
execution of the considered firing step sequence of length i, respectively S̃n0−1
in the case of a deadlock after n0 global steps.
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Fig. 2: An arbitrary process of the ITPN N of Fig.1.

We use abreviation as follows: i Denotes condition bi and j denotes event ej .

4.2 Axiomatic definition and how to overcome its limits

We start by proposing an axiomatization by local properties of events as pro-
cesses of a classical Petri Nets have been axiomatized, for instance in [?].
The causal net π = (N ′, φ) is an timed evolution of N if

φ : B ∪ E → (P ∪ CL) ∪ FE is a homomorphism verifying
– ∀b ∈ B, φ(b) ∈ P ∪ CL and ∀e ∈ E, φ(e) ∈ FE (coherence of labeling).
– •π ⊆ B and ∀p ∈ P, |φ−1(p) ∩ •π| = M0(p) (the initial marking).
– For each event e of the causal net N ′ it holds :
• Case 1 : If φ(e) = [t for some t ∈ T then
∗ ∀p ∈ P |φ−1(p) ∩ •e| = v(p, t) and |e•| = 1 with φ(e•) = {(t, 0)}
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• Case 2: If φ(e) = t〉 for some t ∈ T then
∗ | •e| = 1 and φ( •e) = {(t, j)} for some j ∈ [sfd(t), lfd(t)] and
∗ ∀b ∈ e• φ(b) ∈ P and ∀p ∈ P |φ−1(p) ∩ e•| = v(t, p).

• Case 3: If φ(e) = X then
∗ ∀b ∈ •e ∪ e• φ(b) ∈ CL and
∗ ∀b ∈ •e φ(b) = (t, j)) for some t and some j < lfd(t) and
∗ ∀t ∈ T ∀j ∈ [0, d] |φ−1((t, j)) ∩ •e| = |φ−1((t, j + 1)) ∩ e•|

These axioms define especially local properties of events in the same way
as axioms of processes for classical Petri Nets, i.e., they ensure that each event
has a correct pre- and postset of conditions with respect to the firing rule. Only
the initial cut and the final one are evoked. It is evident that each event of an
inductively defined process satisfies clearly the corresponding axiom.

First let us state the following sentence.

Proposition 1 There are evolutions which are not processes.

Proof. An evolution of the net N of Fig.1 is given in Fig.3. It respects all points
of the axiomatic definition but does not correspond to any firing step sequence
of N . We can see in this example that tick event e2 is not global as it should
be, and may only occur when neither a startfire event nor a must endfire event
is possible. In particular, e3 and e4 are independent from e2, thus conditions b8
and b9 are also independent from e2 instead of entering it. These axioms also
allow infinite evolutions, and we could have added an axiom like
[π• 6= ∅ and ∀b ∈ B ∃x ∈ π• b ≤ x] to ensure that π is finite. But as finiteness
will be a consequence of the axioms adjoined in the sequel, we omit it here.
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Fig. 3: An evolution which is not a process of running example.

Therefore, with the given axiomatic definition we are unable to avoid some
partial orders that violate important properties like the fact that tick events have
to be global and have to form a chain. Let us try to formulate supplementary
axioms about non local properties for tick events:
Globality axioms:
– (a) ∀e ∀e′

(
(φ(e) = X ∧ φ(e′) = X)⇒ (e = e′ ∨ e′ ≺ e ∨ e ≺ e′)

)
– (b) ∀e ∀e′

(
(φ(e) = X ∧ φ(e′) = X ∧ e′ ≺ e))⇒ (∀b ∈ •e e′ ≺ b)

)
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The axiom (a) ensures that all tick events form a chain in the partial order,
and (b) that all conditions entering later tick events are necessarily greater than
other preceding tick events, thus in particular greater than its potential direct
predecessor tick. In particular, for the running example, point (b) makes impos-
sible to creat a ”partial” tick event like e2 in Fig.3, as b9 and b8 entering e5 are
not comparable to (and not greater than) e2.

Finally global axioms about maximality and concerning the final cut have to
be defined.
Final cut axioms:
– (d) ∀t ∈ T ∃p ∈ •t |φ−1(p) ∩ π•| < v(p, t)
– (e) ∀t ∈ T ∀b (φ(b) = (t, lfd(t))⇒ |b•| = 1)
– (f) ∀x ∈ π• φ(x) ∈ P ∨ ∃e

(
(φ(e) = X ∧ ∀x (e ≺ x⇒ φ(x) ∈ CL) ∧
∀b /∈ e• (φ(b) ∈ CL)⇒ b• 6= ∅)

)
As by (d) no startfire event is possible at the final cut π•, availible tokens (P la-
beled conditions) are maximally used for startfire events and thus the obligation
of startfiring, up to some choice, is satisfied.

By axiom (e) must endfire events must occur.
Axiom (f) ensures that either (case 1) all elements in the final cut are place

labeled, which together with (d) means that the process ends by an deadlock;
or (case 2) there is a last tick event whose postset are clock labeled conditons in
the final cut π• and all other clock labeled conditons have a successor; i.e., they
enter in an endfiring event, or they enter in a tick event which is by axiom (b)
the appropriate one and not a later one.

We may conclude that what happens between two tick events is a global step
and axioms (d) and (e) together ensure its maximality. Axiom (f) also implies
the finiteness of the process. Finally the finite cut correspond to the time state
reached after the execution of all events of the evolution.

The initial cut •π and the final cut π• are the only sets of nodes evoked in
the given axioms; they are just used like constant sets. Thus we have successfully
avoided to use second order quantification over sets - representing intermediate
B-cuts - in all proposed axioms.

As consequence of these observations we obtain the desired result.

Proposition 2 Let N be a wellformed ITPN. Then the class of timed evolutions
of N which also satisfy the axioms (a) to (f) is the same as that of timed processes
of N defined inductively.

5 Conclusion
In this paper we investigate ITPNs in their most general setting, i.e., with auto-
concurrency and with zero duration. In a previous paper their usual maximal
step semantics were introduced [?], in terms of firing step sequences.

The goal of the present article is to present their truly concurrent behaviour.
Thus first, timed processes of ITPNs have been defined inductively along firing
step sequences. Then the possibility of defining these processes in an axiomatic
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way too are studied. Our first attempt was to propose local axioms, similar to
the way processes of classical Petri Nets are defined axiomatically, obtaining the
so called timed evolutions. Then we stated and illustrated the fact that some
timed evolutions do not correspond to any firing step sequence and therefore
they cannot be timed processes.

Several supplementary ”global” axioms are gradually formulated and dis-
cussed. They are a novelty when defining processes, but the price to pay to
capture global timing and firing constraints.

We succeed to give a full axiomatization of timed processes totally compatible
with the firing step semantics.
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Abstract. Process mining is a research field focused on the analysis of
event data with the aim of extracting insights in processes. Applying
process mining techniques on data from smart home environments has
the potential to provide valuable insights in (un)healthy habits and to
contribute to ambient assisted living solutions. Finding the right event
labels to enable application of process mining techniques is however far
from trivial, as simply using the triggering sensor as the label for sensor
events results in uninformative models that allow for too much behavior
(overgeneralizing). Refinements of sensor level event labels suggested
by domain experts have shown to enable discovery of more precise and
insightful process models. However, there exist no automated approach
to generate refinements of event labels in the context of process mining.
In this paper we propose a framework for automated generation of label
refinements based on the time attribute of events. We show on a case
study with real life smart home event data that behaviorally more specific,
and therefore more insightful, process models can be found by using
automatically generated refined labels in process discovery.

Keywords: Label Refinements, Process Discovery, Unsupervised Learning

1 Introduction

Process mining is a fast growing discipline that combines knowledge and tech-
niques from data mining, process modeling, and process model analysis [22].
Process mining techniques concern the analysis of events that are logged during
process execution, where event records contain information on what was done,
by whom, for whom, where, when, etc. Events are grouped into cases (process in-
stances), e.g. per patient for a hospital log, or per insurance claim for an insurance
company. Process discovery plays an important role in process mining, focusing on
extracting interpretable models of processes from event logs. One of the attributes
of the events is usually used as its label and its values become transition/activity
labels in the process models generated by process discovery algorithms.

The scope of process mining have broadened in recent years from business
process management to other application domains, one of them being analysis of
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Table 1. An example of an event log from a smart home environment.

Id Timestamp Address Sensor Sensor value

1 03/11/2015 04:59:54 Mountain Rd. 7 Motion sensor - Bedroom 1
2 03/11/2015 06:04:36 Mountain Rd. 7 Motion sensor - Bedroom 1
3 03/11/2015 08:45:12 Mountain Rd. 7 Motion sensor - Living room 1
4 03/11/2015 09:10:10 Mountain Rd. 7 Motion sensor - Kitchen 1
5 03/11/2015 09:12:01 Mountain Rd. 7 Power sensor - Water cooker 1200
6 03/11/2015 09:15:45 Mountain Rd. 7 Power sensor - Water cooker 0
. . . 03/11/2015 . . . Mountain Rd. 7 . . . . . .

7 03/12/2015 01:01:23 Mountain Rd. 7 Motion sensor - Bedroom 1
8 03/12/2015 03:13:14 Mountain Rd. 7 Motion sensor - Bedroom 1
9 03/12/2015 07:24:57 Mountain Rd. 7 Motion sensor - Bedroom 1
10 03/12/2015 08:34:02 Mountain Rd. 7 Motion sensor - Bedroom 1
11 03/12/2015 09:12:00 Mountain Rd. 7 Motion sensor - Living room 1
. . . 03/12/2015 . . . Mountain Rd. 7 . . . . . .

12 03/14/2015 03:41:46 Mountain Rd. 7 Motion sensor - Bedroom 1
13 03/14/2015 05:00:17 Mountain Rd. 7 Motion sensor - Bedroom 1
14 03/14/2015 08:52:32 Mountain Rd. 7 Motion sensor - Bedroom 1
15 03/14/2015 09:30:54 Mountain Rd. 7 Motion sensor - Living room 1
16 03/14/2015 09:35:25 Mountain Rd. 7 Power sensor - TV 160
17 03/14/2015 10:27:37 Mountain Rd. 7 Power sensor - TV 0
. . . 03/14/2015 . . . Mountain Rd. 7 . . . . . .

. . . . . . . . . . . . . . .

events of human behavior with data originating from sensors in smart home envi-
ronments [19, 21, 20]. Table 1 shows an example of such an event log. Events in the
event log are generated by e.g. motion sensors placed in the home, power sensors
placed on appliances, open/close sensors placed on closets and cabinets, etc. Par-
ticularly challenging in applying process mining in this application domain is the
extraction of meaningful event labels that allow for discovery of insightful process
models. Simply using the sensor that generates an event (the sensor column in Ta-
ble 1) as event label is shown to produce non-informative process models that over-
generalize the event log and allow for too much behavior [21]. Abstracting sensor-
level events into events at the level of human activity (e.g. eating, sleeping, etc.)
using techniques closely related to techniques used in the activity recognition field
helps to discover more behaviorally more constrained and insightful process models
[20], but applicability of this approach relies on the availability of a reliable diary
of human behavior at the activity level, which is often just impossible to obtain.

In our earlier work [21] we showed that better process models can be discovered
by taking the name of the sensor that generated the event as a starting point for
the event label and then refining these labels using information on the time within
the day at which the event occurred. The refinements used in [21] were based on
domain knowledge, and not identified automatically from the data. In this paper,
we aim at automatic generation of semantically interpretable label refinements
that can be explained to the user, by basing label refinements on data attributes
of events. We explore methods to bring parts of the timestamp information to
the event label in an intelligent and fully automated way, with the end goal of dis-
covering behaviorally more precise and therefore more insightful process models.

We start by introducing basic concepts and notations used in this paper in
Section 2. In Section 3, we introduce a framework for the generation of event
labels refinements based on the time attribute. In Section 4, we apply this frame-
work on a real life smart home data set and show the effect of the refined event
labels on process discovery. We continue by describing related work in Section
5 and conclude in Section 6.
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2 Preliminaries

In this section we introduce the notions related to event logs and relabeling
functions for traces and then define the notions of refinements and abstractions.
We also introduce the Petri net process model notation.

We use the usual sequence definition, and denote a sequence by listing its
elements, e.g. we write 〈a1, a2, . . . , an〉 for a (finite) sequence s : {1, . . . , n} → A
of elements from some alphabet A, where s(i) = ai for any i ∈ {1, . . . , n}; |s|
denotes the length of sequence s; s1s2 denotes the concatenation of sequences s1
and s2. A language L over an alphabet A is a set of sequences over A. Lp is the
prefix closure of a language L (with L ⊆ Lp).

An event is the most elementary element of an event log. Let I be a set
of event identifiers, and A1 × · · · × An be an attribute domain consisting of n
attributes (e.g. timestamp, resource, activity name, cost, etc.). An event is a
tuple e = (i, a1, . . . , an), with i ∈ I and (a1, . . . , an) ∈ A1 × · · · × An. The event
label of an event is the attribute set (a1 . . . , an); ei, and ea respectively denote
the identifier and label of event e. The timestamp attribute of an event is denoted
by at. E = I × A1 × · · · × An is a universe of events over A1, . . . ,An. The rows
of Table 1 are events from an event universe over the event attributes timestamp,
sensor, address, and sensor value.

Events are often considered in the context of other events. We call E ⊆ E
an event set if E does not contain any events with the same event identifier.
The events in Table 1 together form an event set. A trace σ is a finite sequence
formed by the events from an event set E ⊆ E that respects the time ordering
of events, i.e. for all k,m ∈ N, 1 ≤ k < m ≤ |E|, we have: σ(k)t ≤ σ(m)t. We
define the universe of traces over event universe E , denoted Σ(E), as the set of
all possible traces over E . We omit E in Σ(E) and use the shorter notation Σ
when the event universe is clear from the context.

Often it is useful to partition an event set into smaller sets in which events
belong together according to some criterion. We might for example be interested
in discovering the typical behavior within a household over the course of a day.
In order to do so, we can e.g. group together events with the same address and
the same day-part of the timestamp, as indicated by the horizontal lines in Table
1. For each of these event sets, we can construct a trace; time stamps define the
ordering of events within the trace. For events of a trace having the same time
stamps, an arbitrary ordering can be chosen within a trace.

An event partitioning function is a function ep : E → Tid that defines the
partitioning of an arbitrary set of events E ⊆ E from a given event universe E into
event sets E1, . . . , Ej , . . . where each Ej is the maximal subset of E such that for
any e1, e2 ∈ Ej , ep(e1) = ep(e2); the value of ep shared by all the elements of Ej
defines the value of the trace attribute Tid. Note that multidimensional trace at-
tributes are also possible, i.e. a combination of the name of the person performing
the event activity and the date of the event, so that every trace contains activities
of one person during one day. The event sets obtained by applying an event par-
titioning can be transformed into traces (respecting the time ordering of events).
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An event log L is a finite set of traces L ⊆ Σ(E). AL ⊆ A1×· · ·×An denotes
the alphabet of event labels that occur in log L. The traces of a log are often
transformed before doing further analysis: very detailed but not necessarily infor-
mative event descriptions are transformed into some informative and repeatable
labels. For the labels of the log in Table 1, the sensor values could be abstracted
to on, and off or labels can be redefined to a subset of the event attributes, e.g.
leaving the sensor values out completely. Next to that, if the event partitioning
function maps each event from Table 1 to its address and the day-part of the
timestamp, these attributes (indicated in gray) become the trace attribute and
can safely be removed from individual events.

After this relabeling step, some traces of the log can become identically labeled
(the event id’s would still be different). The information about the number of
occurrences of a sequence of labels in an event log is highly relevant for process
mining, since it allows differentiating between the mainstream behavior of a
process (frequently occurring behavioral patterns) and exceptional behavior.

Let E , E ′ be an event universe. A function l : E → E ′ is an event relabeling
function. A relabeling function can be used to obtain more useful event labels than
the full set of event attribute values. We lift l to event logs. Let E , E1, E2 be event
universes with E , E1, E2 being pairwise different. Let l1 : E → E1 and l2 : E → E2
be event relabeling functions. Relabeling function l1 is a refinement of relabeling
function l2, denoted by l1 � l2, iff ∀e1,e2∈E : l1(e1) = l1(e2) =⇒ l2(e1) = l2(e2);
l2 is then called an abstraction of l1.

The goal of process discovery is to discover a process model that represents the
behavior seen in an event log. A frequently used process modeling notation in the
process mining field is the Petri net [16]. Petri nets are directed bipartite graphs
consisting of transitions and places, connected by arcs. Transitions represent
activities, while places represent the enabling conditions of transitions. Labels
are assigned to transitions to indicate the type of activity that they model. A
special label τ is used to represent invisible transitions, which are only used for
routing purposes and not recorded in the execution log.

A labeled Petri net N = 〈P, T, F,AM , `〉 is a tuple where P is a finite set of
places, T is a finite set of transitions such that P ∩T = ∅, F ⊆ (P ×T )∪ (T ×P )
is a set of directed arcs, called the flow relation, AM is an alphabet of labels
representing activities, with τ /∈ AM being a label representing invisible events,
and ` : T → AM ∪{τ} is a labeling function that assigns a label to each transition.
For a node n ∈ (P ∪ T ) we use •n and n• to denote the set of input and output
nodes of n, defined as •n = {n|(n′, n) ∈ F} and n• = {n|(n, n′) ∈ F}. An example
of a Petri net can be seen in Figure 1, where circles represent places and squares
represent transitions. Gray transitions with smaller width represent τ transitions.

A state of a Petri net is defined by its marking M ∈ NP being a multiset
of places. A marking is graphically denoted by putting M(p) tokens on each
place p ∈ P . A pair (N,M) is called a marked Petri net. State changes occur
through transition firings. A transition t is enabled (can fire) in a given marking
M if each input place p ∈ •t contains at least one token. Once a transition
fires, one token is removed from each input place of t and one token is added to
each output place of t, leading to a new marking. An accepting Petri net is a
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Fig. 1. An example Petri net.

3-tuple (N,Mi,Mf ) with N a labeled Petri net, Mi an initial marking, and Mf

a set of final markings. Many process modeling notations, including accepting
Petri nets, have formal executional semantics and a model defines a language of
accepting traces L. For the Petri net in Figure 1, the language of accepting traces
is {〈A,B,D,E, F 〉, 〈A,B,D, F,E〉, 〈A,C,D,E, F 〉, 〈A,C,D, F,E〉}.

3 A Framework for Time-based Label Refinements

To generate potential label refinements for every label based on time we take
a clustering based approach by identifying dense areas in time space for each
label. The time part of the timestamps consists of values between 00:00:00 and
23:59:59, equivalent to the timestamp attribute from Table 1 with the day-part of
the timestamp removed. This timestamp can be transformed into a real number
hourfloat representation in interval [0, 24). We chose to apply soft clustering (also
referred to as fuzzy clustering), which has the benefit of assigning to each data
point a likelihood of belonging to each cluster. A well-known approach to soft
clustering is based on the combination of the Expectation-Maximization (EM)
algorithm with mixture models, which are probability distributions consisting of
multiple components of the same probability distribution. Each component in the
mixture represents one cluster and the probability of a data point belonging to
that cluster is the probability that this cluster generated that data point. The EM
algorithm is used to obtain a maximum likelihood estimate of the mixture model
parameters, i.e. the parameters of the probability distributions in the mixture.

A well-known example of a mixture model is the Gaussian Mixture Model
(GMM), where the components in the mixture distributions are normal distri-
butions. The data space of time is, however, non-euclidean: it has a circular
nature, e.g. 23.99 is closer to 0 than to 23. This circular nature of the data space
introduces problems for GMMs, as shown in Figure 2. The GMM fitted to the
timestamps of the sensor events consists of two components, one with the mean at
9.05 and one with a mean at 20. The histogram representation of the same data
shows that some events happened just after midnight, which is actually closer on
the clock to 20 than to 9.05. The GMM however is unaware of the circularity of
the clock, which results in the mixture model that seems inappropriate when visu-
ally comparing with the histogram. The field of circular statistics (also referred to
as directional statistics), concerns analysis of such circular data spaces (cf. [14]).

Here, we introduce a framework for generating refinements of event labels
based on time attributes using techniques from the field of circular statistics.
This framework consists of three stages:
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Fig. 2. The histogram representation and a Gaussian Mixture Model fitted to
timestamps values of the plates cupboard sensor in the van Kasteren data set [23].

Data-model pre-fitting stage A known problem with many clustering tech-
niques is that they return clusters even when the data should not be clustered.
In this stage we assess how many clusters the events of a sensor type contain.

Data-model fitting stage In this stage we cluster the events of a sensor type
by timestamp using a mixture consisting of components that take into account
the circularity of the data.

Data-model post-fitting stage In this stage the quality of the label refine-
ments is assessed from both a cluster quality perspective and a process model
(event ordering statistics) perspective.

3.1 Data-model pre-fitting stage

We now describe a test for uniformity, a test for unimodality, and a method to
select the number of clusters in the data.

Uniformity Check - Rao’s Spacing Test Rao’s spacing test [15] tests the
uniformity of the timestamps of the events from a sensor around the circular
clock. This test is based on the idea that uniform circular data is distributed
evenly around the circle, and n observations are separated from each other 360

n
degrees. The null hypothesis is that the data is uniform around the circle.

Given n successive observations f1, . . . , fn, either clockwise or counterclock-
wise, the test statistics U for Rao’s Spacing Test is defined as U = 1

2

∑n
i=1 | Ti−λ |,

where λ = 360◦

n , Ti = fi+1 − fi for 1 ≤ i ≤ n− 1 and Tn = (360◦ − fn) + f1.

Unimodality Check - Hartigan’s Dip Test Hartigan’s dip tests [7] the null
hypothesis that the data follows a unimodal distribution on a circle. When the
null hypothesis can be rejected, we know that the distribution of the data is at
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least bimodal. Hartigan’s dip test measures the maximum difference between the
the empirical distribution function and the unimodal distribution function that
minimizes that maximum difference.

Number of Component Selection - Bayesian Information Criterion The
Bayesian Information Criterion (BIC) [17] introduces a penalty for the number
of model parameters to the evaluation of a mixture model. Adding a component
to a mixture model increases the number of parameters of the mixture with the
number of parameters of the distribution of the added component. The likelihood
of the data given the model can only increase by adding extra components,
adding the BIC penalty results in a trade-off between number of components and
the likelihood of the data given the mixture model. BIC is formally defined as
BIC = −2 ∗ lnL̂+ k ∗ ln(n), where L̂ is a maximized value for the data likelihood,
n is the sample size, and k is the number of parameters to be estimated. A lower
BIC value indicates a better model. We start with 1 component, and iteratively
increase from k to k+ 1 components as long as the decrease in BIC is larger than
10, which is the threshold for decisive evidence of high BIC [10].

3.2 Data-model fitting stage

We cluster events generated by one sensor using a mixture model consisting
of components of the von Mises distribution, which is a circular version of the
normal distribution. This technique is based on the approach of Banerjee et al.
[1], who introduce a clustering method based on a mixture of von Mises-Fisher
distribution components, which is a generalization of the 2-dimensional von Mises
distribution to n-dimensional spheres. A probability density function for a von
Mises distribution with mean direction µ and concentration parameter κ is defined
as pdf(θ | µ, κ) = 1

2πI0(κ)
eκ cos(θ−µ), where mean µ and data point θ are expressed

in radians on the circle, such that 0 ≤ θ ≤ 2π, 0 ≤ µ ≤ 2π, κ ≥ 0. I0 represents

the modified Bessel function of order 0, defined as I0(k) = 1
2π

∫ 2π

0
eκ cos(θ)dθ. As κ

approaches 0, the distribution becomes uniform around the circle. As κ increases,
the distribution becomes relatively concentrated around the mean µ and the von
Mises distribution starts to approximate a normal distribution. We fit a mixture
model of von Mises components using the package movMF [9] provided in R.

3.3 Data-model post-fitting stage

After fitting a mixture of von Mises distributions to the sensor events, we perform
a goodness-of-fit test to check whether the data could have been generated from
this distribution. We describe the Watson U2 statistic [25], a goodness-of-fit
assessment based on hypothesis testing. The Watson U2 statistic measures the
discrepancy between the cumulative distribution function F (θ) and the empirical
distribution function Fn(θ) of some sample θ drawn from some population and is

defined as U2 = n
∫ 2π

0

[
Fn(θ)− F (θ)−

∫ 2π

0

{
Fn(φ)− F (φ)

}
dF (φ)

]2
dF (θ).
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Fig. 3. BIC values for different numbers of
components in the mixture model.

Table 2. Estimated parameters for
a mixture of von Mises components
for bedroom door sensor events.

Cluster α µ (radii) κ

Cluster 1 0.76 2.05 3.85
Cluster 2 0.24 5.94 1.56

Furthermore we assess the quality of refining the event label into a new
label for each cluster from a process perspective using the label refinement
evaluation method described in [21]. This method tests whether the log statistics
that are used in many process discovery algorithms become significantly more
deterministic by applying the label refinement.

4 Case Study

We show the results of our time-based label refinements approach on the real life
smart home data set described in van Kasteren et al. [23]. The van Kasteren data
set consists of 1285 events divided over fourteen different sensors. We segment
in days from midnight to midnight to define cases. Figure 4a shows the process
model discovered on this event log with the Inductive Miner infrequent [11] with
20% filtering, which discovers a process model that describes the most frequent
80% of behavior in the log. Note that this process model overgeneralises allowing
too much behaviour. At the beginning a (possibly repeated) choice is made
between five transitions. At the end of the process, the model allows any sequence
over the alphabet of five activities, where each activity occurs at least once.

We illustrate our proof of concept by applying the framework to the bedroom
door sensor. Rao’s spacing test results in a test statistic of 241.0 with 152.5 being
the critical value for significance level 0.01, indicating that we can reject the null
hypothesis of a uniformly distributed set of bedroom door timestamps. Hartigan’s
dip test results in a p-value of 3.95× 10−4, indicating that we can reject the null
hypothesis that there is only one cluster in the bedroom door data. Figure 3 shows
the BIC values for different numbers of components in the model. The figure
indicates that there are two clusters in the data, as this corresponds to the lowest
BIC value. Table 2 shows the mean and κ parameters of the two clusters found by
optimizing the von Mises mixture model with the EM algorithm. A value of 0 = 2π
radii equals midnight. After applying the von Mises mixture model to the bedroom
door events and assigning each event to the maximum likelihood cluster we obtain
a time range of [3.08-10.44] for cluster 1 and a time range of [17.06-0.88] for cluster
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(a)

(b)

Fig. 4. Process models discovered on the van Kasteren data with sensor-level labels (a)
and refined labels (b) with the Inductive Miner infrequent (20% filtering) [11].

2. The Watson U2 test results in a test statistic of 0.368 and 0.392 for cluster 1 and
2 respectively with a critical value of 0.141 for a 0.01 significance level, indicating
that the data is likely to be generated by the two von Mises distributions found.
The label refinement evaluation method [21] finds statistically significant differ-
ences between the events from the two bedroom door clusters with regard to their
control-flow relations with other activities in the log for 10 other activities using
the significance level of 0.01, indicating that the two clusters are different from a
control-flow perspective. Figure 4b shows the process model discovered with the
Inductive Miner infrequent with 20% filtering after applying this label refinement
to the van Kasteren event log. The process model still overgeneralizes in general,
but the label refinement does help restricting the behavior, as it shows that the
evening bedroom door events are succeeded by one or more events of type groceries
cupboard, freezer, cups cupboard, fridge, plates cupboard, or pans cupboard, while
the morning bedroom door events are followed by one or more frontdoor events.
It seems that this person generally goes to the bedroom in-between coming home
from work and starting to cook. The loop of the frontdoor events could be caused
by the person leaving the house in the morning for work, resulting in no logged
events until the person comes home again by opening the frontdoor. Note that in
Figure 4a bedroom door and frontdoor events can occur an arbitrary number of
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Fig. 5. Inductive Miner infrequent (20% filtering) [11] result after a second label
refinement.

times in any order. Figure 4a furthermore does not allow for the bedroom door to
occur before the whole block of kitchen-located events at the beginning of the net.

Label refinements can be applied iteratively. Figure 5 shows the effect of a
second label refinement step, where Plates cupboard using the same methodology
is refined into two labels, representing time ranges [7.98-14.02] and [16.05-0.92]
respectively. This refinement shows the additional insight that the evening version
of the Plates cupboard occurs in directly before or after the microwave.

5 Related Work

Refining event labels in the event log is closely related to the task of mining
process models with duplicate activities, in which the resulting process model can
contain multiple transitions/nodes with the same label. From the point of view of
the behavior allowed by a process model, it makes no difference whether a process
model is discovered on an event log with refined labels, or whether a process
model is discovered with duplicate activities such that each transition/node of
the duplicate activity precisely covers one versions of the refined label. The first
process discovery algorithm capable of discovering duplicate tasks was proposed by
Herbst and Karagiannis in 2004 [8], after which many others have been proposed,
including the Genetic Miner [4], the Evolutionary Tree Miner [2], the α∗-algorithm
[12], the α#-algorithm [6], the EnhancedWFMiner [5], and a simulated annealing
based algorithm [18]. An alternative approach has been proposed by Vázques-
Barreiros [24] et al., who describe a local search based approach to repair a
process model to include duplicate activities, starting from an event log and a
process model without duplicate activities. Existing work on mining models with
duplicate activities all base their duplicate activities on how well the event log
fits the process model, and do not try to find any semantic difference between
the multiple versions of the activities in the form of data attribute differences.

The work that is closest to our work is the work by Lu et al. [13], who describe
an approach to pre-process an event log by refining event labels with the goal of
discovering a process model with duplicate activities. The method proposed by
Lu et al., however, does not base the relabelings on data attributes of those events
but instead bases them solely on the control flow context, leaving uncertainty
whether two events relabeled differently are actually semantically different.

34



11

Another area of related work is data-aware process mining, where the aim is to
discover rules with regard to data attributes of events that decide decision points
in the process. De Leoni and van der Aalst [3] proposed a method that discovers
data guards for decision points in the process based on alignments and decision
tree learning. This approach relies on the discovery of a behaviorally well-fitting
process model from the original event log. When only overgeneralizing process
models (i.e. allowing for too much behavior) can be discovered from an event log,
the correct decision points might not be present in the discovered process model
at all, resulting in this approach not being able to discover the data dependencies
that are in the event log. Our label refinements use data attributes prior to process
discovery to enable discover more behaviorally constrained process models by
bringing parts of the event attribute space to the event label.

6 Conclusion & Future Work

We have proposed a framework based on techniques from the field of circular
statistics to refine event labels automatically based on their timestamp attribute.
We have shown through a proof of concept on a real life event log that this
framework can be used to discover label refinements that allow for discovery of
more insightful and behaviorally more specific process models. An interesting
area of future work is to explore the use of other types of event data attributes to
refine labels, e.g. power values of sensors. A next research step would be to explore
label refinements based on multiple data attributes combined. This would bring
challenge of clustering on partially circular and partially euclidean data spaces.
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Journal of Statistics, Series B (1976), 329–338.

16. Reisig, W., and Rozenberg, G. Lectures on Petri nets I: basic models: advances
in Petri nets, vol. 1491. Springer Science & Business Media, 1998.

17. Schwarz, G. Estimating the dimension of a model. The Annals of Statistics 6, 2
(1978), 461–464.

18. Song, W., Liu, S., and Liu, Q. Business process mining based on simulated
annealing. In Young Computer Scientists, 2008. ICYCS 2008. The 9th International
Conference for (2008), IEEE, pp. 725–730.

19. Sztyler, T., Völker, J., Carmona, J., Meier, O., and Stuckenschmidt, H.
Discovery of personal processes from labeled sensor data–an application of process
mining to personalized health care. In Proceedings of the International Workshop on
Algorithms & Theories for the Analysis of Event Data (ATAED) (2015), pp. 22–23.

20. Tax, N., Sidorova, N., Haakma, R., and van der Aalst, W. M. P. Event
abstraction for process mining using supervised learning techniques. In Proceedings
of the SAI Conference on Intelligent Systems (IntelliSys) (2016), IEEE, pp. 161–170.

21. Tax, N., Sidorova, N., Haakma, R., and van der Aalst, W. M. P. Log-based
evaluation of label splits for process models. Procedia Computer Science (2016), To
appear.

22. van der Aalst, W. M. P. Process mining: data science in action. Springer
Science & Business Media, 2016.

23. van Kasteren, T., Noulas, A., Englebienne, G., and Kröse, B. Accurate
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Abstract. We present a new translation of Metric Temporal Logic to the Lin-
ear Temporal Logic with a new set of the atomic propositions. We investigate a
SAT-based bounded model checking method for Metric Temporal Logic that is
interpreted over linear discrete infinite time models generated by discrete timed
automata. We show how to implement the bounded model checking technique
for Linear Temporal Logic with a new set of the atomic propositions and discrete
timed automata, and as a case study we apply the technique in the analysis of the
Timed Generic Pipeline Paradigm modelled by a network of discrete timed au-
tomata. We also present a comparison of the two translations of Metric Temporal
Logic on common instances that can be scaled up to for performance evaluation.
The theoretical description is supported by the experimental results that demon-
strate the efficiency of the method.

1 Introduction

Bounded model checking [2, 3, 5] (BMC) is one of the symbolic model checking tech-
nique designed for finding witnesses for existential properties or counterexamples for
universal properties. Its main idea is to consider a model reduced to a specific depth.
The method works by mapping a bounded model checking problem to the satisfiability
problem (SAT). For metric temporal logic (MTL) [4] and discrete time automata [1]
the BMC method can by described as follows: given a modelM for a discrete timed
automaton , an MTL formula ϕ, and a bound k, a model checker creates a propositional
formula [M, ϕ]k that is satisfiable if and only if the formula ϕ is true in the modelM.

The novelty of our paper lies in :

1. defining a translation of the existential model checking problem for MTL to the ex-
istential model checking problem for linear temporal logic with additional propo-
sitional variables qI . This logic is denoted by LTLq;

2. defining bounded sematics for LTLq and defining the BMC algorithm;
3. implementing the new method.

The translation from MTL to LTLq requires neither new clocks nor new transitions,
whereas the translation to HLTL [7] requires as many new clocks as there are inter-
vals in a given formula. It also requires an exponential number of resetting transitions.
? Partly supported by National Science Centre under the grant No. 2014/15/N/ST6/05079.
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Moreover, our BMC method needs only one path, whereas the BMC method from [7]
needs a number of paths depending on a given formula ϕ. Thus, one may expect that
our method is much more effective since intuition is that an encoding which results in
fewer variables and clauses is usually easier to solve.

Finally, we evaluate the BMC method experimentally by means of a timed generic
pipeline paradigm (TGPP), which we model by a network of discrete timed automata
and compare with the corresponding method [7].

The rest of the paper is structured as follows. In Section 2 we briefly recall the basic
notion used through the paper. In Section 3 we define the translation to LTLq . In Sec-
tion 4 we define the BMC method for LTLq . In Section 5 we discuss our experimental
results. In Section 6 we conclude the paper.

2 Preliminaries

2.1 Discrete Timed Automata

Let IN be a set of natural numbers. We assume a finite set X = {x0, . . . , xn−1} of
variables, called clocks. Each clock is a variable ranging over a set of non-negative
natural numbers.

A clock valuation is a total function v : X 7→ IN that assigns to each clock x a
non-negative integer value v(x). The set of all the clock valuations is denoted by INn.
For X ⊆ X, the valuation v′ = v[X := 0] is defined as: ∀x ∈ X , v′(x) = 0 and
∀x ∈ X \ X , v′(x) = v(x). For δ ∈ IN, v + δ denotes the valuation v′′ such that
∀x ∈ X, v′′(x) = v(x)+δ. Let x ∈ X, c ∈ IN, and∼ ∈ {<,6,=,>, >}. The set C(X)
of clock constraints over the set of clocks X is defined by the following grammar:

cc := x ∼ c | cc ∧ cc.

Let v be a clock valuation, and cc ∈ C(X). A clock valuation v satisfies a clock con-
straint cc, written as v |= cc, iff cc evaluates to true using the clock values given by the
valuation v.

Definition 1. A discrete timed automatonA is a tuple (Act, Loc, `0, T,X, Inv,AP , V ),
where Act is a finite set of actions, Loc is a finite set of locations, `0 ∈ Loc is an initial
location, T ⊆ Loc × Act × C(X) × 2X × Loc is a transition relation, X is a finite
set of clocks, Inv : Loc 7→ C(X) is a state invariant function, AP is a set of atomic
proposition, and V : Loc 7→ 2AP is a valuation function assigning to each location
a set of atomic propositions true in this location.

Each element t ∈ T is denoted by `
σ,cc,X−→ `′, and it represents a transition from

location ` to location `′ on the input action σ. X ⊆ X is the set of the clocks to be reset
with this transition, and cc ∈ C(X) is the enabling condition for t.

The semantics of the discrete timed automaton is defined by associating a transition
system with it, which we call a concrete model.

Definition 2. Let A = (Act, Loc, `0, T,X, Inv,AP , V ) be a discrete timed automa-
ton, and v0 a clock valuation such that ∀x∈X, v0(x) = 0. A concrete model for A is
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a tupleMA = (Q, q0,−→,V), where Q = Loc × INn is a set of the concrete states,
q0 = (`0, v0) is the initial state,−→⊆ Q×Q is a total binary relation on Q defined by
action and time transitions as follows. For σ ∈ Act and δ ∈ IN,

1. Action transition: (`, v) σ−→ (`′, v′) iff there is a transition `
σ,cc,X−→ `′ ∈ T such

that v |= cc ∧ Inv(`) and v′ = v[X := 0] and v′ |= Inv(`′),

2. Time transition: (`, v) δ−→ (`, v + δ) iff v |= Inv(`) and v + δ |= Inv(`).

V : Q 7→ 2AP is a valuation function such that V((`, v)) = V (`) for all (`, v) ∈ Q.

A run ρ ofA is an infinite sequence of concrete states: q0
δ0,σ0−→ q1

δ1,σ1−→ q2
δ2,σ2−→ . . . such

that qi ∈ Q, σi ∈ Act, and δi ∈ IN+ for each i ∈ IN. Notice that our runs are strongly
monotonic. This is because the definition of the run does not permit two consecutive
actions to be performed one after the other, i.e., between each two actions some time
must pass.

2.2 Metric Temporal Logic (MTL)

Let p ∈ AP , and I be an interval in IN of the form: [a, b) or [a,∞), for a, b ∈ IN and
a 6= b. The MTL in release positive normal form is defined by the following grammar:

α := true | false | p | ¬p | α ∧ α | α ∨ α | αUIα | GIα.

Intuitively, UI and GI are the operators for bounded until and for bounded always.
The formula αUIβ is true in a computation if β is true in the interval I at least in one
state and always earlier α holds. The formula GIα is true in a computation α is true
at all states of the computation that are in the interval I . The derived basic modality is

defined as follows: FIα
def
= trueUIα (bounded eventually).

Let A be a discrete timed automaton,MA = (Q, q0,−→,V) a concrete model for

A, ρ : q0
δ0,σ0−→ q1

δ1,σ1−→ q2
δ2,σ2−→ . . . a run of A, and α, β formulae of MTL. In order

to define the satisfiability relation for MTL, we need to define the notion of a discrete
path λρ corresponding to run ρ [6]. This can be done in a unique way because of the as-
sumption that δi ∈ IN+. First, define the sequence ∆0 = [b0, b1), ∆1 = [b1, b2), ∆2 =
[b2, b3), . . . of pairwise disjoint intervals, where: b0 = 0, and bi = bi−1 + δi−1 if
i > 0. Now, for each t ∈ IN, let idxρ(t) denote the unique index i such that t ∈ ∆i.
A discrete path (or path) λρ corresponding to ρ is a mapping λρ : IN 7→ Q such that
λρ(t) = (`i, vi+ t− bi), where i = idxρ(t). Given t ∈ IN, the suffix λtρ of a path λρ at
time t is a path defined as: ∀i ∈ IN, λtρ(i) = λρ(t+ i).

In order to improve readability, in the following definition we write λtρ|=MTLϕ
instead ofMϕ, λ

t
ρ|=MTLϕ, for any MTL formula ϕ.

Definition 3. The satisfiability relation |=MTL, which indicates truth of an MTL for-
mula in the concrete modelMA along a path λρ at time t ∈ IN, is defined inductively
as follows:

– λtρ |=MTL true, λtρ 6 |=MTL false,
– λtρ |=MTL p iff p ∈ V(λρ(t)), λtρ |=MTL ¬p iff p 6∈ V(λρ(t)),
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– λtρ |=MTL α ∧ β iff λtρ |=MTL α and λtρ |=MTL β,
– λtρ |=MTL α ∨ β iff λtρ |=MTL α or λtρ |=MTL β,
– λtρ |=MTL αUIβ iff (∃t′∈I)(λt+t′ρ |=MTL β and (∀0 6 t′′<t′)λt+t

′′

ρ |=MTL α),
– λtρ |=MTL GIβ iff (∀t′∈I)(λt+t′ρ |=MTL β).

As λ0ρ = λρ, we shall writeMA, λρ |=MTL ϕ forMA, λ0ρ |=MTL ϕ. An MTL formula
ϕ is existentially valid in the model MA, denoted MA |=MTL Eϕ, if, and only if
MA, λρ |=MTL ϕ for some path λρ starting in the initial state of MA. Determining
whether an MTL formula ϕ is existentially valid in a given model is called an existential
model checking problem.

3 Translation from MTL to LTLq

3.1 Abstract model

Let ϕ be an MTL formula and A = (Act, Loc, `0, T,X, Inv,AP , V ) be a discrete
timed automaton with X = {x0, . . . , xn−1}. For each j ∈ {0, . . . , n − 1}, let cmaxj be
the largest constant appearing in intervals of ϕ and in any enabling condition involving
the clock xj and used in the state invariants and guards of A. For two clock valuations
v and v′ in INn, we say that v ' v′ iff for each 0 6 j < n either v(xj) > cmaxj and
v′(xj) > cmaxj or v(x) 6 cmaxj and v′(x) 6 cmaxj and v(x) = v′(x).

It is well known, that the relation ' is an equivalence relation, what gives rise to
construct an finite abstract model. To this end we define the set of possible values of the
clock xj in the abstract model as IDj = {0, . . . , cmaxj +1} for 0 6 j < n. Moreover, for
two clock valuations v and v′ in ID0× . . .× IDn−1, we say that v′ is the time successor
of v (denoted succ(v)) as follows: for each 0 6 j < n,

succ(v)(xj) =

{
v(xj) + 1, if v(xj) 6 cmaxj ,
cmaxj + 1, if v(xj) = cmaxj + 1.

Definition 4. Let A = (Act, Loc, `0, T,X, Inv,AP , V ) be a discrete timed automa-
ton, and ϕ an MTL formula build over the set AP of atomic propositions. An abstract
model for the automaton A and the formula ϕ is a tupleMϕ = (Ŝ, s0, ↪→, V̂), where
Ŝ = L×(ID0×. . .×IDn−1) is the set of abstract states, s0 = (`0, {0}n+1) is the initial
state, V̂ : Ŝ → 2AP is a valuation function such that for all p ∈ AP , p ∈ V̂((`, v)) iff
p ∈ V (`), and ↪→⊆ S × Act′ × S, where Act′ = Act ∪ {τ}, is a transition relation
defined by the time and action transitions:

– Time transition: (`, v)
τ
↪→ (`, v′) iff v |= Inv(`), v′ = succ(v), and v′ |= Inv(`),

– Action transition: for any σ ∈ Act, (`, v)
σ
↪→ (`′, v′) iff there exists a transition

`
σ,cc,X−→ `′ ∈ T such that v |= cc ∧ Inv(`), v′ = v[X := 0], and v′ |= Inv(`′).

Definition 5. A path inMϕ is a sequence π = (s0, s1, . . .) of states such that for each
j ∈ IN, either (sj

τ
↪→ sj+1) or (sj

σ
↪→ sj+1) for some σ ∈ Act, and every action

transition is preceded by at least one time transition.
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The above definition of the path ensures that the first transition is the time one, and that
between each two action transitions at least one time transition appears.

For a path π, π(j) denotes the j-th state sj of π, π[..j] = (π(0), . . . , π(j)) denotes
the j-th prefix of π ending with π(j), and πj = (sj , sj+1, . . .) denotes the j-th suffix
of π starting with π(j).

Given a path π one can define a function ζπ : IN 7→ IN such that for each j > 0,
ζπ(j) is equal to the number of time transitions on the prefix π[..j]. Let us note that for
each j > 0, ζπ(j) gives the value of the global time in the j-th state of the path π.

3.2 The logic LTLq

Let I be the set of all intervals in IN. Let AP I = {qI | I ∈ I}. The LTLq formulae in
the negation normal form are defined by the following grammar:

ψ ::= true | false | p | ¬p | qI | ¬qI | ψ ∧ ψ | ψ ∨ ψ | ψUψ | Gψ,

where p ∈ AP and qI ∈ AP I . The temporal modalities U and G are, respectively,
named as the until and the always. The derived basic temporal modality for eventually

is defined in the standard way: Fψ
def
= trueUψ.

In order to improve readability, in the following definition we write 〈π,m〉 |=k ψ
instead ofMϕ, 〈π,m〉 |=k ψ, for any LTLq formula ψ.

Definition 6. The satisfiability relation |=d, which indicates truth of an LTLq formula
in the abstract modelMϕ along the path π with the starting point m and at the depth
d > m, is defined inductively as follows:

– 〈π,m〉 |=d true, 〈π,m〉 6 |=d false,
– 〈π,m〉 |=d p iff p ∈ V(π(d)), 〈π,m〉 |=d ¬p iff p /∈ V(π(d)),
– 〈π,m〉 |=d qI iff ζπ(d)− ζπ(m) ∈ I ,
– 〈π,m〉 |=d ¬qI iff ζπ(d)− ζπ(m) 6∈ I ,
– 〈π,m〉 |=d α ∧ β iff 〈π,m〉 |=d α and 〈π,m〉 |=d β,
– 〈π,m〉 |=d α ∨ β iff 〈π,m〉 |=d α or 〈π,m〉 |=d β,
– 〈π,m〉 |=d αUβ iff (∃j > d)(〈π, d〉 |=j β and (∀d 6 i < j) 〈π, d〉 |=i α),
– 〈π,m〉 |=dGβ iff (∀j > d) 〈π, d〉 |=jβ.

An LTLq formula ψ existentially holds in the modelMϕ, writtenMϕ |= Eψ, if,
and only ifMϕ, 〈π, 0〉 |=0

ψ for some path π starting at the initial state. The existential
model checking problem asks whetherMϕ |= Eψ.

3.3 Translation

Let p ∈ AP , α and β be formulae of MTL. We define the translation from MTL into
LTLq as a function tr : MTL→ LTLq in the following way:

– tr(true) = true, tr(false) = false, tr(p) = p, tr(¬p) = ¬p,
– tr(α ∧ β) = tr(α) ∧ tr(β), tr(α ∨ β) = tr(α) ∨ tr(β),
– tr(αUIβ) = tr(α)Utr(qI ∧ β), tr(GIβ) = G(¬qI ∨ tr(β))
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Observe that the translation of literals as well as logical connectives is straightforward.
The translation of the UI operator ensures that β holds somewhere in the interval I (this
is expressed by the requirement qI ∧ tr(β)), and α holds always before β. Similarly,
the translation of the GI operator ensures that β always holds in the interval I (this is
expressed by the requirement ¬qI ∨ tr(β)).

Theorem 1. Let A be a discrete timed automaton, MA the concrete model for A, ϕ
an MTL formula, andMϕ the abstract model for the automaton A and the formula ϕ.
Then,MA |=Eϕ if, and only ifMϕ |=Etr(ϕ).

4 Bounded model checking

In this section we define a bounded semantics for LTLq in order to translate the existen-
tial model checking problem for LTLq into the satisfiability problem.

4.1 Bounded semantics

To define the bounded semantics one needs to represent infinite paths in a model in a spe-
cial way. To this aim, we recall the notions of k-paths and loops [8].

Definition 7. LetMϕ be a model, k ∈ IN, and 0 6 l 6 k. A k-path is a pair (π, l),
also denoted by πl, where π is a finite sequence π = (s0, . . . , sk) of states such that
for each 0 6 j < k, either (sj

τ
↪→ sj+1) or (sj

σ
↪→ sj+1) for some σ ∈ Act, and

every action transition is preceded by at least one time transition. A k-path πl is a loop,
written a(πl) for short, if l < k and π(k) = π(l).

If a k-path πl is a loop it represents the infinite path of the form uvω , where u =
(π(0), . . . , π(l)) and v = (π(l+1), . . . , π(k)). We denote this unique path by π̃l. Note
that for each j ∈ IN, π̃l

l+j = π̃l
k+j .

In the definition of bounded semantics for variables from AP I one needs to use
only a finite prefix of the sequence (ζπ̃l

(0), ζπ̃l
(1), . . .). Namely, for a k-path πl that

is not a loop the prefix of the length k is needed, and for a k-path πl that is a loop the
prefix of the length k + k − l is needed.

In order to improve readability, in the following definition we write 〈πl,m〉 |=k ψ
instead ofMϕ, 〈πl,m〉 |=k ψ, for any LTLq formula ψ.

Definition 8 (Bounded semantics). LetMϕ be the abstract model, πl be a k-path in
Mϕ, and 0 6 m, d 6 k. The relation |=dk is defined inductively as follows:

– 〈πl,m〉 |=dk true, 〈πl,m〉 6 |=dk false,
– 〈πl,m〉 |=dk p iff p ∈ V(πl(d)), 〈πl,m〉 |=dk ¬p iff p /∈ V(πl(d)),

– 〈πl,m〉 |=dk qI iff


ζπ̃l

(d)− ζπ̃l
(m) ∈ I, if πl is not a loop,

ζπ̃l
(d)− ζπ̃l

(m) ∈ I, if πl is a loop and d > m,

ζπ̃l
(d+ k − l)− ζπ̃l

(m) ∈ I, if πl is a loop and d < m,

– 〈πl,m〉 |=dk ¬qI iff 〈πl,m〉 6 |=dk qI
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– 〈πl,m〉 |=dk α ∧ β iff 〈πl,m〉 |=dk α and 〈πl,m〉 |=dk β,
– 〈πl,m〉 |=dk α ∨ β iff 〈πl,m〉 |=dk α or 〈πl,m〉 |=dk β,
– 〈πl,m〉 |=dk αUβ iff (∃d6j6k)

(
〈πl, d〉 |=jk β and (∀d6i<j) 〈πl, d〉 |=jk α

)
or
(
a(πl) and (∃l<j<d) 〈πl, d〉 |=jk β and (∀l<i<k) 〈πl, d〉 |=jk α
and (∀d6i6k) 〈πl, d〉 |=jk α

)
,

– 〈πl,m〉 |=dk Gβ iff a(πl) and (∀j6k)j > min(d, l) implies 〈πl, d〉 |=jk β.

An LTLq formula ψ existentially k-holds in the modelMϕ, writtenMϕ |=k Eψ,
if, and only ifMϕ, 〈π, 0〉 |=0

k ψ for some path π starting at the initial state.

Theorem 2. Let A be a discrete timed automaton, ϕ an MTL formula, and Mϕ the
abstract model for the automatonA and the formula ϕ. Moreover, let ψ = tr(ϕ). Then,
Mϕ |= Eψ if, and only if there exists k > 0 such thatMϕ|=kEψ.

4.2 Translation to SAT

The last step of our method is the standard one (see [8, 7]). It consists in encoding the
transition relation ofMϕ and the LTL formula tr(ϕ). The only novelty lies in encoding
of the finite prefix of the sequence (ζπ̃l

(0), ζπ̃l
(1), . . .). The translation to SAT results

in the propositional formula [Mϕ, tr(ϕ)]k with the property expressed in the following
theorem.

Theorem 3. LetMϕ be an abstract model. Then, for every k ∈ IN,Mϕ |=dk Etr(ϕ)
if, and only if, the propositional formula [Mϕ, tr(ϕ)]k is satisfiable.

5 Experimental results

In this section we experimentally evaluate the performance of our new translation.
We have conducted the experiments using the slightly modified timed generic pipeline
paradigm (TGPP) [7].

5.1 Timed Generic Pipeline Paradigm

The Timed Generic Pipeline Paradigm (TGPP) discrete timed automata model shown
in Figure 1 consists of Producer producing data within the certain time interval ([a, b])
or being inactive, Consumer receiving data within the certain time interval ([c, d]) or
being inactive within the certain time interval ([g, h]), and a chain of n intermediate
Nodes which can be ready for receiving data within the certain time interval ([c, d]),
processing data within the certain time interval ([e, f ]) or sending data. We assume that
a = c = e = g = 1 and b = d = f = h = 2 · n + 2, where n represents number of
nodes in the TGPP.

To compare our experimental results with [7], we have tested the TGPP discrete
timed automata model, scaled in the number of intermediate nodes on the following
MTL formulae that existentially hold in the model of TGPP (n is the number of nodes):
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Fig. 1: The TGPP system.

– ϕ0 = F[0,2·n+3)(ConsReceived). It expresses that Consumer receives the data in
at most 2 · n+ 3 time units.

– ϕ1 = G[0,2·n+2)(ConsReady). It states that the Consumer is always forced to
receive the data in 2 · n+ 2 time units.

– ϕ2 = G[0,∞)(ProdReady∨ConsReady). It states that always either the Producer
has sent the data or the Consumer has received the data.

– ϕ3 = F[0,2·n+3)(G[0,∞)(ProdSend ∨ ConsReceived)). It states that eventually
in time less then 2 ·n+3 it is always the case that the Producer is ready to send the
data or the Consumer has received the data.

– ϕ4 = G[0,∞)(F[0,2·n+3)(ConsReceived)). It states that the Consumer infinitely
often is receiving the data in time less then 2 · n+ 3.

– ϕ5 = G[0,∞)(F[0,2·n+3)(ProdSend) ∧ G[0,∞)(F[0,2·n+3)(ConsReceived)). It
states that the Producer infinitely often is sending the data in the time less then
2 · n + 3 and the Consumer infinitely often is receiving the data in time less then
2 · n+ 3.

5.2 Performance evaluation

We have performed our experimental results on a computer equipped with I7-3770 pro-
cessor, 32 GB of RAM, and the operating system Linux with the kernel 4.6.4. Our
SAT-based BMC algorithms are implemented as standalone programs written in the
programming language C++. We used the state of the art SAT-solver CryptoMiniSat5
(http://www.msoos.org/).

All the benchmarks together with instructions on how to reproduce our experimental
results can be found at the web page http://ajd.czest.pl/~a.zbrzezny/
bmc.html.

The number of considered k-paths (fk) for the new translation is always equal to 1
and for the old translation is respectively equal to: fk(ϕ0) = 2, fk(ϕ1) = 2, fk(ϕ2) =
2, fk(ϕ3) = 3, fk(ϕ4) = 8 · n + 9, fk(ϕ5) = 16 · n + 17. The length of the witness
for the formula ϕ0 is equal to 4 · n+ 4 ; for the formula ϕ1 is equal to 8 · n+ 6; for the
formula ϕ2 and is equal to 8 · n + 6; for the formula ϕ3 is equal to 8 · n + 15; for the
formula ϕ4 is equal to 8 · n+ 6; for the formula ϕ5 is equal to 8 · n+ 6.
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Fig. 2: ϕ0: TGPP with n nodes.

From Fig. 2 one can observe that the new method is able to verify the formula ϕ0

for TGPP with 27 nodes. The old method is able to verify the formula ϕ0 for TGPP
with 24 nodes. The memory usage for the old method is 1.72 times higher than for the
new method for 24 nodes.
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Fig. 3: ϕ1: TGPP with n nodes.

From Fig. 3 one can observe that the new method is able to verify the formula ϕ1

for TGPP with 17 nodes. The old method is able to verify the formula ϕ1 for TGPP
with 15 nodes. The memory usage for the old method is 1.50 times higher than for the
new method for 15 nodes.

From Fig. 4 one can observe that the new method is able to verify the formula ϕ2

for TGPP with 18 nodes. The old method is able to verify the formula ϕ2 for TGPP
with 15 nodes. The memory usage for the old method is 1.55 times higher than for the
new method for 15 nodes.

From Fig. 5 one can observe that the new method is able to verify the formula ϕ3

for TGPP with 17 nodes. The old method is able to verify the formula ϕ3 for TGPP
with 13 nodes. The memory usage for the old method is 2.21 times higher than for the
new method for 13 nodes.

From Fig. 6 one can observe that the new method is able to verify the formula ϕ4

for TGPP with 13 nodes. The old method is able to verify the formula ϕ4 for TGPP
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Fig. 4: ϕ2: TGPP with n nodes.
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Fig. 5: ϕ3: TGPP with n nodes.
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Fig. 6: ϕ4: TGPP with n nodes.

with 7 nodes. The memory usage for the old method is 10.32 times higher than for the
new method for 7 nodes.

From Fig. 8 one can observe that the new method is able to verify the formula ϕ5

for TGPP with 13 nodes. The old method is able to verify the formula ϕ5 for TGPP
with 6 nodes. The memory usage for the old method is 21.39 times higher than for the
new method for 6 nodes.

For the formula ϕ4 the new method generates only 395775 variables and 1229009
clauses (Fig. 7) for 7 nodes. The time consumed by BMC to generate the set of clauses
is equal 65.35 sec. The memory consumed by BMC to generate the set of clauses is
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Fig. 7: Number of variables and clauses for ϕ4 and TGPP with n nodes.
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Fig. 8: ϕ5: TGPP with n nodes.

equal 100.54 MB. The time and memory consumed by the state of the art SAT solver
CryptoMiniSat5, respectively is equal to 112.59 sec. and 287.41 MB.

The old method generates 6122646 variables and 18739998 clauses. The time con-
sumed by BMC to generate the set of clauses is equal 977.18 sec. The memory con-
sumed by BMC to generate the set of clauses is equal 1505.05 MB. The time and
memory consumed by the state of the art SAT solver CryptoMiniSat5, respectively is
equal to 2892.31 sec. and 2967.82 MB.

The example above shows that our new method results in reducing the overall run-
time and memory of BMC to construct a CNF formula, and of SAT solver to check
satisfiability of this formula.

6 Conclusions

We have proposed, implemented, and experimentally evaluated SAT-based
BMC method for soft real-time systems, which are modelled by discrete timed au-
tomata, and for properties expressible in MTL with the semantics over discrete timed
automata. The method is based on a translation of the existential model checking for
MTL to the existential model checking for LTLq , and then on the translation of the
existential model checking for LTLq to the propositional satisfiability problem.

In the following table we compare the new BMC method with the old one.
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Simple BMC+DTA&MTL BMC+DTA&MTL[6]
no new clocks a number of new clocks equal to the number

of intervals in the given formula
no new transitions exponential number of new transitions

only one path a number of paths depending on the given
formula and the length of the k-path

smaller number of propositional substantially larger number
variables and clauses of propositonal variables and clauses

better time and memory usage worse time and memory usage

Table 1: The comparison of two methods

The experimental results show that our approach is much better than the approach
based on translation to HLTL. The reason is that the new method needs only one new
path, does not need any new clocks, and does not need any new transitions. The ex-
periments confirm that the improvement in question leads to a reduction of the size of
the CNF formulas submitted to the SAT solver, and therefore to a significant reduc-
tion both in the time and memory required by the SAT solver to return an answer. The
paper presents preliminary experimental results only, but they show that the proposed
verification method is quite efficient and worth exploring.

Therefore, in our future work we are going to define the SMT-based BMC encoding
for DTA and for LTLq and compare this encoding with the SAT-based encoding, and
we would like to develop SAT-based BMC method for timed automata and properties
expressible in TECTL.
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Abstract. We discuss the rough set approach to approximation of vague
concepts. There are already published several papers on rough sets and
vague concepts staring from the seminal papers by Zdzis law Pawlak.
However, only a few of them are discussing the relationships of rough sets
with the sorites paradox. This paper contains a continuation of discussion
on this issue.

Key words: vagueness, vague concept, sorites paradox, (adaptive) rough
set.

1 Introduction

The rough set (RS) approach was proposed by Professor Zdzis law Pawlak in
1982 [35, 36, 40] as a tool for dealing with imperfect knowledge, in particular with
vague concepts. Over the years many applications of methods based on rough
set theory alone or in combination with other approaches have been developed.

The rough set approach seems to be of fundamental importance in artificial
intelligence and cognitive sciences, especially in machine learning, data mining
and knowledge discovery from databases, pattern recognition, decision support
systems, expert systems, intelligent systems, multiagent systems, adaptive sys-
tems, autonomous systems, inductive reasoning, commonsense reasoning, adap-
tive judgement, conflict analysis.

Rough sets have established relationships with many other approaches such
as fuzzy set theory, granular computing, evidence theory, formal concept analy-
sis, (approximate) Boolean reasoning, multicriteria decision analysis, statistical
methods, decision theory, matroids have been clarified. Despite the overlap with
many other theories rough set theory may be considered as an independent dis-
cipline in its own right. There are reports on many hybrid methods obtained by
combining rough sets with other approaches such as soft computing (fuzzy sets,
neural networks, genetic algorithms), statistics, natural computing, mereology,
principal component analysis, singular value decomposition or support vector
machines.
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In particular some relationships of the rough set approach with vague con-
cepts were shown (see, e.g., [2, 3, 5, 13, 29, 31, 32, 37, 38, 41, 45, 49–51, 55]). How-
ever, the relationships with sorites paradox are not explored well yet. In this
paper, we extend a discussion on this topic, especially presented in [25].

Let us also note that the relationships with vague concepts of other ap-
proaches to uncertainty such as fuzzy sets or graded consequence are elaborated
in the literature (see, e.g., [7–13, 17, 28, 43, 44]).

This paper is structured as follows. In Sect. 2 we present some preliminaries
on vague sets. Rudiments of rough sets, in particular approximations of concepts,
are discusses in Sect. 3. The rough set approach to sorites paradox is presented
in Sect. 4. The issue of higher order vagueness in rough sets is covered in Sect. 5.
In Sect. 6, we present some constraints on induced classifiers for vague concepts
related to the sorites paradox. They are making it possible to eliminate the
contradiction characteristic to sorites paradox which is related to behaviour of
the classifier when it passes through different approximation regions. Sect. 7
emphasizes the need for development the adaptive rough set approach.

2 Vague Sets

Mathematics requires that all mathematical notions (including set) must be
exact, otherwise precise reasoning would be impossible. However, philosophers
(see, e.g., [26] and recently computer scientists as well as other researchers have
become interested in vague (imprecise) concepts. Moreover, in the XX century
one can observe the drift paradigms in modern science from dealing with precise
concepts to vague concepts, especially in the case of complex systems (e.g., in
economy, biology, psychology, sociology, quantum mechanics).

Almost all concepts we are using in natural language are vague [1, 6]. There-
fore, common sense reasoning based on natural language must be based on vague
concepts and not on classical logic. Interesting discussion of this issue can be
found in [45]. The idea of vagueness can be traced back to the ancient Greek
philosopher Eubulides of Megara (ca. 400BC) who first formulated so called
“sorites” (heap) and “falakros” (bald man) paradox (see, e.g., [26]). There is a
huge literature on issues related to vagueness and vague concepts in philosophy
(see, e.g., [4, 14, 19, 26, 27, 46–48]).

Vagueness is often associated with the boundary region approach (i.e., ex-
istence of objects which cannot be uniquely classified relative to a set or its
complement) which was first formulated in 1893 by the father of modern logic,
German logician, Gottlob Frege (1848-1925) (see [15]). According to Frege (see
Grundgesetze der Arithmetik, vol. ii, Sect.56 [15, 16]) the concept must have a
sharp boundary:

To the concept without a sharp boundary there would correspond an
area that would not have any sharp boundary – line all around.

It means that mathematics must use crisp, not vague concepts, otherwise it
would be impossible to reason precisely. However, vagueness in opinion of Lud-
wig Wittgenstein is an essential feature of language with semantics specified by
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’language games’. A language is not a calculus with rigid rules that provide for
all possible circumstances. There are many vague concepts in natural languages
[1, 6]. One should also note that vagueness also relates to insufficient specificity,
as the result of lack of feasible searching methods for sets of features adequately
describing concepts.

Discussion on vague (imprecise) concepts in philosophy includes the follow-
ing characteristic features of them [26]: (i) the presence of borderline cases,
(ii) boundary regions of vague concepts are not crisp, (iii) vague concepts are
susceptible to sorites paradox. In the sequel we discuss these issues in the RS
framework. The reader can find the discussion on application of the RS approach
to vagueness in [45].

3 Rough Set Based Concept Approximation

The starting point of rough set theory is the indiscernibility relation, which is
generated by information about objects of interest (defined later in this section
as signatures of objects). The indiscernibility relation expresses the fact that due
to a lack of information (or knowledge) we are unable to discern some objects
employing available information (or knowledge). This means that, in general, we
are unable to deal with each particular object but we have to consider granules
(clusters) of indiscernible objects as a fundamental basis for our theory.

¿From a practical point of view, it is better to define basic concepts of this
theory in terms of data. Therefore we will start our considerations from a data
set called an information system.

Suppose we are given a pair A = (U,A) of non-empty, finite sets U and A,
where U is the universe of objects, and A – a set consisting of attributes, i.e.
functions a : U −→ Va, where Va is the set of values of attribute a, called the
domain of a. The pair A = (U,A) is called an information system (see, e.g., [34]).
Any information system can be represented by a data table with rows labeled
by objects and columns labeled by attributes. Any pair (x, a), where x ∈ U and
a ∈ A defines the table entry consisting of the value a(x).

Any subset B of A determines a binary relation INDB on U , called an indis-
cernibility relation, defined by

x INDB y if and only if a(x) = a(y) for every a ∈ B, (1)

where a(x) denotes the value of attribute a for object x.
Obviously, INDB is an equivalence relation. The family of all equivalence

classes of INDB , i.e., the partition determined by B, will be denoted by U/INDB ,
or simply U/B; an equivalence class of INDB , i.e., the block of the partition
U/B, containing x will be denoted by B(x) (other notation used: [x]B or more
precisely [x]INDB

). Thus in view of the data we are unable, in general, to observe
individual objects but we are forced to reason only about the accessible granules
of knowledge (see, e.g., [33, 36, 42]).

If (x, y) ∈ INDB we will say that x and y are B-indiscernible. Equivalence
classes of the relation INDB (or blocks of the partition U/B) are referred to
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as B-elementary sets or B-elementary granules. In the rough set approach the
elementary sets are the basic building blocks (concepts) of our knowledge about
reality. The unions of B-elementary sets are called B-definable sets.

For B ⊆ A we denote by InfB(x) the B-signature of x ∈ U , i.e., the set
{(a, a(s)) : a ∈ B}. Let INF (B) = {InfB(s) : s ∈ U}. Then for any objects
x, y ∈ U the following equivalence holds: xINDBy if and only if InfB(x) =
InfB(y).

The indiscernibility relation will be further used to define basic concepts of
rough set theory. Let us define now the following two operations on sets X ⊆ U

LOWB(X) = {x ∈ U : B(x) ⊆ X}, (2)

UPPB(X) = {x ∈ U : B(x) ∩X 6= ∅}, (3)

assigning to every subset X of the universe U two sets LOWB(X) and UPPB(X)
called the B-lower and the B-upper approximation of X, respectively. The set

BNB(X) = UPPB(X)− LOWB(X), (4)

will be referred to as the B-boundary region of X.
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then the set

X is crisp (exact) with respect to B; in the opposite case, i.e., if BNB(X) 6= ∅,
the set X is referred to as rough (inexact) with respect to B. Thus any rough
set, in contrast to a crisp set, has a non-empty boundary region.

Thus a set is rough (imprecise) if it has nonempty boundary region; otherwise
the set is crisp (precise). This is exactly the idea of vagueness proposed by Frege.

Let us observe that the definition of rough sets refers to data (knowledge),
and is subjective, in contrast to the definition of classical sets, which is in some
sense an objective one.

Due to the granularity of knowledge, rough sets cannot be characterized by
using available knowledge. Therefore with every rough set we associate two crisp
sets, called lower and upper approximation. Intuitively, the lower approximation
of a set consists of all elements that surely belong to the set, whereas the up-
per approximation of the set constitutes of all elements that possibly belong to
the set, and the boundary region of the set consists of all elements that can-
not be classified uniquely to the set or its complement, by employing available
knowledge.

4 Approximations of Concepts and Sorites Paradox

Let us consider the heap paradox.

1. 10,000 grains of sand is a heap of sand.
2. 10,000 grains of sand is a heap of sand, then 9999 grains of sand is a heap

of sand.
3. 9999 grains of sand is a heap of sand, then 9998 grains of sand is a heap of

sand.
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4. . . .

5. Conclusion. 1 grain of sand is a heap of sand.

For a given set X by card(X) we denote the cardinality of X. Let us consider
the sequence of collections of grains of sand: x1, . . . , xi, xi+1, . . . , xN , such that
card(xi)− card(xi+1) = 1 for i = 1, . . . , N − 1.

It is worthwhile mentioning that the concept of heap is vague. This concept
may be perceived differently by different agents. Now let us consider an agent
ag having a decision system A = (U,A, d), where U ⊇ {x1, . . . , xi, xi+1, . . . , xN}
is a family of collections of grains and A is a set of conditional attributes over
U . The decision d assigns to each x ∈ U the decision d(x) equal to 1 if x is
a heap and 0, otherwise. This decision is made, e.g., by another agent agdec
on the basis of some attributes (usually different from attributes from A). We
denote by H the decision class {x ∈ U : d(x) = 1} and by −H the decision class
{x ∈ U : d(x) = 0}. In particular, the decision d is assigned to each xi from the
considered sequence. The agent ag defines a partition of U using the the lower
approximation of H, i.e., LOWA(H), the boundary region of H, i.e., BNA(H),
and the lower approximation of −H, i.e., LOWA(−H).

In our example, we assume that x1 ∈ LOWA(H) and xN ∈ LOWA(−H).

By a bounce we understand any i such that one of the following conditions
is satisfied: (i) xi ∈ LOWA(H) & xi+1 ∈ BNA(H), (ii) xi ∈ LOWA(H) & xi+1 ∈
LOWA(−H), (iii) xi ∈ BNA(H) & xi+1 ∈ LOWA(−H).

Now, we explain why such bounces may occur.

Let us consider the first case. The two remaining cases are analogous. One
could argue that we have a problem because there exists i such that xi ∈
LOWA(H) and xi+1 ∈ BNA(H) but the difference between cardinalities xi and
xi+1 is negligible (card(xi) − card(xi+1) = 1) from the point of view of the
concept heap. Observe that in the rough set approach the agent ag using the de-
cision system A is perceiving objects (i.e., in our example collections of grains)
by means of attributes from A. Let us assume that A = {card} and the con-
ditional attribute card assigns to any collection of grains x ∈ U its cardinality.
The decision d is taken by another agent agdec and it may be based, e.g., on the
basis of a shape of collection of grains. For example, d(x) = 1 if the shape of x
is trapezoidal with sufficiently large ratio of the trapezoid hight to the length
of the longest parallel sides of the trapezoid, and 0, otherwise. It may happen
in U that the decision made by the agent agdec for all collections of grains from
the elementary granule A(xi) (with the same cardinality, say n) are equal to
1, i.e., all collections of grains from A(xi) have the relevant trapezoidal shape
accepted by d as the positive examples of the concept heap. However, in case of
A(xi+1) (consisting of collections of grains with the same cardinality equal to
n − 1) there are in U collections x, y of grains such that d(x) = 1 (i.e., x ∈ H)
and d(y) = 0 (i.e., y ∈ −H). This explains that the considered case of bounce
is possible despite the fact that the difference between card(xi) and card(xi+1)
looks negligible from the point of view of the concept heap.
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¿From the above considerations, we conclude that in general one can assume
that for any i:

xi ∈ LOWA(H) implies xi+1 ∈ LOWA(H) ∪ BNA(H) ∪ LOWA(−H), (5)

instead of
xi ∈ LOWA(H) implies xi+1 ∈ LOWA(H). (6)

Analogous conditions may be formulated when we change the condition in
the predecessor from the lower approximation of H, to the boundary region of
H, or to the lower approximation of the complement of H.

Of course, in some cases some arguments of the alternative on the right hand
side may be eliminated. For example, in some cases of decision table A of agent
ag in Eq. 5 may be eliminated on the right had side of implication the third
argument of the alternative.

5 Higher Order Vagueness and Rough Sets: Toward
Adaptive Rough Sets

In [26], it is stressed that boundaries of vague concepts are not crisp. In the
definition presented in this chapter, the notion of boundary region is defined
as a crisp set BNB(X). However, let us observe that this definition is relative
to the subjective knowledge expressed by attributes from B. Different sources
of information may use different sets of attributes for concept approximation.
Hence, the boundary region can change when we consider these different views.
Another reason for boundary change may be related to incomplete information
about concepts. They are known only on samples of objects [18]. Hence, when
new objects appear again the boundary region may change. ¿From the discussion
in the literature it follows that vague concepts cannot be approximated with
satisfactory quality by static constructs such as induced membership inclusion
functions, approximations or models derived, e.g., from a sample. Understanding
of vague concepts can be only realized in a process in which the induced models
are adaptively matching the concepts in dynamically changing environments.
This conclusion seems to have important consequences for further development
of rough set theory in combination with fuzzy sets and other soft computing
paradigms for adaptive approximate reasoning. For further details the reader is
referred, e.g., to [49, 50, 56].

¿From the above considerations it follows that for dealing with higher or-
der vagueness one should consider an extension of the rough set approach to
the adaptive rough set approach. In this approach, approximations of a vague
concept are considered over a family of decision systems {At}t∈T , where T is a
set of indices, e.g., time points. Hence, we obtain a family of the lower approx-
imations, upper approximations and boundary regions of the considered vague
concept which are changing, e.g., over time (see Figure 1).

It is worthwhile mentioning that the elements of this family are obtained
through interaction with the environment what is pointing to the necessity of
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Fig. 1. Adaptive rough sets.

embedding the adaptive rough set approach in the framework of interactive
granular computing and WisTech program (see, e.g., [22–24, 21]).

6 Constraints on Bouncing Between Different
Approximation Regions

If one would like to obtain some constraints on bouncing collections of sand
grains between different approximation regions of the concept ’to be a heap of
sand’ assuming that succeeding collections are obtained by individually remov-
ing one grain from the preceding ones, then more details on rough set based
approximations should be considered. For example, one may require that the
changes of membership functions on consecutive collections of sand grains are
below a given threshold. Let us consider an illustrative example to explain this
issue in more detail.

First of all, one should note that usually information about approximated
concept is partial, e.g., provided by a sample of cases ’for’ and ’against’ a given
concepts. Hence, in the rough set approach were developed methods for inductive
extensions of approximation spaces from samples U of objects represented by
decision systems on the universe U∗ of all objects [39, 30].

In Figure 2 is presented a simple example of classifier for a concept C ⊆ U∗.
The classifier is induced from a given partial information about C represented by
a decision system Ad = (U,A, d) with the set of objects U ⊆ U∗ and the decision
d equal (or almost equal) on U to the restriction to U of the characteristic
function of C. The classifier represents an approximation of the characteristic
function of the concept C ⊆ U∗.

The procedure of conflict resolution shown in Figure 2 between induced de-
cision rules matching a given new case x (belonging to an extension U∗ of U ,
i.e., U ⊆ U∗) (and perceived as a signature of x, i.e., InfA(x)) may be realized
using arguments ’for’ and ’against’ membership in C determined by these rules.
The arguments are aggregated using weights wk as it is presented in Figure 3
what finally leads to the classifier computing the membership function µC for a
given concept C.

Now, one can consider the membership function µH∗ as an approximation of
the characteristic function of the vague concept ‘to be a heap of sand’ H∗ ⊆ U∗
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Conflict_res (Match(InfA(x),G1,G2)) 
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Fig. 2. Rough set-based rule classifier for a concept C (partially) specified by a decision
system Ad = (U,A, d), where d is a characteristic function of a vague concept C ⊆ U∗

restricted to the sample U ⊆ U∗.

1 

Fig. 3. Rough set based rule classifier for a concept C partially specified by a deci-
sion system, where Θ,ω are thresholds specified by the user, strength(r) denotes the
strength of the rule r (e.g., defined by the support of the rule r [30]), and Rk(x) de-
notes the set of decision rules induced from a given decision system for the decision
k ∈ {C,C} (C = U∗ \ C) matching the case x.

induced (analogously as above) from a partial information represented by a deci-
sion systemAd = (U,A, d), where d is a characteristic function of a vague concept
H∗ ⊆ U∗ restricted to the sample U ⊆ U∗. We use µH∗ in considerations concern-
ing the paradox of heap of sand (Figure 4). Note that the induced approximations
of the concept H∗ are now defined as follows. The lower approximation of H∗

is defined by LOWA(H∗) = {x ∈ U∗ : µH∗(x) = 1}, the upper approximation of
H∗ is defined by UPPA(H∗) = {x ∈ U∗ : µH∗(x) > 0 ∨ µH∗(x) = undefined}
and the boundary region of H∗: BNA(H∗) = UPPA(H∗) \ LOWA(H∗).

In the considered example, we assume that the induced approximation of
H∗ represented by µH∗ is consistent with a given sequence x1, . . . , xN , i.e.,
for any xi and xi+1 representing consecutive collections of sand grains after
individually removing one grain in each step, we have µH∗(xi) = 1 if xi ∈ H∗ and

56



µH∗(xi) = 0 if xi /∈ H∗. In Figure 4 is presented a simple property of behavior
of the model of H∗ on elements of a sequence x1, . . . , xN . If some additional
constraints concerning weights are satisfied than one can see that the boundary
region cannot be omitted. Moreover, using the assumption about a ‘bounce size’
of the membership values in passing from xi to xi+1, one can see that it can
be necessary for the considered sequence to ’spend more time’ in the boundary
region before going out of it. One can specify such assumptions about ’bounce
size’ using the following constraints for induced classifiers: wC(xi)−wC(xi+1) ≤ δ
and wC(xi+1) − wC(xi) ≤ δ, where δ is a given threshold bounding bounces in
degrees of memberships of xi and xi+1.
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Fig. 4. Heap of sand - additional constraints on weights and their consequences.

7 Conclusions

We discussed the sorites paradox in the rough set approach. We have added a
discussion on possible new constraints which should be added and preserved by
approximations of vague concepts. These constraints are related to behavior of
induced classifiers approximating vague concepts on sequences of objects consid-
ered in the sorites paradox for these vague concepts. We have also pointed the
necessity of development of the adaptive rough set approach.

There are numerous logical approaches to vagueness (see, e.g., [20, 52, 54]).
However, from the above considerations it follows that adaptive logic based on
rough sets can be relevant for the outlined approach. It is worthwhile mentioning
here the following sentences from [53]:

Aristotle’s man of practical wisdom, the phronimos, does not ignore
rules and models, or dispense justice without criteria. He is observant of
principles and, at the same time, open to their modification. He begins
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with nomoi established law and employs practical wisdom to determine
how it should be applied in particular situations and when departures are
warranted. Rules provide the guideposts for inquiry and critical reflection.

We plan to develop a logical approach to vagueness based on rough sets and
adaptive judgement [21–24].
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Abstract. We address in principle the notion of a boundary and we
propose a version of mereology better adapted to rough set theory than
the original version. We discuss the motivation and differences between
the original and proposed now versions of rough mereology and we show
that the Pawlak notion of a boundary in rough set theory is a particular
case of the more general notion of a boundary in the rough mereological
theory proposed in this work.
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1 Introduction: the idea of a boundary, in general and in
Pawlak’s theory

It is evident to all who study rough set idea that the most important notion is
the notion of a boundary and most important things that conform to that notion
are boundaries of concepts as they witness the uncertainty of the concept. The
notion of a boundary has been the subject of investigation by philosophers,
logicians, topologists from ancient times to now. The basic problem with the
notion of a boundary stems of course from the fact that our perception of the
world is continuous whereas the world has a discrete structure. Whence follow
the philosophical dilemmas like Bolzano’s paradox of the two touching balls A
and B. The question is where A ends and B begins? If q is the last point on A
which must exists by closedness of A, then if p is the first point on B and p is not q
then A and B do not touch and there is no boundary between them but we know
they touch as we are not able to push A or B any further. Similar are problems
by Leonardo of air and water: what is the boundary between water in the river
and air? Those and other similar questions have occupied philosophers since
times of antiquity. One needs not to reach for real physical phenomena in order
to find problems and difficulties with boundaries, e.g., time imagined continuity
have caused similar problems: what is the last moment an event occurs? See
Varzi [9] and Smith [8] for a discussion of philosophical aspects of the notion of
a boundary.
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Mathematicians resolved the problem by postulating the completeness of
the real line which cannot be dissected into two open disjoint non–empty sets;
returning to philosophical aspects of the notion of a boundary, this implies that
when an event has the last moment p in which it happens, we are not able to
point to the first moment in which it does not happen. They also approached the
problem of a boundary from a local point of view with the idea of a neighborhood
and closeness: the boundary of a set is the set of points ‘infinitely close’ to the set
in the sense that each neighborhood of a boundary point must needs intersect
the set and its complement, see Engelking [1].

This point of view prevails in Pawlak’s idea of a boundary see Pawlak [3]
but the implementation of it proceeds in a distinct way. In the first place, one
needs the data about reality in the form of an information system i.e. a tuple
(U,A, val, V ) where U is a set of objects representing physical entities, processes,
moments of time etc., A is a set of attributes each of which maps objects in U
into the set of values V by means of a mapping val : U × A → V . The value
val(u, a) is often written down in a simpler form of a(u).

Objects are then coded as information sets of the form Inf(u) = {a(u) : a ∈
A}. The crux of the rough set approach is in identification of objects having the
same information sets: Ind(u, v) if and only if Inf(u) = Inf(v), where Ind(u, v)
is the indiscernibility relation . From that moment on, objects loose their real
names and become visible only by their information sets which allows for making
some of them indiscernible. The equivalence relation of indiscernibility partitions
the universe U into classes which are also regarded as primitive granules of
knowledge [u] or black boxes.

One addresses the problem of concepts understood as subsets of the universe
U and distinguishes among them certain ones as those which can be assembled
from granules by the union of sets operator i.e. a concept C ⊆ U is certain if and
only if C =

⋃
{[u] : [u] ⊆ C}. Other concepts are not certain, commonly called

rough. A rough concept R then must have an object u such that the class [u] is
not contained in it but it does intersect the complement U \R. Such objects in
R constitute the boundary of R, BdR, i.e. BdR = {u ∈ U : [u] ∩ (U \ R) 6= ∅ 6=
[u] ∩ R}. One may say that the boundary of R consists of objects which have
their copies both in R and in U \ R. This is clearly a topological approach as
the class [u] is the least neighborhood of u in the partition topology induced by
the indiscernibility relation Ind.

Let us point to advantages of this approach: first it is objective as the shape of
the boundary follows by the data without any intervention of subjective factors
which are so essential in e.g. fuzzy set theory see Zadeh [12]; next, it relies solely
on data without resorting to e.g. real numbers or other auxiliary external to data
factors.
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2 Mereology and its extensions into domain of
uncertainty

Mereology due to Stanis law Leśniewski, see Leśniewski [2], Sinisi [7], is based on
the notion of a part relation, part(x, y) (‘x is a part to y’) which satisfies over a
universe U conditions:

M1 For each x ∈ U it is not true that part(x, x);
M2 For each triple x, y, z of things in U if part(x, y) and part(y, z), then

part(x, z).
The notion of an element is defined as the relation el(x, y) which holds true

if part(x, y) or x = y. It follows that the relation of being an element is a partial
order on U and el(x, y) and el(y, x) are true simultaneously if and only if x = y.
Clearly, part(x, y) if and only if el(x, y) and x 6= y.

The last important notion is that of the class understood as the object which
represents a collective entity i.e. a property: for a property Ψ on U which is not
void, the class pf Ψ , ClsΨ , is the object such that:

C1 If Ψ(u) holds true, then el(u,ClsΨ);
C2 For each u, if el(u,ClsΨ) then there are objects p, q such that el(p, u),

el(p, q), Ψ(q) hold true.

2.1 Our rough mereology as up to now

We proposed a scheme which extended mereology based on the part relation
to the version based on the ‘part to a degree’ relation, see Polkowski [6], writ-
ten down as the relation µ(x, y, r) (x is a part of y to a degree of at least of r)
on the universe U endowed with the mereological notion of the element el. The
assumptions abut µ reflected the basic true properties of the partial containment:

RM1 µ(x, x, 1) for each x ∈ U ;

RM2 µ(x, y, 1) if and only if el(x, y) holds true;

RM3 If µ(x, y, 1) and µ(z, x, r) hold true then µ(z, y, r) holds true;

RM4 If µ(x, y, r) and s < r hold true then µ(x, y, s) holds true.

This approach has required the a priori mereology on the universe U of which
the relation µ was a diffusion or fuzzification, cf. Varzi [10]. Assume that f :
[0, 1]2 → [0, 1] is a continuous in each coordinate and symmetric function such
that f(1, r) = r for each r ∈ [0, 1]. We will call any such f a pre–norm.

We say for a pre–norm f that relation µ is f–transitive if and only if from
true conditions µ(x, y, r) and µ(y, z, s) the true condition µ(x, z, f(r, s)) follows.

Proposition 1. If the relation µ on the universe U is f–transitive then the
relation π(x, y) which holds true if and only if µ(x, y, 1) and µ(y, x, 1) hold true
is an equivalence relation on U .
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Indeed, π(x, x1) holds true by RM1; symmetry is evident by definition; tran-
sitivity follows by f−transitivity of µ.

An attempt to apply this version of µ in the rough set context is handicapped
by the fact that by RM2, the relation π should be the identity which does not
capture the full scope of rough set cases. We need something more flexible to
accomodate equivalence relations of indiscernibility.

2.2 A rough mereology for rough set theory

As stated below, we need a mereology which may account for rough set theoretic
contexts. We assume an information system (U,A, val, V ) as our playground.

We define a truly rough inclusion, µtr(x, y, r) as a relation which satisfies on
U the following assumptions:

TRM1 µtr(x, x, 1);

TRM2 There is a partition P on U such that µtr(x, y, 1) if and only if x and y
are in the same partition class [x]P ;

TRM3 If µtr(x, y, 1) and µtr(z, x, r) then µtr(z, y, r);

TRM4 If µtr(x, y, r) and s < r then µtr(x, y, s).

TRM5 The truly rough inclusion µtr(x, y, r) is f–transitive for some pre–norm f .

The predicate el(x, y) if µtr(x, y, 1) defines x as an element of y.
We sum up basic consequences of our assumptions.

Proposition 2. The following are true by conditions TRM1-TRM5.
1. µtr(x, y, 1) implies µtr(y, x, 1) i.e. µtr is symmetric.
2. The relation el(x, y) is symmetric and el(x, y) and el(y, x) imply that

[x]P = [y]P .
3. {y : µtr(y, x, 1)}=[x]P .
4. The relation µtr(x, y, 1) is transitive in the sense that µtr(z, x, 1) and

µtr(x, y, 1) imply µtr(z, y, 1).

3 Boundaries in rough mereology for rough sets

We use the language of predicates on the universe U in definitions of boundaries
by means of a truly rough inclusions µtr.

3.1 A general scheme for boundaries

For a truly rough inclusion µtr, and x ∈ U , r ∈ [0, 1], we define a new predicate
N(x, r)(z) if there exists an s ≥ r such that µ(z, x, s). N(x, r) is the neighborhood
granular predicate about x of radius r.
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Consider a predicate Ψ on U having a non–empty meaning [Ψ ]. The com-
plement to Ψ is the predicate −Ψ such that −Ψ(x) if and only if not Ψ(x). We
define the upper extension of Ψ of radius r, denoted Ψ+

r by letting Ψ+
r (x) if there

exists z such that Ψ(z) and N(x, r)(z). Similarly, we define the lower restriction
of Ψ of radius r, denoted Ψ−

r by letting Ψ−
r (x) if and only if not (−Ψ)+r (x).

Proposition 3. 1. Predicates Ψ+
r and Ψ−

r are disjoint in the sense that there
is no z ∈ U such that Ψ+

r (z) and Ψ−
r (z) hold true. 2. If Ψ+

r (x) holds true then
Ψ+
r (y) holds true for each y such that µtr(y, x, 1). 3. If Ψ−

r (x) holds true then
Ψ−
r (y) holds true for each y such that µtr(y, x, 1).

Proof. Claim 1 follows by definitions of the two predicates. For Claim 2, consider
x, y such that Ψ+

r (x) and µtr(y, x, 1). There exists z such that Ψ(z), N(x, s)(z)
hold true with some s ≥ r so µtr(z, x, s) holds true. By symmetry of µtr, we have
µtr(x, y, 1) true and f–transitivity of µtr for an adequate pre–norm f implies that
µtr(z, y, f(1, s)) holds true i.e. µtr(z, y, s) holds true which means that N(y, r)(z)
holds true and finally Ψ+

r (y) holds true. For Claim 3, assume that Ψ−
r (x) and

µtr(y, x, 1) hold true i.e.

¬∃z, s ≥ r.µtr(z, x, s) ∧ ¬Ψ(z) (1)

which is equvalent to
µtr(z, x, s)→ Ψ(z). (2)

As µtr(y, x, 1) is equivalent to µtr(x, y, 1), we have by f–transitivity of µtr that

µtr(z, y, s)→ Ψ(z), (3)

which is equivalent to the thesis Ψ−
r (y).

We will say that a predicate Ψ is el–saturated if and only if true formulas
Ψ(x) and el(y, x) imply that Ψ(y). A corollary to Claim 3 in Proposition 3 says
that for each r ∈ [0, 1], predicates Ψ+

r and Ψ−
r are el–saturated.

A global and local definition of the boundary For a predicate Ψ , we define
the predicate boundary of Ψ with respect to a truly rough inclusion µtr, denoted
BdµtrΨ as follows:

BdµtrΨ ↔ (¬Ψ+
1 ) ∧ (¬Ψ−

1 ). (4)

Arguing like in proof of Proposition 3, we prove the following

Proposition 4. 1. Bdµtr
Ψ is el–saturated 2. For no z ∈ U , Bdµtr

Ψ(z)∧Ψ+
1 (z)

is true and for no z ∈ U , Bdµtr
Ψ(z) ∧ Ψ−

1 (z) is true.

Proposition 5. For each x ∈ U , Bdµtr
Ψ(x) holds true if and only if there exist

z, y ∈ U such that Ψ(z), −Ψ(y), µtr(z, x, 1), µtr(y, x, 1).

A predicate Open is defined on predicates on U and a predicate Φ on U is
open, Open(Φ) in symbols if and only if it is el–saturated.
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Corollary 1. Open(Ψ+
r ) and Open(Ψ−

r ) hold true for each r ∈ [0, 1].
Open(Bdµtr

Ψ) holds true.

Proposition 6. For a finite collection of predicates {Ψ1, Ψ2, . . . , Ψk} if Open(Ψi)
holds true for each i ≤ k, then Open(

∨
i Ψi) holds true.

A predicate Closed holds true for a predicate Ψ if and only if Open(−Ψ)
holds true.

Corollary 2. Closed(Ψ+
r ) and Closed(Ψ−

r ) hold true for each r ∈ [0, 1].
Closed(Bdµtr

Ψ) holds true.

For the mereotopological notion of boundary see also Polkowski and Semeniuk–
Polkowska [4], [5] and Varzi [11].

3.2 The Pawlak notion of a boundary is a special case of truly
rough mereological notion of a boundary

We return to an information system (U,A, val, V ). We derive a truly rough inclu-
sion from any Archimedean t–norm. There exist two non–isomorphic Archimedean
t–norms:

– the  Lukasiewicz t–norm L(x, y) = max{0, x+ y − 1};
– the product t–norm P (x, y) = x · y.

Both these t–norms admit a Hilbert–style representation

t(x, y) = g(f(x) + f(y)),

where f : [0, 1] → [0, 1] is a continuous decreasing function with f(0) = 1, and
g : [0, 1] → [0, 1] is the inverse to f . In case of the t–norm L, f(x) = 1 − x and
g(y) = 1− y. We let for an Archimedean t–norm t:

µt(x, y, r) if and only if g(
card(Dis(x, y))

card(A)
) ≥ r, (5)

where Dis(x, y) = {a ∈ A : a(x) 6= a(y)}.
In particular, as for the  Lukasiewicz t–norm we have g(y) = 1 − y, the

 Lukasiewicz truly rough inclusion can be defined as

µLtr(x, y, r) if and only if
card(Ind(x, y))

card)A)
≥ r, (6)

where Ind(x, y) = A \Dis(x, y). In particular, µL is L–transitive.
The predicate of element el(x, y) holds true if and only if µLtr(x, y, 1) holds

true if and only if Ind(x, y) i.e. x, y are indiscernible. Hence, a predicate is el–
saturated if and only if its meaning is the union of a family of indiscernibility
classes and rough mereological notions of Ψ+

1 and Ψ−
1 become, respectively, the

notions of the upper and the lower approximations of the meaning of Ψ and the
meaning of the boundary predicate BdµLΨ is the boundary of the meaning of
Ψ .
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4 Conclusions

We have proposed a new version of rough mereology suitable for rough set theory
and we show that the rough set theory is a particular case of an abstract rough
mereotopological theory.
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Abstract. The main goal of our research is to build the ontology of
places in Poland covering a variety of aspects of places, mainly admin-
istrative and socio-economic. The ontology is being implemented using
the OWL 2 Web Ontology Language. In the created OWL ontology, we
can distinguish two kinds of classes, primary classes exactly de�ned in
the ontology as well as secondary classes de�ned over the ontology on
the basis of primary classes and properties of individuals considered in
the ontology. We show how to use rough sets to approximate secondary
classes by means of primary classes in the created ontology. Rough set
approximations enable us to extract some useful knowledge about places.

Keywords: rough sets, approximation, ontology, OWL 2.

1 Ontologies and Semantic Relations

Ontologies, as formal representations of knowledge, have recently gained a sig-
ni�cant popularity. They are currently used in knowledge engineering and data
mining to capture knowledge about some domain of interest. Two reasons seem to
be the main source of this popularity. Firstly, there exist well-de�ned standards
of languages for the ontology representation. Secondly, ontologies cover various
semantic aspects of information which are useful in data mining processes.

One of the key decisions to take in the ontology development process is to
select the language in which the ontology will be implemented. Our ontology of
places is built in accordance with the OWL 2 Web Ontology Language (shortly
OWL 2). OWL 2 is the most recent development in standard languages de�ned
by the World Wide Web Consortium (W3C) [2]. An OWL ontology consists of
three components: classes, individuals, and properties. Classes are representa-
tions of concepts in a given domain of interest. Classes are interpreted as sets
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that contain individuals. Individuals (also known as instances) represent objects
in the domain of interest. Individuals can be referred to as being instances of
classes. Properties (also known as roles or attributes) are binary relations on
individuals. Properties link two individuals together. There are two main types
of properties in OWL 2: object properties linking an individual to an individual
and data properties linking an individual to a data value.

Semantic relations are very important components of ontologies as they de-
scribe the relationships that can be established between concepts. In the pre-
sented approach to rough set based approximations of classes in the OWL ontol-
ogy, we are interested in the INSTANCE-OF relation as well as speci�c semantic
relations describing relationships covering economic and social aspects of places.
Such relations are represented in the OWL ontology by object and data proper-
ties. If i INSTANCE-OF c holds, it means that the individual i is an instance
(example) of a given class c. It is worth recalling that i is also an instance of all
superclasses of c.

2 The OWL Ontology of Places in Poland

In [9], we showed selected parts of the ontology of places in Poland (de�ned
classes and class hierarchies, identi�ed individuals, identi�ed properties linking
individuals). The ontology is being implemented using the OWL 2 Web Ontol-
ogy Language. In general, the main goal of our research is to build the ontology
of places in Poland covering a variety of aspects of places, mainly administrative
and socio-economic. In the next section, we show how to use rough sets to ap-
proximate secondary classes by means of primary classes in the created ontology
of places. Rough set approximations enable us to extract some useful knowledge
about places. The ontology built by us can be used in various socio-economic
research as the knowledge base. Moreover, it may constitute the basis for search
engines and other computer tools used in the real-estate market.

3 Approximations of Classes in OWL Ontologies

Rough sets proposed by Z. Pawlak [10] are an appropriate tool to deal with
rough (ambiguous, imprecise) concepts in the universe of discourse. There are
various approaches to applying rough sets for a representation of vague knowl-
edge and reasoning over it in ontologies (e.g., [4], [6], [7]). For example, in [4],
a rough set approach to vague concept approximations was presented. The con-
cept approximations were constructed on the basis of data sets (decision tables
with condition attributes representing, e.g., sensory measurements) and an ad-
ditional domain knowledge (the so-called concept ontology) using approximate
reasoning schemes. In the current paper, we consider a situation where the whole
knowledge is included in a domain ontology (implemented using the OWL 2 Web
Ontology Language). Following the approach presented in [7], we propose to ap-
ply rough sets to approximate secondary classes by means of primary classes in
the created OWL ontology of places.
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Let us consider, as an example, a part of the ontology of places in Poland
devoted to administrative districts. In our ontology, we have distinguished three
administrative types of communes:

� urban commune,
� rural commune
� urban-rural commune.

Moreover, according to [3], where functional structures of communes in Poland
were considered, we have distinguished eight basic functional types of communes:

� urban commune,
� urbanized commune,
� multifunctional transitional commune,
� overwhelmingly agricultural commune,
� prevalently agricultural commune,
� tourism and recreational function commune,
� forestry function commune,
� mixed function commune.

In our ontology of places, all of the types of communes shown above are repre-
sented by primary classes, i.e., classes exactly de�ned in the ontology.

Some of the socio-economic aspects of places considered in our ontology are
issues related to waste management. They are expressed especially by means
of data properties of individuals, for example, the rate MAHW of mass accu-
mulation of household waste. Using this rate, we can de�ne a secondary class
representing the concept "administrative district with the rate of mass accumu-
lation of household waste greater than or equal to 100 kg

person·year". One can see
that such a class is not exactly de�ned in the ontology, but it can be derived
from the primary class and one of the properties of individuals.

The semantics of the OWL 2 Web Ontology Language is complex (see [1]).
Therefore, we omit the formal description of the considered problem of rough
set based approximations of classes in the OWL ontology and give only its brief
review, rather informal. Let C be a set of classes and I be a set of individuals in
a given OWL ontology O. For a given class c ∈ C, we consider a set INST (c)
of all individuals from I that are instances of c.

Analogously to rough approximation of sets de�ned in rough set theory [10],
we can de�ne rough approximation of a given secondary class c∗ by means of
primary classes. The lower approximation lower(c∗) of c∗ is given by:

lower(c∗) = {c ∈ C : ∀
i∈INST (c)

i ∈ INST (c∗)}.

The lower approximation of a secondary class c∗ consists of each primary class
c such that all individuals being instances of c are also instances of c∗.

The upper approximation upper(c∗) of c∗ is given by:

upper(c∗) = {c ∈ C : ∃
i∈INST (c)

i ∈ INST (c∗)}.
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The upper approximation of a secondary class c∗ consists of each primary class
c such that there exists at least one individual being an instance of c which is
also an instance of c∗.

Conventionally, the boundary region bound(c∗) is de�ned as:

bound(c∗) = upper(c∗)− lower(c∗).

Let us consider a part of individuals in our ontology which are communes
in the Lubelskie Voivodship. In this voivodship, we have 213 communes dis-
tributed into administrative types of communes as follows: 20 urban communes,
169 rural communes, and 24 urban-rural communes. In case of functional types
of communes, we have the following distribution: 20 urban communes, 5 urban-
ized communes, 7 multifunctional transitional communes, 57 overwhelmingly
agricultural communes, 102 prevalently agricultural communes, 11 tourism and
recreational function communes, 2 forestry function communes, and 9 mixed
function communes.

On the basis of data included in Tables 1 and 2, we obtain the following
approximations of the class representing the concept "administrative district
with the rate of mass accumulation of household waste greater than or equal to
100 kg

person·year":

� the lower approximation consists of a class representing the concept "urban
commune" (as a functional type), only,

� the upper approximation consists of classes representing the concepts "ur-
ban commune" (as an administrative type), "rural commune", "urban-rural
commune", "urban commune" (as a functional type), "urbanized commune",
"multifunctional transitional commune", "prevalently agricultural commune",
"tourism and recreational function commune", and "mixed function com-
mune".

Table 1. Results of approximation for administrative types of communes

Administrative type #Communes with #Communes with
MAHW ≥ 100 MAHW < 100

urban 19 1

rural 11 158

urban-rural communes 8 16

The obtained approximations enable us, for example, to make the following
generalizations for communes in the Lubelskie Voivodship:

� an urban commune (as a functional type) is an administrative district with
the rate of mass accumulation of household waste greater than or equal to
100 kg

person·year in the Lubelskie Voivodship (according to the lower approx-

imation),
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Table 2. Results of approximation for functional types of communes

Functional type #Communes with #Communes with
MAHW ≥ 100 MAHW < 100

urban 20 0

urbanised 4 1

multifunctional transitional 2 5

overwhelmingly agricultural 0 57

prevalently agricultural 4 98

tourism and recreational function 7 4

forestry function 0 2

mixed function 1 8

� an urbanised commune may be an administrative district with the rate of
mass accumulation of household waste greater than or equal to 100 kg

person·year
in the Lubelskie Voivodship (according to the boundary region).

Such generalizations are useful knowledge derived from the ontology of places.
One can see that the presented approach can be used in search engines for
ontologies.

A valuable way of developing further research is to consider various ap-
proaches for determining approximations, for example, the Variable Precision
Rough Set Model (VPRSM) [11] or those based on combined rough sets and
fuzzy sets (cf. [5]).
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Abstract. Reversible computation deals with mechanisms for undoing
the effects of actions executed by a dynamic system. This paper is con-
cerned with reversibility in the context of Petri nets which are a general
formal model of concurrent systems. A key construction we investigate
amounts to adding ‘reverse’ versions of selected net transitions. Such
a static modification can severely impact on the behaviour of the sys-
tem, e.g., the problem of establishing whether the modified net has the
same states as the original one is undecidable. We therefore concentrate
on nets with finite state spaces and show, in particular, that every tran-
sition in such nets can be reversed using a suitable set of new transitions.

Keywords: Petri net, reversibility, reversible computation

1 Introduction

Reversible computation deals with (typically local) mechanisms for undoing the
effects of actions executed by a dynamic system. Such an approach has been
applied, in particular, to various kinds of process calculi and event structures
(see, e.g., [3–6, 8, 11, 12, 10]), and to a category theory based setting [7].
? This research has been partially supported by the Polish
grant No.2013/09/D/ST6/03928, and by the EU COST Action IC1405, and
by DFG (German Research Foundation) through grant Be 1267/14-1 CAVER (Design
and Analysis Methods for Real-Time Systems) and Graduiertenkolleg GRK-1765
SCARE (System Correctness under Adverse Conditions).
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This paper is concerned with reversibility in the context of Petri nets which are
a general formal model of concurrent systems. A key construction we investigate
amounts to adding ‘reverse’ versions of selected net transitions, e.g., a ‘straight-
forward’ reverse simply changes the directions of arcs adjacent to a transition
being reversed. As shown in [2], such a static modification can severely impact
on the behaviour of the system, e.g., the problem of establishing whether the
modified net has the same states as the original one is undecidable.

We therefore concentrate in this paper on Petri nets with finite state spaces,
more precisely bounded Place/Transition-nets (PT-nets). The state spaces of
such nets can be represented by finite labelled transition systems (flts’s) which
are a convenient tool for specifying different variants of reversibility. One can
therefore aim at synthesising a PT-net with ‘reversed’ behaviour given by an
flts.

In this paper we show that it is, in general, impossible to reverse a transition
using its straightforward reverse. What is more, the situation does not change if
we relax the notion of a reverse by only requiring that the effect of its execution
is opposite to that of the original transition. We therefore relax the requirement
further, by allowing several reverses for a single transition. This leads to our
main result that every transition in a bounded PT-net can be reversed using
a suitable set of new transitions.

2 Preliminaries

Transition systems
A finite labelled transition system (or, simply, flts) is a tuple TS = (S, T,→, s0)
with a finite set of states S, a finite set of labels T , a finite set of arcs →⊆
(S × T × S), and an initial state s0 ∈ S.4 A label t is fireable at s ∈ S, denoted
by s[t〉, if (s, t, s′) ∈→, for some s′ ∈ S. A state s′ is reachable from s through
the execution of σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed path from s to
s′ whose arcs are labelled consecutively by σ. The set of states reachable from s
is denoted by [s〉. A sequence σ ∈ T ∗ is fireable, from a state s, denoted by s[σ〉,
if there is some state s′ such that s[σ〉s′.
Let t•TS = {s ∈ S | (s′, t, s) ∈→, for some s′ ∈ S} and •tTS = {s ∈ S |
(s, t, s′) ∈→, for some s′ ∈ S} be respectively the sets of all states having an
incoming arc labeled with t, and an outgoing arc labeled with t. The set of all
arcs labelled by t is denoted by −→t . We assume that each −→t is nonempty.

Two flts’s, TS1 = (S1, T,→1, s01) and TS2 = (S2, T,→2, s02), are isomorphic
if there is a bijection ζ : S1 → S2 with ζ(s01) = s02 and (s, t, s′) ∈→1⇔
(ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1.

Petri nets
A Place/Transition Petri net (or, simply, net) is a tuple N = (P, T, F,M0),

4 An flts may be considered as a finite automaton with no accepting states.
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where P is a finite set of places, T is a finite set of transitions (or actions), F is
the flow function F : ((P × T ) ∪ (T × P )) → N specifying the arc weights, and
M0 is the initial marking (where a marking is a mapping M : P → N, indicating
the number of tokens in each place). A transition t ∈ T is enabled at a marking
M , denoted byM [t〉, ifM(p) ≥ F (p, t), for all p ∈ P . The effect of a transition t
on a place p is eff p(t) = F (t, p) − F (p, t). The firing of t at marking M leads
toM ′, denoted byM [t〉M ′, ifM [t〉 andM ′(p) =M(p)+eff p(t) for every p ∈ P .
The notions of enabledness and firing, M [σ〉 and M [σ〉M ′, are extended in the
usual way to sequences σ ∈ T ∗, and [M〉 denotes the set of all markings reachable
from M . We assume that each transition is enabled in at least one reachable
marking. There is a partial order relation< on the markings of a Petri net defined
so that M ≤ M ′ if M(p) ≤ M ′(p), for every place p ∈ P . It is easy to observe
that transition enabledness is monotonic, which means that if a transition t is
enabled at a marking M and M ≤M ′, then t is also enabled at M ′.

A Petri net N = (P, T, F,M0) net is bounded if [M0〉 is finite, and its reachability
graph is then defined as an flts

RG(N) = ([M0〉, T, {(M, t,M ′) |M,M ′ ∈ [M0〉 ∧M [t〉M ′},M0).

If a labelled transition system TS is isomorphic to the reachability graph of
a Petri net N , then we say that N solves TS, and TS is synthesisable to N .

Definition 1 (transition reverse). A (strict) reverse of a transition t ∈ T in
a net N = (P, T, F,M0) is a new transition t such that F (p, t) = F (t, p) and
F (t, p) = F (p, t). An effect-reverse of a transition t ∈ T is a new transition t
such that eff p(t) = −eff p(t), for all places p ∈ P .

To improve readability, we depict newly created reverses and adjacent arcs by
dashed (or dotted) lines. Clearly, for a given transition t, its strict reverse t is
unique and, at the same time, it is an effect-reverse of t. However, an effect-
reverse t is not necessarily a strict reverse (see Figure 1).

•

•a a

2 2

•

•a a

2 2

Fig. 1. A transition a and its (strict) reverse a (lhs), and an effect-reverse a, which is
not a strict reverse (rhs).

(Un)solvable words
A word w = t1t2 . . . tn of length n ∈ N uniquely corresponds to a labelled
transition system TS(w) = ({0, . . . , n}, T, {(i− 1, ti, i) | 0 < i ≤ n ∧ ti ∈ T}, 0).
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We say that a net N solves a word w if it solves TS(w). A word w is then called
solvable, and otherwise unsolvable.

If a word w is solvable, then so are all its factors (where a factor w′ satisfies
w = vw′u, for some v and u). Thus, the unsolvability of any proper factor of w
entails the unsolvability of w. For this reason, the notion of a minimal unsolvable
word, defined as an unsolvable word with all proper factors being solvable, is
well-defined (see [1] for details).

The mirror image wR of a word w is w written from right to left.

3 Solvability of flts’s with reverses

We now define reverses for labelled transition systems, and investigate how they
affect the solvability of the resulting flts’s. We first introduce the notions of
reduction and extension of an flts.

Definition 2 (flts reduction and extension). Let TS = (S, T,→, s0) be
a solvable flts.

– The reduction of TS by deleting t ∈ T is an flts TS[−t] = (S′, T \ {t},→′, s0)
such that:
• S′ ⊆ S are all the states reachable in TS without using −→t ;
• (s1, a, s2) ∈→′ if (s1, a, s2) ∈→, for all a 6= t and s1, s2 ∈ S′.

– The extension of TS by reversing t ∈ T is an flts TS[+t] = (S, T∪{t},→′, s0)
such that, for all s1, s2 ∈ S:
• (s1, a, s2) ∈→′ if (s1, a, s2) ∈→, for all a ∈ T ;
• (s1, t, s2) ∈→′ if (s2, t, s1) ∈→.

These above notions can be extended to finite sets of transitions, by setting
TS[−t1,t2...tn] = TS[−t1][−t2]...[−tn] and TS[+t1,t2...tn] = TS[+t1][+t2]...[+tn].

p1

p2

••

p3

p4

••
•

aa b

3

2

N1 :

b

b

b

a b

a

b

TS0 :

b
b

b

a b

a

b

TS1 :

b

bb

b

b
b

b

b

a b

a

b

TS2 :

a a

Fig. 2. TS0 and TS2 = TS
[+a]
0 are solvable by net N1 (respectively without and with

the dashed part), while TS1 = TS
[+b]
0 is unsolvable.
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Consider a word w = bbbabab which, in Figure 2, corresponds to a solvable flts
TS0. If we add a reverse of transition a, we obtain TS2 which is solvable by N1.
We will later show that reversing transition b leads to an unsolvable flts TS1.

The a in Figure 2 is an effect-reverse but not a strict reverse of a. We will now
show that if a label a can be effect-reversed, i.e., TS[+a] is solvable, then there
exists a solution in which transition a is a strict reverse of a.

Proposition 1. Let TS = (S, T,→, s0) be a solvable flts and a ∈ T . If TS[+a]

is solvable then there exists its solution such that a is a strict reverse of a.

p1

p2

••

a b b

3

2 2

N2 :

b

b

a b

a

b

TS3 :

b

b

a b

a

b

TS4 :

b

b

b

b

Fig. 3. Adding a reverse b in TS4 = TS
[+b]
3 does not violate solvability.

Consider N2 of Figure 3 without the dashed part. It solves the word bbabab, and
so its reachability graph is isomorphic to TS3. Unlike the case with the reverse of
b in TS1, TS4 obtained from TS3 by adding a reverse for transition b is solvable
by N2 with dashed part. Note that, in N2, b is a strict reverse of b.
Similarly, we may reverse a in TS3, obtaining TS5 of Figure 4. This flts is solvable
by the net N3 with the dashed part.

N3 :

p1

p2

p3

p4

••

••

aa b

2

2

b

b

a b

a

b

TS5 :

a a

Fig. 4. TS5 = TS
[+a]
3 is solvable (e.g. by N3).
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The next result states that for a given flts and two of its transitions, if adding
a reverse for each of them separately yields solvable flts’s, then the flts with both
reverses is also solvable.

Proposition 2. Let TS = (S, T,→, s0) be a solvable flts and a 6= b ∈ T . If both
TS[+a] and TS[+b] are solvable, then so is TS[+a,b].

For TS = TS3 of Figure 3, by Proposition 2, starting from the solutions for
TS4 = TS[+a] and TS5 = TS[+b], we can construct a solution N4 for TS6 =

TS[+a,b] depicted in Figure 5.

p1
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p3

p4

p5

p6

••

••

••
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2

2

3

3

2

N4 :

b

b
a

b

a

b

TS6 :

b

b

b

b

a

a

Fig. 5. N4 solving TS6 = TS
[+a,b]
3 derived by synchronising the transitions

of N2 and N3.

We end this section looking at the solvability of words over a two-letter alphabet.

Proposition 3. Let w ∈ {a, b}∗ be a minimal unsolvable word. Then TS(wR)
is solvable.

Due to Propositions 2 and 3, reversing of both transitions in the mirror image
wR of some minimal unsolvable word w over {a, b} yields solvability of w, which
is a contradiction. Hence, the following corollary holds

Corollary 1. Let w ∈ {a, b}∗ be a minimal unsolvable word and TS = TS(wR).
Then TS[+a] or TS[+b] is unsolvable.

The above result explains why b in TS1 of Figure 2 cannot be reversed. All we
need to observe is that w = bbbabab is the mirror image of a minimal unsolvable
word bababbb, and then recall that a can be reversed in TS1.
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4 Splitting reverses

In this section we discuss the possibility of "splitting" reverses. More specifically,
we investigate flts’s in which more than one reverse to a given transition can exist.

Consider N5 of Figure 6, together with its reachability graph TS7. First, we
observe that eff b1

(p) = eff b2
(p) = −eff b(p), for every place p. Hence, transitions

b1 and b2 are both effect-reverses for b. We have already seen that it is impossible
to synthesise an flts with just one reverse of b (i.e., TS1 of Figure 2), but the
behaviour of N5 is exactly what one might indeed want to obtain. The only
difference is that N5 has more than one reverse for b. In what follows, we show
that every action of a bounded net can be reversed using finitely many effect-
reverses.

N5 :

p1

p2

p3

a b

b1

b2
••

••
•

2

3

2

3

2

2

2 [2, 0, 3]

[2.1.2]

[2, 2, 1]

[2, 3, 0] [1, 2, 1]

[1, 3, 0]

[0, 2, 1]

[0, 3, 0]

b

b

b

a

b

a

b
b1

b1

b2

b2

b2
TS7 :

Fig. 6. Splitting reverses in TS7 results in solvability.

Definition 3 (splitting reverse). Let TS = (S, T,→, s0) be a solvable flts.
The extension of TS by a set T of reverses of t ∈ T is an flts TS[+tφ] =
(S, T ′,→′, s0) such that:

– φ :
−→
t → 2T \ {∅} is a mapping specifying all possible ways in which each of

t-labelled arcs can be reversed;
– T ′ = T ∪ T ;
– (s1, a, s2) ∈→′ if (s1, a, s2) ∈→, for any a ∈ T ;
– (s1, t

′, s2) ∈→′ if (s2, t, s1) ∈→ and t′ ∈ φ((s1, t, s2)).

We also extend the above notion in the usual way to TS[+t1φ1,t2φ2,...,tnφn].

Lemma 1. Let N = (P, T, F,M0) be a bounded net, TS = ([M0〉, T,→,M0)
be its reachability graph, and t /∈ T be a new transition symbol. If a reachable
marking M is ≤-maximal in [M0〉 and M ′ ∈ [M0〉, then

TS′ = ([M0〉, T ∪ {t},→ ∪{(M, t,M ′)},M0)

is a solvable flts.
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Proof. Let N ′ = (P, T ∪ {t}, F ′,M0), where:

F ′(p, a) = F (p, a) for all p ∈ P and a ∈ T
F ′(a, p) = F (a, p) for all p ∈ P and a ∈ T
F ′(p, t) =M(p) for every p ∈ P
F ′(t, p) =M ′(p) for every p ∈ P .

We then obtain that:

(1) t is not enabled at any marking M ′′ 6= M reachable in N . Indeed, suppose
that there exists such a marking M ′′. Then, by the definition of enabled-
ness, M ′′(p) ≥ F ′(p, t) = M(p), for every p ∈ P . Hence M ′′ ≥ M , which
contradicts the ≤-maximality of M .

(2) M [t〉M ′. This follows directly from the definition of F ′.

We then observe that, by (1) and (2), the sets of reachable markings of the nets
N and N ′ are equal, and RG(N ′) = TS′. ut

Lemma 1 states that to a given solvable flts (with a solution N = (P, T, F,M0))
one can always add a new edge (s, t(s,s′), s

′), obtaining another solvable flts,
provided that s is a state corresponding to some markingM , which is ≤-maximal
in [M0〉, and t(s,s′) denotes the label of the edge from s to s′, such that t(s,s′) /∈ T .
We will use this fact to prove the following theorem

Theorem 1. Let TS = (S, T,→, s0) be a solvable flts. Then, for every t ∈ T ,
there exists a finite set T and a function φ :

−→
t → 2T \ {∅} such that TS[+tφ] is

solvable.

Proof. Let N = (P, T, F,M0) be a net solving TS. As TS is finite, N is bounded,
and so we can calculate a common bound n on the tokens in the reachable
markings for all the places, n = max(M(p) |M ∈ [M0〉, p ∈ P ).
We extend N to N ′ = (P ∪ P ′, T, F ′,M ′0) by adding complement places [9]
P ′ = {p′ | p ∈ P} in such a way that, for all M ∈ [M0〉 and p ∈ P , we define
M ′, such that M ′(p) = M(p) and M ′(p′) = n −M(p). This can be done by
inserting in the initial marking n−M0(p) tokens into each p′ ∈ P ′, and setting
F ′(p′, a) = F (a, p) as well as F ′(a, p′) = F (p, a), for all p′ ∈ P ′ and a ∈ T .
Since, for distict markings M1,M2 ∈ [M ′0〉, there exists a place p ∈ P (in which
they differ) such that M1(p) > M2(p) and M1(p

′) < M2(p
′), or M2(p) > M1(p)

andM2(p
′) < M1(p

′), all distinct markings reachable in N ′ are ≤-incomparable.
Hence all markings reachable in N ′ are ≤-maximal in [M ′0〉. By the construction,
the reachability graph of N ′ is isomorphic to TS.

We then construct TS′ by adding to TS a set T of |−→t | new transitions in such
a way that, for every (p, t, q) ∈→, we also add (q, t(q,p), p) ∈→. We then define
a function φ :

−→
t → 2T \ {∅} in such a way that φ((p, t, q)) = {t(q,p)}.

Finally, by repeatedly using Lemma 1 for the net N ′, we obtain that TS′ =
TS[+tφ] is solvable. ut
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The construction described in the proof of Theorem 1 will in most cases lead to
a substantial enlargement of the net, as the size of places is doubled, and the
number of newly created transitions is bounded by the size of the reachability
graph of the initial net. However, as illustrated by the example depicted in
Figure 6, there may also exist solutions that are much smaller. Hence, there is a
room for improvement of the suggested constructive technique.

5 Infeasibility for reversing

To draw attention to another important issue, which becomes relevant during the
analysis of flts’s from the viewpoint of reversibility of transitions, let us consider
the following example.

Suppose that one attempted to introduce a reverse for a in TS8 of Figure 7,
which can be solved by N6. Although there exists a (strict) reverse a in N6,
depicted in Figure 7, the meaning of a may be confusing. We cannot regard it as
an undoing of the executing of action a, since N6 can fire bca where a does not
occur at all. What is more, we can keep repeating the firing of bca indefinitely,
without executing a even once. To address this situation, we introduce the notion
of infeasibility for reversing.

a

b c

a

• •N6:

b c

a

a
TS8:

Fig. 7. TS[+a] allows execution of a without executing of a.

Definition 4. Let TS = (S, T,→, s0) be an flts. Then a ∈ T is infeasible (for
reversing), if TS[+a] has a path starting from s0 with more occurrences of a
than a. Otherwise, a is feasible (for reversing).

There is a straightforward necessary condition for being feasible for reversing.

Proposition 4. Let TS = (S, T,→, s0) be an flts and t ∈ T . If TS[−t] has
a path from •tTS ∪ {s0} to t•TS then t is infeasible for reversing.

In general, the reversed implication does not hold. Take, for example, TS10 =

TS
[+a]
9 of Figure 8. It has a path labelled acdaa, with more a’s than a’s, implying
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the infeasibility for reversing of transition a in TS9. However, the reduction
of TS9 by deleting a, namely TS

[−a]
9 has no path starting from •aTS9 ∪ {s0}

to a•TS . Note that TS10 and TS9 are both solvable (see N7 of Figure 8 with
or without dashed arcs, respectively). We will now show that one can always

a b

c

d

a

•

•

•

•

•
2

2

2

2

N7:
s0

a
b

a
a

c d

TS9:

s0 a

b a
a

c d

a

a

aTS10:

Fig. 8. a is infeasible for reversing in TS9, even though TS
[−a]
9 has no path from

•aTS9 ∪ {s0} to a•
TS9

.

establish whether a label of an flts is (in)feasible for reversing. To this end,
formulate the following decision problem:

Feasibility for Reversing Problem
Instance: An flts TS = (S, T,→, s0) and t ∈ T .
Question: Is t feasible for reversing in TS?

Proposition 5. The Feasibility for Reversing Problem is decidable.

Proof (Sketch of the algorithm.).

The following algorithm reduces the problem of checking the feasibility of a
transition for reversing to the problem of finding shortest paths in a weighted
digraph.

Input: An flts TS = (S, T,→, s0) and t ∈ T .
Output: YES if t is feasible for reversing in TS; otherwise NO.

Procedure:

1. Compute a weighted graph G = (V,E,w) on the basis of the extension
TS[+t] = (S, T ∪{t},→′, s0) of TS, in the following way (for all s, s′ ∈ S,
a ∈ T ∪ {t}):
– V = S;
– (s, s′) ∈ E if (s, a, s′) ∈→′;

– w((s, s′)) =

 1 if (s, t, s′) ∈→′
−1 if (s, t, s′) ∈→′
0 otherwise.
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2. Use, e.g., Bellman-Ford algorithm, to search for a state swit, such that
the distance between s0 and swit is negative.

3. If swit exists, return NO and otherwise YES. ut

For a transition system consisting of n states the preprocessing phase (step 1)
can be done in time O(n2). The computation of step 2 can be performed in time
O(n3) (basing on Bellman-Ford algorithm). Therefore the overall complexity of
the algorithm is O(n3).

6 Concluding remarks

In this paper, we have investigated reversibility of transitions in bounded nets. In
particular, we have shown that each transition in such nets can be reversed using
a suitable set of new transitions, but not necessarily a single reverse transition.
In future, we plan to investigate ways in which the generation of sets of reverses
could be optimised.
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Abstract. Elementary Object Systems (EOS) is a class of Object Petri Nets that 

follows the “nets-within-nets” paradigm. It combines several practical as well as 

theoretical properties for the needs of multi-agent-systems. However, it comes 

with some constraints that limit their expressiveness for automatic verification 

purposes due to the highly expressive nature of the underlying class of Petri 

nets. In this paper, we proposed a set of transformation rules from EOS to basic 

Petri nets nets and show isomorphism of the state spaces in order to make veri-

fication feasible.  

Keywords: Elementary Reference-net System, nets-within-nets, Petri nets, 

isomorphic property, computational complexity 

1  Introduction 

Elementary Object Systems (EOS for short) are based on the nets-within-nets para-

digm of (Valk, 1991,2003) in which the nesting of nets involved in the model is re-

stricted to two levels and are generalised in (Köhler and Heitmann, 2009) for arbitrary 

nesting structure. This formalism provides a modelling technique that allows tokens 

of Petri nets to be Petri nets themselves, called object nets. Object nets are tokens with 

internal structure and inner activity and have been applied in a variety of scenarios, 

e.g., multi-agent systems.  

We aim to provide a path to verification of properties of a slightly modified version 

of EOS, called elementary reference-net systems (ERS), with reference semantics that 

is practically relevant and overcomes fundamental decidability issues with other for-

malists as shown in (Köhler and Rölke, 2004) and (Lomazova, and Schnoebelen, 

1999). As in similar formalists, we have to distinguish autonomous and synchronous 

transitions. The need for application of a partial order (unfolding) approach for dy-

namic analysis of EOS have encouraged and driven the development of this new for-

malism.  We refer the reader to (Valk, 1991) for an introduction to the nets-within-

nets.  

Compared to EOS, two main additions are introduced for ERS: Firstly, we provide 

each marked object net located in places of the system net with a unique name so that 

object nets with the same marking can be distinguished. Secondly, we use variables to 

label arcs of the system net. So that when firing transitions, variables are bound to 
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object nets names instead of statically typing system net places allowing dynamic use 

of net-tokens without fixing types for places of the system net.  

We extend the notion of 1-safe P/T nets to ERS to guarantee that the state space is 

finite and markings are bounded. Further to the definition of ERS, we propose a set of 

transformation rules from 1-safe ERS into P/T nets and show isomorphism of the state 

spaces of ERS with its generated P/T net.  

In Section 2 we review some preliminaries from Petri net theory. Section 3 gives 

an introduction to ERS. Section 4 presents the set of transformation rules from 1-safe 

ERS to 1-safe P/T nets. Section 5 proves the isomorphism of the state spaces of 1-safe 

ERS and of the transformed 1-safe P/T net.  

2 Fundamentals of Petri nets 

Here we give some definitions from theory of P/T-net, Relevant for our study. 

 Definition 2.1(P/T net) A place/transition  is a tuple 𝑁 = (𝑃, 𝑇, 𝐹,𝑊)where 𝑃 is 

a finite set of places, 𝑇 is a finite set of transitions, disjoint from 𝑃, 𝐹 ⊆ (𝑃 × 𝑇) ∪
(𝑇 × 𝑃) is the flow relation, and 𝑊:𝐹 ⟶ ℕ\{0} is the arc weight function. The pre-

set of a node 𝑥 ∈ 𝑃 ∪ 𝑇, denoted ⦁𝑥, is the set containing the elements that immedi-

ately precede 𝑥  in the net i.e.: ⦁𝑥 = {𝑦 ∈ 𝑃 ∪ 𝑇|(𝑦, 𝑥) ∈ 𝐹}. Analogously, the postset 

of a node is denoted 𝑥⦁.  

Definition 2.2 (Marking and Enabled transition ). A marking of a P/T-net 𝑁 =
(𝑃, 𝑇, 𝐹,𝑊)  is a function 𝑚: 𝑃 ⟶ ℕ.  A P/T net system 𝛴=(𝑁,𝑚0) is a net 𝑁 =
(𝑃, 𝑇, 𝐹) together with an initial marking 𝑚0. Let Σ = (𝑁,𝑚0) be a net system. A 

transition 𝑡 ∈ 𝑇 is enabled in a marking 𝑚 iff 𝑚(𝑝) ≥ 𝑊(𝑝, 𝑡)for all 𝑝 ∈ ⦁𝑡. An ena-

bled transition 𝑡 in marking 𝑚 is denoted by 𝑚[𝑡 >. A transition  that is enabled in a 

marking may or may not fire. Firing of transition removes tokens from input places of 

𝑡 and puts new tokens onto output places of 𝑡. The successor marking 𝑚′ is defined 

as 𝑚′ (𝑝) =  𝑚(𝑝) −𝑊(𝑝, 𝑡) + 𝑊(𝑡, 𝑝). We denote this by 𝑚[𝑡 > 𝑚′. For a finite 

sequence of transition 𝜎 = 𝑡1, … 𝑡𝑘, we write  𝑚[𝜎 > 𝑚′ if there are markings 

𝑚1, …𝑚𝑘+1 such that 𝑚1 = 𝑚,𝑚𝑘+1 = 𝑚′ and 𝑚𝑖[𝑡𝑖 > 𝑚𝑖+1, for all 𝑖 = 1, … , 𝑘.  

The set of reachable markings of Σ is the set of all markings reachable from the initial 

marking. Σ is k-bounded if, for every reachable marking m and every place p ∈ P, 

m(p)  ≤  k, and Σ is safe if it is 1-bounded. Moreover, Σ is bounded if it is k-bounded, 

for some k ∈ N. One can show that the set RM(Σ) is finite if Σ is bounded i.e. 

if  |RM(Σ)| < ∞. 

3 Elementary Reference-net System (ERS) 

By convention, the components of the system net will carry a hat: �̂�, �̂�, �̂�, �̂�, … etc. 

Definition 3.1 Let the triple 𝜂𝑖 = (𝑖, 𝑁𝑖 , 𝑚𝑖) be a named marked object net, 

where 𝑖, is a unique name of an object net; 𝑁𝑖 is a structure of the object net, and 𝑚𝑖 
is a marking in 𝑁𝑖. (Let  Σ = {(𝑖1, 𝑁1, 𝑚1), … , (𝑖𝑘 , 𝑁𝑘 , 𝑚𝑘)} be a finite set of unique 
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marked named object nets). The structure of an object net with a unique name 𝑖 ∈ Σ is 

a P/T- net 𝑁𝑖 = (𝑃𝑖 , 𝑇𝑖 , 𝐹𝑖), where 𝑃𝑖 , is the set of places of the object net,  𝑇𝑖  is the set 

of its transitions and 𝐹𝑖 ⊆ (𝑃𝑖 × 𝑇𝑖) ∪ (𝑇𝑖 × 𝑃𝑖) is the flow relation. We assumed that 

all sets of nodes are pairwise disjoint and set 𝑃Σ ≔ ⋃ 𝑃𝜂𝑖𝜂𝑖∈Σ
 𝑎𝑛𝑑 𝑇Σ ≔ ⋃ 𝑇𝜂𝑖𝜂𝑖∈Σ

. By 

𝑁• we denote the name of ordinary black tokens. 

Definition 3.2 (ERS) Let 𝑉𝑎𝑟 be a finite set of named variables. An elementary 

reference-net system is a tuple 𝑅𝑆 = (�̂�, Σ𝑚0 , ℓ,𝓌,  𝑹
𝟎) where 

 �̂� = (�̂�, 𝑇,̂ �̂�) is a p/t net called a system net, where 𝑃 ̂is its set of places, �̂�is its set 

of transitions and �̂� ⊆ (�̂� × �̂�) ∪ (�̂� × �̂�) is the flow relation. 

 Σ𝑚0 ≔ {(𝑖1, 𝑁1, 𝑚1
0), … , (𝑖𝑘 , 𝑁𝑘, 𝑚𝑘

0)}, is a finite set of marked named object nets. 

 ℓ ⊆ (�̂� ∪ {�̂�}) × (𝑇1i ∪ {𝜏}) ×,… , (𝑇𝑘 ∪ {𝜏})\{�̂�, 𝜏, … , 𝜏)} , is the synchronisation 

relation, where �̂� and 𝜏 are special symbols intended to denote inactions at the sys-

tem and the object net levels respectively. If 𝒕 = (�̂�, 𝑡1, … , 𝑡𝑘) and �̂�, ≠ 𝜏 and ∃𝑖 ∈
{1, … , 𝑘} such that 𝑡𝑖 ≠ 𝜏, then we say that �̂�𝑎𝑛𝑑 𝑁𝑖 ∈ Σ for every 𝑖 ∈ {1, … , 𝑘} 
with 𝑘 = |Σ|, participate in 𝒕. This is the reason why (�̂�, 𝜏, … , 𝜏) is excluded from 

the set of synchronisation relation: at least one object net must participate in every 

synchronisation action with the system net. 

 𝓌: �̂� ⟶ 𝑉𝑎𝑟 ∪ {𝑁•} is an arc labelling function such that for an arc �̂� ∈ (�̂�) adja-

cent to a place �̂� the inscription of 𝓌(�̂�) matches the name of object net in �̂� 

  𝑹𝟎 specifies the initial making, where  𝑹𝟎: �̂� → ℕ ∪𝑀𝑆(Σ) 𝑤𝑖𝑡ℎ Σ =
{(𝑖1, 𝑁1, 𝑚1), … , (𝑖𝑘, 𝑁𝑘 , 𝑚𝑘}. It has to satisfy the condition 𝑹𝟎(�̂�) ∈ ℕ ⟺
 𝑹𝟎(�̂�) ∈ {𝑁⦁}. 

In the example of Fig. 1 an 𝑅𝑆 = (�̂�, Σ, ℓ,𝓌,  𝑴𝟎) is shown, where Σ = {𝑁1, 𝑁2}. 
Arcs of �̂� can be identified by their labelling from 𝓌(�̂�). Hence {x, y,} can be bound 

to marked named object nets in places �̂�1 𝑎𝑛𝑑 �̂�2 adjacent to transition  𝑡′̂ to enable 

it.  In the initial marking, places �̂�1 𝑎𝑛𝑑 �̂�2 contain references to the marked named 

object nets 𝑁1𝑎𝑛𝑑 𝑁2 respectively.  

We denote by 𝒩 = {𝑖|(𝑖, 𝑁𝑖,, 𝑚𝑖) ∈ Σ}, a finite set of object nets names.  

Moreover, variables appearing on arcs adjacent to a transition �̂� of the system net 

must satisfy the following four conditions: 

∀�̂� ∈ �̂� 𝑎𝑛𝑑 ∀�̂� ∈ ⦁�̂�, ∃�̂�′ ∈ �̂�⦁, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝓌(�̂�, �̂�) =  𝓌(�̂�, �̂�′) 𝑜𝑟 𝓌(�̂�, �̂�) =  𝑁•  (1) 

∀�̂� ∈ �̂� 𝑎𝑛𝑑 ∀�̂� ∈ ⦁�̂�, ∃�̂�′ ∈ �̂�⦁, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝓌(�̂�′, �̂�) =  𝓌(�̂�, �̂�) 𝑜𝑟 𝓌(�̂�, �̂�)  =  𝑁• (2) 

∀�̂� ∈ �̂� and for any two places �̂�1, �̂�2, ∈ ⦁�̂�, 𝑖𝑓�̂�1 ≠ �̂�2 𝑡ℎ𝑒𝑛 𝓌(�̂�1, �̂�) ≠ 𝓌(�̂�2, �̂�).  (3) 

∀�̂� ∈ �̂� and �̂�′1, �̂�′2, ∈ �̂�⦁, 𝑖𝑓 �̂�1 ≠ �̂�2 𝑡ℎ𝑒𝑛 𝓌(�̂�, �̂�′1) ≠ 𝓌(�̂�, �̂�′2).                          (4) 

 Condition (1) says that each variable appearing in the incoming arc of a system net 

transition �̂� also has to appear in the outgoing arc of �̂�  or no such variable exist. Con-

dition (2) says that each variable appearing in the outgoing arc of a system net transi-

tion �̂� also has to appear in the incoming arc of �̂�  or no such variable exist. These two 
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conditions means that no new object net is created and no destroyed after a transition 

firing in the system net. Condition (3) prevents the ability to join two object nets, and 

(4) prevents the splitting of an object net. This is because in reality, complex physical 

entities cannot be cloned at run time. With these restrictions, ERS still retain the abil-

ity to describe nesting of object nets, synchronisation, and mobility, but does not al-

low splitting of the inner marking of an object net or joining the inner marking of 

several object nets. Assuming these inner markings as modelling the inner state of an 

agent, this is a reasonable restriction and ERSs are then well suitable to model physi-

cal entities 

 

Fig. 1. An example of an ERS 

For its behaviour, we introduce the notion of marking for elementary reference-net 

system ERS under reference semantics. Hence in general a marking is given by 

1. a distribution of object nets or black tokens 𝑹: �̂� → ℕ ∪ 𝑀𝑆(Σ) and 

2. The vector 𝑴 = (𝑚1, … ,𝑚𝑘) with the current marking of each 𝑁𝑖  (1 ≤ 𝑖 ≤ 𝑘). 

𝑹 specifies for each system net place �̂� a number of black tokens  or a multiset of 

marked named object nets (if �̂� contain reference(s) to marked named object nets). If 

we abbreviate (𝑚1, … ,𝑚𝑘)  by 𝑴 and the set of all such vectors by ℳ, we obtain the 

following Definition 3.3.  By Π𝑖(𝑴) we denote the 𝑖 − 𝑡ℎ component 𝑚𝑖 of 𝑴 and 

by 𝑴𝒊→𝒎𝒊 the tuple, where the 𝑖 − 𝑡ℎ component is substituted by 𝑚𝑖, 𝑀 ∈ ℕ
𝑘. 

In what follows a marked named object net is referred to as net-token. For a given 

ERS, by ∑ = Σ ∪ {𝑁•}𝑛𝑡  we denote the set of all marked named net-tokens. Only 

when not introduced in the marking! Sometimes by abuse of notation, for a named 

object net (𝑖, 𝑁𝑖 , 𝑚𝑖) in a place �̂� of a marking 𝑹  of the system net we write 𝑹(�̂�) = 𝑖  

Definition 3.3 Given an elementary reference-net system 𝑅𝑆 =

(�̂�, Σ𝑛𝑡 , ℓ,𝓌,  𝑹
𝟎) we define ℳ ≔ {𝑀|𝑀 = (𝑚1, … ,𝑚𝑘) ∧ 𝑚𝑖 ∈ 𝑀𝑆(𝑃𝑖)}. Then a 

marking of an elementary reference-net system is a pair (𝑅,𝑀) where 𝑀 ∈
ℳand 𝑹: �̂� → 𝑀𝑆(Σ𝑛𝑡). Specifying 𝑀0 by the initial markings of the marked named 

object nets 𝑀0 = (𝑚1
0, … ,𝑚𝑘

0) we obtain the initial marking (𝑹𝟎, 𝑴𝟎) of 𝑅𝑆. The set 

of all markings of 𝑅𝑆 is denoted by ℳr . 

Let �̂� ∈ �̂� be a transition in the system net �̂�, then •�̂� = {�̂�|(�̂�, �̂�) ∈ �̂�}, and �̂�⦁ =

{�̂�|(�̂�, �̂�) ∈ �̂�} are sets of its pre- and post-conditions. We denote by 𝓌(�̂�) ≔

{𝓌(�̂�, �̂�)|(�̂�, �̂�) ∈ �̂�} ∪ {𝓌(�̂�, �̂�)|(�̂�, �̂�) ∈ �̂�} = ⦁�̂� × {�̂�} ∪ {𝑡} × �̂�⦁ the set of all varia-

bles on arcs adjacent to �̂�. A binding 𝛽 specifies which variables are bound to names, 

where 𝛽:𝓌(�̂�) ∪ {•} ⟶ 𝒩 ∪ {𝑁⦁}with 𝒩 = {𝑖|(𝑖, 𝑁𝑖,, 𝑚𝑖) ∈ Σ} satisfying the condi-
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tions: for each 𝑥 ∈ 𝓌(�̂�) ∪ {•}, there exist 𝑖 ∈ 𝒩such that 𝛽(𝑥) = 𝑖 𝑎𝑛𝑑 𝑖𝑓 𝑥 =•
𝑡ℎ𝑒𝑛 𝛽(𝑥) =  𝑁•. 

The firing rule will be introduced in three modes.  

Definition 3.4 (synchronisation firing mode) Let(𝑹,𝑴)be a marking of an ele-

mentary reference-net system, �̂� ∈ �̂� a transition of �̂�, and let 𝛽 be a variable binding 

defined for all 𝑥 ∈ 𝓌(�̂�) ∪ {•}. Let 𝛼1, . . . , 𝛼𝑘  ∈  Σ𝑛𝑡 be object nets involved in the 

firing of �̂�. Then �̂�  can fire provided that in each 𝛼𝑖 ∈  Σ𝑛𝑡 for every  𝑖 ∈ {1, … , 𝑘} a 

transition 𝑡𝑖 ∈ 𝑇Σ such that(�̂�, 𝑡1, … , 𝑡𝑘) ∈ ℓ. Then (�̂�, 𝑡1, … , 𝑡𝑘) is enabled in (𝑹,𝑴) 

if:  ∀ �̂� ∈ 𝑃:̂ (𝛽(𝓌(�̂�, �̂�)), 𝑁𝛽(𝓌(𝑝,�̂�)), 𝑚𝛽(𝓌(𝑝,�̂�)))  ∈ 𝑹(�̂�) and 

∀𝑝 ∈ 𝑃𝑖 ∶  Π𝑖(𝑴) ≥  𝐹𝑖(𝑝, 𝑡𝑖),.                                                                                    (5) 

This is denoted by (𝑹,𝑴)[�̂�, 𝑡𝑖 > Let be 𝑚𝑖[𝑡𝑖 > 𝑚′𝑖  (w.r.t 𝑁𝑖). The successor 

marking (𝑹′,𝑴′) is defined by 

𝑹′(𝑝) = 𝑹(�̂�)\ (𝛽(𝓌(�̂�, �̂�)), 𝑁𝛽(𝓌(𝑝,�̂�)), 𝑚𝛽(𝓌(𝑝,�̂�))) ∪

(𝛽(𝓌(�̂�, �̂�)), 𝑁𝛽(𝓌(�̂�,�̂�)), 𝑚𝛽(𝓌(𝑡,̂𝑝))) : ∀�̂� ∈ �̂� and 

𝑴′  = 𝑴𝒊→𝒎𝒊 .                                                                                                            (6) 

This is denoted by (𝑅,𝑀)[�̂�, 𝒕𝒊 > (𝑹
′, 𝑴′).  

Definition 3.5(system-autonomous firing mode) Let (𝑹,𝑴) be a marking of an 

elementary reference-net system 𝑅𝑆 = (�̂�, Σ𝑛𝑡 , ℓ,𝓌,  𝑹
𝟎)and �̂� ∈ �̂� a transition of �̂� 

with a binding 𝛽 such that ∄(�̂�, 𝑥𝑖 , … , 𝑥𝑘) ∈ ℓ ∶  ∃ 𝑖 ∈ {1,… , 𝑘} ∶  𝑥𝑖 ≠ 𝜏. Then �̂� 𝑖𝑠 ac-

tivated in (𝑹,𝑴) if there is a net token such that: 

(𝛽(𝓌(�̂�, �̂�)), 𝑁𝛽(𝓌(𝑝,�̂�)), 𝑚𝛽(𝓌(𝑝,�̂�)))  ∈ 𝑹(�̂�)∀�̂� ∈ 𝑃 ̂.                                              (7) 

Since we use 𝜏, for in action, this is denoted by (𝑹,𝑴)[( �̂�, 𝜏) >.  The successor 

marking (𝑹′, 𝑴′)is defined by 

∀�̂� ∈ �̂� ∶ 𝑹′(�̂�) = 𝑹(�̂�)\(𝛽(𝓌(�̂�, �̂�)),𝑁𝛽(𝓌(�̂�,�̂�)),𝑚𝛽(𝓌(�̂�,�̂�))) ∪ (𝛽(𝓌(�̂�, �̂�)),𝑁𝛽(𝓌(�̂�,�̂�)),𝑚𝛽(𝓌(𝑡,̂�̂�))) 

   𝑴′ = 𝑴 .                                                                                                                  (8) 

This is denoted by (𝑹.𝑴)[(�̂�1, 𝜏) > (𝑹
′, 𝑴′). 

Definition 3.6(object –autonomous firing mode) Let (𝑹,𝑴) be a marking of an 

elementary reference-net system 𝑅𝑆 = (�̂�, Σ𝑛𝑡 , ℓ,𝓌,  𝑹
𝟎)and 𝑡𝑖 ∈ 𝑇𝑖 a transition of a 

net-token 𝑖 = (𝑖, 𝑁𝑖 , 𝑚𝑖) ∈ 𝑹(�̂�) for some �̂� ∈ �̂�, such that ∄(�̂�, 𝑥𝑖 , … , 𝑡𝑖, … , 𝑥𝑘) ∈ ℓ, 

and  𝑡𝑖 is activated in 𝑁𝑖. Then we say that  (�̂�, 𝑡𝑖) is activated in (𝑹,𝑴) (denot-

ed(𝑹,𝑴)[(�̂�, 𝑡𝑖) >]. The successor marking (𝑹′,𝑴′) of RS is defined by 

𝑹′ = 𝑹 and 

𝑴′ = 𝑴1→mi
if 𝑚𝑖[ 𝑡𝑖 > 𝑚′𝑖 for Π𝑖(𝑴) = 𝑚𝒊 .                                                         (9)  
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We denote this by (𝑹,𝑴)[(�̂�,  𝑡𝑖) > (𝑹′,𝑴′). 

To introduce the occurrence sequences for 𝐸𝑅𝑆 we assume an 𝐸𝑅𝑆  as defined in 

Definition 3.2. Let 𝑅𝑆 be an 𝐸𝑅𝑆𝑎𝑛𝑑(𝑹,𝑴), (𝑹′, 𝑴′) ∈ ℳ𝑟. 

Definition 3.7 For a new alphabet Γ ≔ (�̂� ∪ {�̂�}) × (𝑇1 ∪ {𝜏}) ×,… , (𝑇𝑘 ∪ {𝜏})\
(�̂�, 𝜏, … , 𝜏)where (�̂�, 𝜏, … , 𝜏) denotes the neutral element of  Γ∗, we define: 

              (𝑹,𝑴)[(�̂�, 𝜏, … , 𝜏) > (𝑹′, 𝑴′) if (𝑹,𝑴) = (𝑹′, 𝑴′) and 

(𝑹,𝑴)[�̆�(�̂�, 𝛼) > (𝑹′, 𝑴′) 𝑖𝑓 ∃(𝑹′′,𝑴′′) ∶ (𝑹,𝑴)[�̆� > (𝑹′′, 𝑴′′) 𝑎𝑛𝑑 

(𝑹′′,𝑴′′)[(�̂�, 𝛼) > (𝑅′,𝑀′) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 �̆� ∈ Γ∗, �̂�, ∈ �̂� ∪ {�̂�} 𝑎𝑛𝑑  𝛼 ∈ ((𝑇1 ∪ {𝜏}) ×  , … , (𝑇𝑘 ∪ {𝜏}).  ( 10)                                                                                

To denote that (𝑹′,𝑴′) is reachable from (𝑹,𝑴) by some occurrence sequence of 

actions we write (𝑹,𝑴)
∗
→ (𝑹′, 𝑴′). 

The set of reachable markings of a reference system RS from a marking (𝑹,𝑴) is 
denoted by 𝑅(𝑅𝑆, (𝑹,𝑴)). 𝑅(𝑅𝑆), is the set of markings reachable from the initial 

marking (𝑹𝟎, 𝑴𝟎). The reachability graph (𝑅𝐺(𝑅𝑆) is obtain as for P/T-net systems, 

which is a digraph whose nodes is the set of reachable markings and edges are the 

tuples ((𝑹,𝑴), (�̂�, 𝛼), (𝑹′, 𝑴′)) ∈ ℳ𝑟 × (�̂�, 𝛼) ×ℳ𝑟 where (𝑹,𝑴)
(�̂�,𝛼)
→  (𝑹′, 𝑴′). 

We now extend the definition of 1-safe P/T-net to ERS.  We introduce two condi-

tions for safeness of ERS as a generalisation of the safeness notion for P/T-nets.  

Definition 3.8 (1-safe ERS) 𝐿𝑒𝑡 𝑅𝑆 = (�̂�, Σ, ℓ,𝓌,  𝑹𝟎)𝑏𝑒 𝑎𝑛 𝐸𝑅𝑆. RS is 1-safe if 

and only if all reachable markings are 1-safe and if and only if in all reachable mark-

ings there is at most one net-token on each system net place and each net-token is 1-

safe i.e.,: 

 ∀(𝑹,𝑴) ∈ 𝑅(𝑅𝑆), ∀�̂� ∈ �̂�: (𝑅(�̂�), ) ≤ 1 and 

 ∀(𝑖, 𝑁𝑖 , 𝑚𝑖) ∈ 𝑹(�̂�):∀𝑝𝑖 ∈ 𝑃𝑖 ∶  ∀�̂� ∈ �̂� (𝑹(�̂�), Π𝑖(𝑴(𝑝𝑖)) > 0 ⟹ Π𝑖(𝑴(𝑝𝑖)) ≤ 1. 

Observation 3.9: Given an ERS if for all reachable markings there is at most one 

token on each system net place and each net-token is 1-safe, then all reachable mark-

ings are 1-safe. 

Theorem 3.10 If an ERS is safe, then its set of reachable markings is finite. The 

proof to this theorem is presented in appendix A. 

4 Transformation of ERS into P/T- nets 

We construct a behaviorally equivalent finite P/T-net model for the entire ERS 

model and show this by strong bisimulation equivalence between states of the two 

models. By doing so, we develop a set of transformation rules that provide the same 

behavioral properties as the original one for formal verification and analysis. 

Related work can be found in (Miyamoto & Horiguchi, 2013; Lomazova & Erma-

kova, 2016). We highlight the similarities and differences between the proposed ap-
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proach and these related studies. Miyamoto and Horiguchi present a translation tech-

nique for transforming classical Multi-Agent nets (MANs) into Modular Nets (MNs) 

and show isomorphism of state spaces of both nets including the computational com-

plexity for transforming MAN into MNs. The major similarities between our work 

and that of (Lomazova&Ermakova, 2016) is that they developed a set of rules for 

translating a safe conservative nested Petri net (NP-net) into an equivalent P/T net. 

The main differences are that we established clearly an important relation between the 

isomorphic properties of state space of safe-ERS and a 1-safe P/T net. Among such 

results are the establish Lemmas, and proof of a theorem for the isomorphism. More-

over, we adopt a different way of introducing the procedure for transforming nets-

within-nets into 1-safe P/T net, which consequently give a neater and easier-to-

understand presentation.  

4.1 Transformation Rules 

This subsection gives a set of transformation rules for transforming Elementary 

Reference-net system (Section 3) into P/T-net. There exist five rules and they must be 

applied in sequence from Rule 1 to Rule 5. With these rules ERS can be translated 

into a P/T net system 𝑁∗. 

Let 𝑅𝑆 = (�̂�, Σ, ℓ,𝓌,  𝑹𝟎)be an ERS with a set Σ𝑛𝑡 of all marked named net tokens 

in the initial marking. By ℝ we denote the set of all names used in Σ𝑛𝑡. The net will be 

translated into a P/T-net system 𝑁∗ = (𝑃𝑁∗
∗ , 𝑇𝑁∗

∗ , 𝐹𝑁∗
∗ , 𝑀0

∗)  

Rule 1: Generate the set 𝑃𝑁∗
∗  of places of a P/T-net 𝑁∗. The first, is the set 𝑃′𝑁∗  of 

places from the system net �̂�, and the second the set 𝑃𝑁∗ of all places of each net-

token in the initial marking of the system net. Finally, we take the union of these set as 

the set 𝑃𝑁∗
∗  of a target P/T-net 𝑁∗, with the assumption that 𝑃′𝑁∗ ∩ 𝑃𝑁∗

∗ = ∅. 

𝑃′𝑁∗  is generated by duplicating all places of the system net for each net-token 

name  𝑖 used in the initial marking of the system net and labelled it with a pair (𝑝′, 𝑖) 
where 𝑝′is a place in �̂�. Thus the set is defined as follows: 

                                            𝑃′𝑁∗ ≔ ⋃ {(𝑝′, 𝑖)|𝑖 ∈ ℝ, 𝑖 ≥ 1}𝑝′∈�̂�  .                                 (11) 

𝑃𝑁∗ is generated by taking a copy of each place in the set 𝑃𝑖  for each net-token and 

labelled it with a pair (𝑝𝑖 , 𝑖) where 𝑝𝑖  is a place in 𝑃𝑖 . It is defined as follows: 

    𝑃𝑁∗ ≔ ⋃ {(𝑝𝑖 , 𝑖)|𝑝𝑖 ∈ 𝑃𝑖 ,𝑖∈Σ𝑛𝑡 𝑖 ∈ ℝ, 𝑖 ≥ 1} .                                                         (12) 

Therefore the set 𝑃𝑁∗
∗  of a target P/T-net 𝑁∗ as shown in Fig.2 is the union of these 

set, namely 

        𝑃𝑁∗
∗ ≔ 𝑃′𝑁∗ ∪ 𝑃𝑁∗  .                                                                                             (13) 

Rule 2: Define the initial marking for 𝑁∗. For a P/T-net  𝑁∗ we define an encoding 

of markings on places from the set of places �̂� in an ERS by markings on the generat-

ed places from 𝑃𝑁∗
∗ . If a net-token with name  𝑖 ∈ ℝ𝑖 resides in a place �̂� in an initial 
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marking 𝑅0(�̂�) of the system net, then a black token in placed on (�̂�, 𝑖) ∈ 𝑃𝑁∗
∗  as the 

initial marking 𝑀0
∗ of the constructed, namely 

𝑀0
∗(�̂�, 𝑖) = 𝑅0(�̂�).                                                                                                    (14) 

Also, we define an encoding of markings on places from the set of places 𝑃𝑖  on the 

generated places from 𝑃𝑁∗
∗ . If all places (𝑝, 𝑖) for all 𝑝 such that (𝑝, 𝑖) ∈ 𝑃𝑁∗

∗  is 

marked in the initial marking 𝑀0 of the net-token 𝑖 ∈ ℝ𝑖 , then of black token is placed 

on (�̂�, 𝑖) ∈ 𝑃𝑁∗
∗   in 𝑀0

∗ ,namely 

𝑀0
∗(𝑝, 𝑖) = 𝑀0(𝑝).                                                                                                    (15) 

 

      Fig. 2. Set of places of P/T net                                     Fig 3: initial marking 

If a place in the system net is a place that contains a black token, then the unique 

copy corresponding to the place in  𝑁∗ is also marked with a black token. In the given 

ERS, reference to the net-token  𝑁1 resides in �̂�1,  and reference to the net-token re-

sides in �̂�2. Hence, we have tokens in (𝑝′1 , 1)  and(𝑝′2, 2) for 𝑁∗. Likewise, we define 

the markings for places (𝑝1, 1) and (𝑝1, 2). This is illustrated in Fig.3 above. 

 

Rule 3: Generate a family of P/T-net transitions from a system net. We define a set 

𝑇𝑠𝑎𝑡
∗  of transitions of 𝑁∗ obtained from each autonomous transition of the system net 

�̂� by duplicating each autonomous transition for each input arc variable of �̂� that 

may be bound to any of the named  net-token  name in each place adjacent to �̂� with 

appropriate input and output arcs, in 𝑁∗.  

  𝑇𝑠𝑎𝑡
∗ ≔ ⋃ {𝑡′𝛽𝑖(𝑥)|𝑥 ∈ 𝑤(�̂�): �̂� 𝑖𝑠 𝑎 𝑠𝑦𝑠𝑡𝑒𝑚 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑜𝑢𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛}�̂�∈�̂� .           (16) 

In the example ERS, the set 𝑤(�̂�) of input arc variables that can be bound to a 

named net-token for 𝑡′2 is as follows: 

𝛽(𝑤(𝑡′2)) = {𝛽1 = (𝑧 = 1)      𝛽2 = (𝑧 = 2)} .                                                      (17) 

Where 𝛽1  and 𝛽2 are bound to the input arc variable 𝑧, respectively. Therefore, 

two transitions 𝑡′21 𝑎𝑛𝑑 𝑡′22 are generated for transition  𝑡′2 from Rule 3. 

We define a set 𝐹𝑠𝑎𝑡
∗  of arcs for system autonomous transitions in 𝑁∗as follows: 
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𝐹𝑠𝑎𝑡
∗ = ⋃ {(𝑥′�̂�∈�̂� , 𝑦′|(𝑥, 𝑦) = 𝓌(�̂�), 𝑥′ ∈ 𝑃′𝑁∗(𝑥) ∪ 𝑇𝑠𝑎𝑡

∗ (𝑥), 𝑦′ ∈ 𝑃′𝑁∗(𝑦) ∪
𝑇𝑠𝑎𝑡
∗ (𝑦)} .                                                                                                                   (18) 

Rule 4: Generate a family of transitions representing autonomous transitions in 

each net-token. For a set 𝑇𝑛𝑎𝑡
∗  of transitions of 𝑁∗ we define a set of similar autono-

mous transitions as follows. 

 

Fig. 4. Transitions and arcs from Rule 3           Fig. 5, Transitions and arcs after Rule 4 

 𝑇𝑛𝑎𝑡
∗ ≔ ⋃ {𝑡|𝑡𝑖 ∈ 𝑇𝑖 ∧𝑖∈Σ𝑛𝑡  𝑡𝑖𝑖𝑠 𝑎𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑜𝑢𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛} .                 (19) 

We define a set 𝐹𝑛𝑎𝑡
∗  of arcs of net-token autonomous transitions in 𝑁∗as follows: 

 𝐹𝑛𝑎𝑡
∗ = {(𝑝, 𝑖), 𝑡) ∈ 𝑃𝑁∗ × 𝑇𝑛𝑎𝑡

∗ |(𝑝, 𝑡) ∈ 𝐹𝑖 > 0} ∪ 

             {(𝑡, (𝑝. 𝑖) ∈ 𝑇𝑛𝑎𝑡
∗ × 𝑃𝑁∗|(𝑡, 𝑝) ∈ 𝐹𝑖 > 0} .                                                    (20)     

 This is depicted in Fig.5. 

Rule 5: Generate a family of transitions representing synchronisation transitions 

obtained from the system net and net-tokens. An occurrence of a synchronous firing 

presumes simultaneous occurrence of a transition �̂� ∈ �̂� with a set of transitions given 

by a binding 𝛽 in system net, and some net-tokens transitions(𝑡1, … , 𝑡𝑘)  ∈ ℓ. This can 

be viewed as a combination of Rule 3 and Rule 4 with the condition that all involved 

transitions must be elements in the transition relation ℓ of an ERS.  

Transitions (𝑡1, … , 𝑡𝑘) occur simultaneously with �̂� ∈ �̂� of a system net, 

if (�̂�, (𝑡𝑖, … , 𝑡𝑘)) ∈ 𝓵. We generate synchronisation transitions from an ERS in a P/T-

net 𝑁∗ accordingly. This implies that we will have |ℓ| such transitions in 𝑁∗. Each of 

these transitions is composed of a system net transition �̂� ∈ �̂�, and some transitions of 

net-tokens that participate in synchronous firing of �̂�. They are defined as follows. 

 𝑇𝑠𝑦𝑛𝑐𝑖
∗ ≔ ⋃ {𝑡𝑖.𝛽𝑖(𝑥) = {�̂�, 𝑡1, … , 𝑡𝑘}|𝑥 ∈ 𝑤(�̂�), �̂� ∈ �̂�, 𝑡1 ∈ 𝑇1, … , 𝑡𝑘 ∈ 𝑇𝑘} .

𝑘
𝑖=1       (21) 

In our example two places �̂�1 𝑎𝑛𝑑 �̂�2 are marked with one net-token each in the in-

itial marking. We add two transitions 𝑡1 = {{�̂�1, 𝑡21, 𝜏} and   𝑡2 = {�̂�1, 𝜏, 𝑡22} annotated 

with @1 and @2, which is shown in Fig.6. The result of transforming ERS into P/T-

net is shown in Fig. 7. 
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   Fig. 6. Synchronous firing transitions and arcs       Fig. 7. Result of transforming ERS  

5 Isomorphic Properties of the State Spaces 

We establish an isomorphism between the states of an ERS and the generated 1-

safe P/T-net. Recall that in Rule 2 we defined two separate initial markings for the 

P/T-net N∗: M0
∗(p̂, i) and M0

∗(p, i). The former is an encoding of markings from the set 

of places P̂ of the system net in an ERS and the latter is an encoding of markings from 

the set of places  Pi of a net-token i. Likewise, we defined three sets of transitions: 

Tsat
∗ , Tnat

∗ , and Tsynci
∗  from Rule 3, Rule 4 and Rule 5 respectively in  N∗. In the fol-

lowing, we define some mappings from the P/T-net to and ERS. 

Definition 5.1 A mapping 𝑓 maps a marking 𝑀∗ of a P/T-net  𝑁∗ from the set of 

places �̂� to markings 𝑅 of a system net of an ERS as follows: 

𝑓(𝑀∗)(�̂�, 𝑖) = 𝑅(�̂�) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (�̂�, 𝑖) ∈ 𝑃𝑁∗
∗ : �̂� ∈ �̂�: 𝑖 ∈ ℝ .                                     (22) 

Definition 5.2   A mapping 𝑓 maps a marking 𝑀∗ of a P/T-net  𝑁∗ from the set of 

places  𝑃𝑖  of net-token 𝑖 of ERS to a marking 𝑀 of a net-token of ERS as follows: 

𝑓(𝑀∗)(𝑝, 𝑖) = 𝑀(𝑝) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑝, 𝑖) ∈ 𝑃𝑁∗
∗ : 𝑝 ∈ 𝑃𝑖 : 𝑖 ∈ ℝ .                                   (23) 

    Definition 5.3   �̂�  is a mapping that maps a transition 𝑡′𝛽𝑖(𝑥) ∈  𝑇𝑠𝑎𝑡
∗  of P/T-net 𝑁∗ 

to a system-autonomous firing mode (�̂�, 𝜏) ∉ 𝑑𝑜𝑚(ℓ) of an ERS as follows:  

�̂�(𝑡′𝛽𝑖(𝑥)) = (�̂�, 𝜏) .                                                                                                   (24)  

 𝑤ℎ𝑒𝑟𝑒 𝛽𝑖(𝑥) is a binding function that binds a variable 𝑥 ∈ 𝑤(�̂�) on arcs adjacent 

to 𝑡 ̂to an object net name.  

Definition 5.4     𝑔 is a function that maps a transition 𝑡 ∈  𝑇𝑛𝑎𝑡
∗  of P/T-net 𝑁∗ to 

an object-autonomous firing mode (𝜏, 𝑡𝑖) ∉ 𝑑𝑜𝑚(ℓ) of an ERS as follows: 

𝑔(𝑡) = (𝜏, 𝑡𝑖) .                                                                                                        (25)        

Definition 5.5  𝑔𝑠 is a mapping function that maps a transition 𝑡𝑖.𝛽𝑖(𝑥) ∈ 𝑇𝑠𝑦𝑛𝑐𝑖
∗  of 

P/T-net 𝑁∗ to a synchronisation firing mode (�̂�, 𝑡1, … , 𝑡𝑘) ∈ ℓ of an ERS as follows: 
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 𝑔𝑠(𝑡𝑖.𝛽𝑖(𝑥)) = {(�̂�, 𝑡1, … , 𝑡𝑘)} .                                                                               (26) 

The following lemmas related to �̂� and 𝑁∗constructed by Rules 1 to 5, hold. 

Lemma 5.6 For the initial marking at �̂�  level, the following equality holds: 

  𝑅0(�̂�) = 𝑓(𝑀0
∗)(�̂�, 𝑖) .                                                                                     (27) 

Lemma 5.7 Suppose that 𝑅 =  𝑓(𝑀∗) and(�̂�, 𝜏) = �̂�(𝑡′𝛽𝑖(𝑥)). The following propo-

sition holds:                          

 𝑀∗[𝑡′𝛽𝑖(𝑥) > ⇔ 𝑅[(�̂�, 𝜏) > .                                                                             (28)                

Lemma 5.8 Suppose that 𝑅1 = 𝑓(𝑀1
∗), 𝑀1

∗[𝑡′𝛽𝑖(𝑥) > 𝑀2
∗, and 𝑅1[�̂�(𝑡

′
𝛽𝑖(𝑥)

) > 𝑅2. 

The following equality holds:  𝑅2 = 𝑓(𝑀2
∗) .                                                         (29)                                                      

Lemma 5.9 For the initial marking of the object net, the following holds: 

𝑀0(𝑝) = 𝑓(𝑀0
∗)(𝑝, 𝑖) .                                                                                          (30) 

Lemma 5.10 Suppose that 𝑀 =  𝑓(𝑀∗) and(𝜏, 𝑡𝑖) = 𝑔(𝑡). The following proposi-

tion holds: 

𝑀∗[𝑔(𝑡) > ⇔ 𝑀[((𝜏, 𝑡𝑖)) > .                                                                               (31) 

Lemma 5.11 Suppose that 𝑀1 = 𝑓(𝑀1
∗), 𝑀1

∗[𝑡 > 𝑀2
∗, and 𝑀1[𝑔(𝑡) > 𝑀2. The fol-

lowing equality holds: 

 𝑀2 = 𝑓(𝑀2
∗) .                                                                                                         (32) 

Lemma 5.12 Suppose that (𝑅1,𝑀1) = 𝑓𝑠(𝑀1
∗) and 𝑡𝑠 = 𝑔𝑠(𝑡𝑖.𝛽𝑖(𝑥)). The following 

proposition holds: 

  𝑀1
∗[𝑔𝑠(𝑡𝑖.𝛽𝑖(𝑥)) > ⇔ (𝑅1, 𝑀1)[𝑡𝑠 > .                                                                    (33) 

Lemma 5.13 Suppose(𝑅1,𝑀1) = 𝑓𝑠(𝑀1
∗), 𝑀1

∗[𝑡𝑖.𝛽𝑖(𝑥) > 𝑀2
∗ and (𝑅1,𝑀1)[𝑔𝑠(𝑡𝑖.𝛽𝑖(𝑥)) > (𝑅2,𝑀2) .  

The following equality holds: 

(𝑅2,𝑀2) = 𝑓𝑠(𝑀2
∗) .                                                                                                (34)      

From the above Lemmas, the following theorem holds. 

Theorem 5.14 Let RS be a 1-safe ERS. Let also N∗be a 1-safe P/T-net obtained 

from RS by the set of transformation Rules 1 to 5 above. Then state spaces of RS and 

N∗ are isomorphic. 

Proof: Lemmas5.6 and 5.9 defines a one-to-one mapping between the initial mark-

ings of the 1-safe P/T-net  𝑁∗and the initial marking in RS. From Lemma 5.7 a sys-

tem-autonomous firing mode (�̂�, 𝜏) is enabled in a marking (𝑅,𝑀) if, and only if, the 

corresponding transition 𝑡′𝛽𝑖(𝑥) is enabled in the corresponding marking 𝑀∗. Also 

from Lemma 5.10 an object-autonomous firing mode (𝜏, 𝑡𝑖) is enabled in a marking 
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(𝑅,𝑀) if, and only if, the corresponding transition 𝑡 is enabled in the corresponding 

marking 𝑀∗. Again, from Lemma 5.12 a synchronous firing mode (�̂�, 𝑡1, … , 𝑡𝑘) is 

enabled in a marking (𝑅,𝑀) if, and only if, the corresponding transition 𝑡𝑖.𝛽𝑖(𝑥) is 

enabled in the corresponding 𝑀∗. Finally from Lemmas 5.8, 5.11 and 5.13, the gener-

ated markings in the 1-safe P/T-net can be mapped to the generated markings in the 

RS.                                                                                                                               □ 

Thus we have shown that every ERS can be transformed to behaviourally equiva-

lent 1-safe P/T-net. Hence the standard analysis techniques for 1-safe P/T-net can be 

applied for ERS.  

6 Conclusion 

While general elementary object systems (EOS) come with some constraints that 

limit their expressiveness for automatic verification purposes, in this paper a modifi-

cation that relaxes these constraints was given: elementary reference-net systems, 

ERS. Also, we proposed a set of rules for transforming ERS to behaviourally equiva-

lent 1-safe P/T nest.  Furthermore, we established an important relationship between 

the isomorphic properties of state spaces of 1-safe ERS and 1-safe P/T net. Among 

such results are the established Lemmas, and the proof of a theorem which relates the 

state space of 1-safe P/T nets 1-safe ERS. The definition of elementary reference-net 

system, ERS, targets practical relevance and the use of a partial order (unfolding) 

approach for dynamic analysis of EOS. In future work, we aim to compare an unfold-

ing of the transformed 1-safe P/T to a direct unfolding of a 1-safe ERS without com-

puting an intermediate expansion. 
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Appendix A: Proof of Theorem 3.10 

Proof. Let RS be a safe ERS. Let𝑚 ∶= |�̂�|and  𝑛 ∶= 𝑚𝑎𝑥{|𝑃𝑖| |(𝑖, (𝑃𝑖 . 𝑇𝑖 , 𝐹𝑖),𝑚𝑖) ∈
𝒩} be the number of system net places and the maximum number of places present in 

an object net, respectively. 

By definition of safe ERS each net token is 1-safe and hence there are at most 2𝑛 

different markings a net-token may have. By definition of safe ERS each system net 

place is either marked or unmarked with a net-token with one of these markings, thus 

there are up to  (1 + 2𝑛)𝑚 different markings of RS, i.e.  |𝑅(𝑅𝑆)| ≤ (1 + 2𝑛)𝑚.     □ 

Appendix B: Proof of Lemma 5.6 

Proof: An initial marking of a system net in an ERS can be expressed by 𝑅0 =
𝑅0(�̂�), ∀�̂� ∈ �̂�. By Rule 2, (�̂�, 𝑖) ∈  𝑃𝑁∗

∗  in the P/T-net has one token in the corre-

sponding initial marking 𝑀0
∗(�̂�, 𝑖), therefore 𝑀0

∗(�̂�, 𝑖) = 𝑅0(�̂�). 

From Def. 5.1, 𝑓(𝑀0
∗)(�̂�, 𝑖)  becomes 𝑓(𝑀0

∗)(�̂�, 𝑖) = 𝑅0(�̂�) = 𝑅0(�̂�)                   □ 

Appendix C: Proof of Lemma 5.7 

Proof: (⇒) Suppose that  𝑡′𝛽𝑖(𝑥) ∈  𝑇𝑠𝑎𝑡
∗  is a transition that represents an autono-

mous transition in the P/T- net then (�̂�, 𝜏) ∈ �̂�  is a corresponding transition in the 

system net. From 𝑀∗[𝑡′𝛽𝑖(𝑥) > and Def. 2.3, each place has at least  

𝑊𝑠𝑎𝑡
∗ ((�̂�, 𝑖), 𝑡′𝛽𝑖(𝑥)) tokens namely for each place (�̂�, 𝑖) ∈ 𝑃𝑁∗

∗ , the following inequality 

holds: 

𝑀∗((�̂�, 𝑖)) ≥  𝑊𝑠𝑎𝑡
∗ ((�̂�, 𝑖), 𝑡′𝛽𝑖(𝑥)) .                                                                          (35) 

Since 𝑅 =  𝑓(𝑀∗), the number of token in place (�̂�, 𝑖) equals the number of tokens 

in place �̂� ∈ �̂� of a system net �̂�:  

𝑀∗((�̂�, 𝑖)) = 𝑅(�̂�) .                                                                                                  (36) 

From Rule 3, the weight of the arc from (�̂�, 𝑖) to 𝑡′𝛽𝑖(𝑥) equals number of variables 

on the arc from �̂� to �̂� under the binding 𝛽: 

𝑊𝑠𝑎𝑡
∗ ((�̂�, 𝑖), 𝑡′𝛽𝑖(𝑥)) = 𝛽(𝑤(�̂�, �̂�)) .                                                                         (37) 

 From (35), (36) & (37), for each place �̂� ∈ �̂� the following holds: 

𝑅(�̂�) ≥ 𝛽(𝑤(�̂�, �̂�)) .                                                                                                 (38)                                                                                                                      

From Def. 3.5,  𝑅[( �̂�, 𝜏) >. 

(⟸)(38) holds since 𝑅[( �̂�, 𝜏) >; (36) & (37) also hold. Therefore, (35) holds. 

From Def. 2.3,  𝑀∗[𝑡′𝛽𝑖(𝑥) > 
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Appendix D: Proof of Lemma 5.8 

Proof: From Def.  2.3, the number of tokens in place (�̂�, 𝑖) in a successor marking 

𝑀2
∗ is expressed as follows: 

 𝑀2
∗(�̂�, 𝑖) = 𝑀1

∗(�̂�, 𝑖) − 𝑊𝑠𝑎𝑡
∗ ((�̂�, 𝑖), 𝑡′𝛽𝑖(𝑥)) +𝑊𝑠𝑎𝑡

∗ (𝑡′𝛽𝑖(𝑥), (�̂�, 𝑖)) .                       (39) 

Since  𝑅1 = 𝑓(𝑀1
∗), (30) holds. Similarly to (31), it holds that    

 𝑊𝑠𝑎𝑡
∗ (𝑡′𝛽𝑖(𝑥), (�̂�, 𝑖)) =  𝛽(𝑤(�̂�, �̂�)) .                                                                        (40) 

Therefore:𝑀2
∗(�̂�, 𝑖) = 𝑅1(�̂�) − 𝛽(𝑤(�̂�, �̂�)) + 𝛽(𝑤(�̂�, �̂�)) . (See Def. 3.5& 36) (41) 

Finally it holds that 𝑅2 = 𝑓(𝑀2
∗) because (41) holds for each place.                        □ 

Appendix E: Proof of Lemma 5.9 

Proof: An initial marking of an object net in an ERS can be expressed by 𝑀0 =
𝑀0(𝑝), ∀𝑝 ∈ 𝑃𝑖 , 𝑖 ∈ ℝ hold. Rule 2 says that place (𝑝, 𝑖) ∈  𝑃𝑁∗

∗  in the P/T-net has 

one token in the corresponding initial marking 𝑀0
∗(𝑝, 𝑖), therefore 𝑀0

∗(𝑝, 𝑖) = 𝑀0(𝑝). 

From Def. 5.2, 𝑓(𝑀0
∗)(𝑝, 𝑖)  becomes 𝑓(𝑀0

∗)(𝑝, 𝑖) = 𝑀0(𝑝)                            □ 

Appendix F: Proof of Lemma 5.10 

Proof: (⇒) Suppose that  𝑡 ∈  𝑇𝑛𝑎𝑡
∗  is a transition that represents an autonomous 

transition in the P/T- net then (𝜏, 𝑡𝑖) ∈ 𝑇𝑖  is a corresponding transition in the object 

net. From 𝑀∗[𝑡 > and the Def. 2.3, each place has at least  𝑊𝑛𝑎𝑡
∗ ((𝑝, 𝑖), 𝑡) tokens 

namely for each place (𝑝, 𝑖) ∈ 𝑃𝑁∗
∗ , the following inequality holds: 

 𝑀∗((𝑝, 𝑖)) ≥  𝑊𝑛𝑎𝑡
∗ ((𝑝, 𝑖), 𝑡) .                                                                                 (42) 

Since 𝑀 =  𝑓(𝑀∗), the number of tokens in(𝑝, 𝑖) equals the number of tokens in 

𝑝 ∈ 𝑃𝑖 of an object net 𝑁𝑖:  

𝑀∗((𝑝, 𝑖)) = 𝑀(𝑝) .                                                                                                 (43) 

From Rule 4, the weight of the arc from (𝑝, 𝑖) to 𝑡 equals the weight of the arc from 

𝑝𝑖  to 𝑡𝑖 

𝑊𝑛𝑎𝑡
∗ ((𝑝, 𝑖), 𝑡) = 𝑊𝑖(𝑝𝑖 , 𝑡𝑖) .                                                                                   (44) 

From (40) and (41), for each place 𝑝 ∈ 𝑃𝑖 the following inequality holds: 

𝑀(𝑝) ≥ 𝑊𝑖(𝑝𝑖 , 𝑡𝑖) .                                                                                                   (45) 

From Def. 4.6,  𝑀[(𝜏, 𝑡𝑖) >. 

(⟸)(45) holds since 𝑀[(𝜏, 𝑡𝑖) >; (43) & (44) also hold. Therefore, (42) holds. 

From Def.2.3, 𝑀∗[𝑡 > .                                                                                           □ 
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Appendix G: Proof of Lemma 5.11 

Proof: From Def. 2.3.2, the number of tokens in place (𝑝, 𝑖) in a successor marking 

𝑀2
∗ is expressed as follows: 

𝑀2
∗(𝑝, 𝑖) = 𝑀1

∗(𝑝, 𝑖) −𝑊𝑛𝑎𝑡
∗ ((𝑝, 𝑖), 𝑡) + 𝑊𝑛𝑎𝑡

∗ (𝑡, (𝑝, 𝑖)) .                                  (46) 

Since 𝑀1 = 𝑓(𝑀1
∗), (43) holds. Similarly to (44), it holds that  

 𝑊𝑛𝑎𝑡
∗ (𝑡, (𝑝, 𝑖)) = 𝑊𝑖(𝑝𝑖 , 𝑡𝑖) .                                                                              (47) 

Therefore, the following equation holds: 

𝑀2
∗(𝑝, 𝑖) = 𝑀1(𝑝𝑖) −𝑊𝑖(𝑝𝑖 , 𝑡𝑖 +𝑊𝑖(𝑡𝑖 , 𝑝𝑖) = 𝑀2

∗(𝑝, 𝑖)  (See Def. 3.6)             (48) 

Finally it holds that 𝑀2 = 𝑓(𝑀2
∗) because (46) holds for each place.             □ 

Appendix H: Proof of Lemma 5.12 

Proof: (⇒) For �̂�, it can be proved in a similar way to Lemma 5.7 that  

∀�̂� ∈ ⦁�̂�: 𝑅(�̂�) ≥ 𝛽(𝑤(�̂�, �̂�)) .                                                                            (49) 

For (𝑡1, … , 𝑡𝑘) it can be proven in a similar to Lemma 5.10 for each net-token 

transition 𝑡𝑖 ∈ 𝑇𝑖 that  

∀𝑝𝑖 ∈ ⦁𝑡𝑖: 𝑀1(𝑝𝑖) ≥ 𝑊𝑖(𝑝𝑖 , 𝑡𝑖) .                                                                        (50)   

From Rule 5, and equations (48) and (49) it holds that (𝑅1, 𝑀1)[𝑡𝑠 >. 

(⟸) For 𝑡𝑖.𝛽𝑖(𝑥) ∈ 𝑇𝑠𝑦𝑛𝑐𝑖
∗  which is added in Rule 5, it can be shown that in a simi-

lar way to Lemma 5.7 that 

∀(�̂�, 𝑖) ∈ 𝑃′𝑁∗: 𝑀1
∗((�̂�, 𝑖)) ≥ 𝑊∗((�̂�, 𝑖), �̂�) .                                                      (51) 

Similarly, it can be shown from Lemma 5.10 for 𝑡𝑖 ∈ 𝑇𝑖  that participate in 𝑡𝑖.𝛽𝑖(𝑥) ∈

𝑇𝑠𝑦𝑛𝑐𝑖
∗  that  

∀(𝑝𝑖 , 𝑖) ∈ 𝑃𝑁∗: 𝑀1
∗(𝑝𝑖 , 𝑖) ≥ 𝑊𝑛𝑎𝑡

∗ (𝑝𝑖 , 𝑡𝑖).                                                           (52) 

     The action (�̂�, 𝑡1, … , 𝑡𝑘) share no input places by assumption in Rule 1. From 

Def. 2.3, (51) & (52): 𝑀1
∗[𝑡𝑖.𝛽𝑖(𝑥) > .                                                                   □ 

Appendix I: Proof of Lemma 5.13 

Proof: It can be proved in a similar way to Lemma 5.8 and 5.11 by Def.  2.3, and 

Rules 3 & 4.                                                                                                          □ 
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Abstract. We suggest an approach to resolution of context-dependent
lexical and syntactic ambiguity in a framework of ontology population
from natural language texts. We show that a set of maximally deter-
mined ontology instances can be represented as a Scott information sys-
tem with an entailment relation as a collection of information connec-
tions. Moreover, consistent primary lexical instances form FCA-concepts.
These representations are used to justify correctness of lexical disambi-
guation and to define syntactic ambiguity and its resolution. This infor-
mation system generates a multi-agent system in which agents resolve
the ambiguity of both types.

1 Introduction

Ontological databases are currently widely used for storing information obtained
from a great number of sources. To complete such ontologies, formalisms and
methods that allow one to automate the process are developed. Features of
automatic information retrieval cause ontology population ambiguities. In lingui-
stics several kinds of ambiguities are considered: lexical, syntactic, semantic, and
pragmatic [2]. In a process of ontology population from natural language texts we
use our algorithms [5] in which the following ambiguity types appear: (1) several
ontology instances or data attributes correspond to the same text fragment, (2)
some value is incorrectly assigned to some attribute of some instance, (3) some
value is incorrectly assigned to attributes of several instances, (4) some value is
incorrectly assigned to several attributes of some instance, (5) several values are
assigned to one-valued attribute of some instance. The first type corresponds
to lexical ambiguity, and other types are syntactic ambiguity. An algorithm
for lexical disambiguation was represented in [6]. In this work we suggest the
modified algorithm for resolving lexical ambiguity, a new algorithm for syntactic
disambiguation, and we justify the correctness of both of them.

In [6] we demonstrated that the process of retrieval of information in a form
of a set of ontology instances can be presented as a Scott information system [13].

? The research has been supported by Russian Foundation for Basic Research (grant
15-07-04144) and Siberian Branch of Russian Academy of Science (Integration Grant
n.15/10 “Mathematical and Methodological Aspects of Intellectual Information Sys-
tems”).
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This process produces maximally determined instances for ontology population.
In this paper we prove that consistent sets of instances and lexical objects which
values assign attributes of these instances form FCA concepts [3]. This fact
grantees that information states of ambiguous conflicting agents do not intersect.
This implies correctness of lexical disambiguation.

Besides, now we use a representation of ontologies which does not consider on-
tology relations as special structures. Only classes are allowed in these ontologies,
and relations are represented as special attributes of classes. Well-known ontolo-
gy representation language OWL uses the notation of this kind. This representa-
tion is a good solution for specification of polyadic relations. Our algorithms for
ontology population are simpler with this representation because class and rela-
tion instances are packed in the same item.

Automatic techniques of disambiguation usually do not use an input data
context in full. This can lead to incomplete and incorrect ambiguity resolution
[1, 9, 8, 7]. Our approach tries to ease these drawbacks. For disambiguation we
use a distributed approach. Every retrieved instance is related to agent. These
agents detect and resolve ambiguities with help of a special master agent. This
approach takes polynomial time for disambiguation.

The rest of the paper is organized as follows. In Section 2, an approach
to ontology population in the framework of information systems is discussed.
Section 3 describes lexical and syntactic disambiguation in terms of the system
defined in the previous section. The next Section 4, gives definitions for a multi-
agent system of context-dependent ambiguity resolution. Section 5 informally
describes agents of our systems, their action protocols, and the main conflict
resolution algorithm. In the concluding Section 6, directions of future researches
are discussed.

2 Scott Information Systems in Ontology Population

Let we be given an ontology of a subject domain, the ontology population rules,
semantic and syntactic model for a sublanguage of the subject domain and a
data format, and input data as a finite natural language text with information
for population of the ontology. We consider ontology O of a subject domain
which includes (1) finite nonempty set CO of classes for concepts of the subject
domain, (2) a finite set of attributes with names in DatO ∪RelO, each of which
has values in some data domain (data attributes in DatO) or is some instance
of the ontology (relation attributes in RelO, which model relations), and (3)
finite set DO of data types. Every class c ∈ CO is defined by a tuple of typed
attributes: c = (Datc, Relc), where every data attribute α ∈ Datc ⊆ DatO has
type dα ∈ DO with values in Vdα and every relation attribute ρ ∈ Relc ⊆ RelO
is of class cρ ∈ CO. Let a set of all values of all attribute be VO = ∪dα∈DOVdα .
Information content ICO of ontology O is a set of class instances, where every
instance a ∈ ICO is of form (ca, Data, Rela), where ca is a class of the instance,
every data attribute in Data has name α ∈ Datca with value(s) in Vdα and
every relation attribute in Rela has name ρ ∈ Relca with a value as an instance
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of class cρ. Ontology population problem is to compute an information content for
a given ontology from given input data. Input data for the ontology population
process are natural language texts. These data are finite and our algorithms of
ontology-oriented text analysis can generate a finite set of ontology instances [5].
Finiteness of the set is guaranteed by prohibition for the rules from generating
infinite information items by one position. We suggest to consider this process
of forming ontology instances as work with Scott information systems. A Scott
information system T is a triple (T,Con,`), where

– T is a set of tokens and Fin(T ) is a set of finite subsets;
– Con is a consistency predicate such that Con ⊆ Fin(T ), and

1. Y ∈ Con and X ⊆ Y ⇒ X ∈ Con,
2. a ∈ T ⇒ {a} ∈ Con;

– ` is an entailment relation such that `⊆ Con \ {∅} × T and
3. X ` a ⇒ X ∪ {a} ∈ Con,
4. X ∈ Con and a ∈ X ⇒ X ` a,
5. ∀b ∈ Y : X ` b and Y ` c ⇒ X ` c.

The information retrieval system based on an ontology, finite input data,
and rules of the ontology population and the data processing is defined as a
triple R = (A,Con,`). Set of tokens A consists of a set of all (underdetermined)
ontology p-instances formed by the rules in the determination process of initial
p-instances which are retrieved from an input text by the special preprocess.
Every p-instances a ∈ A has form (ca, Data, Rela, Pa), where

– class ca ∈ CO, and
– every data p-attribute αa ∈ Data is of form (α, IVα), where

– name α ∈ Datca , where
– its information values v̄ ∈ IVα has form (vv̄, gv̄, sv̄) with

– data value vv̄ ∈ dα, a set of all values of α is V alαa = {vv̄ | v̄ ∈ IVα},
– gv̄ is grammar information (morphological and syntactic features), and
– sv̄ is structural information (position in input data);

– every relation p-attribute ρa ∈ Rela is of form (ρ,Oρa), where
– a name ρ ∈ Relca , and
– every ō ∈ Oρa has form (o, po), where

– o is an instance of class cρa , and
– po ∈ Po is its position,

– a set of all relation objects of a is O(Rela) = {a} ∪ρa∈Rela {o|ō ∈ Oρa};
– Pa is structural information (a set of positions in input data).

We consider a special set of tokens: a set of lexical objects LO corresponding
to values of data attributes retrieved from input data. Every lexical object is
a p-instance which has only a single data attribute with a single information
value. P-instances correspond to ontology instances in a natural way. Let a =
(ca, Data, Rela, pa) be p-instance, then its corresponding ontology instance is
a′ = (ca, Data′ , Rela′), where every α ∈ Data′ has value(s) in V alαa and every
ρ ∈ Rela′ has value o with (o, po) ∈ Oρa . Further we omit prefix “p-” if there is
no ambiguity. An information order relation ≺ is defined on ontology instances.
Let a, a′ ∈ A: a ≺ a′, if a = a′ everywhere except for at least one attribute, with
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the number of values of this attribute in a being strictly less than that in a′. For
x, x′ ∈ A: if x ≺ x′, then x′ is information extension of x.

Rules of ontology population and data processing Rules = {rule1, . . . , rulen}
map finite sets of instances of ontology classes to an instance which is an informa-
tional extension of some instance of the domain set or a new instance. This
sets must be linguistically and ontologically compatible: specified sets of their
attributes and some instances have to satisfy conditions on values, grammatical
and structural information [10]:
rulei : Domi 7→ A, Domi ⊆ 2A, such that
∀X ∈ Domi : LingConsi(∪x′∈XDatx′ ∪Relx′) = true∧∀x′ ∈ X : cx′ ∈ Classi,
where predicate LingConsi and set of classes Classi ⊆ CO detect linguistic
and ontological compatibility of the instance set, correspondingly. Let for X ∈
Domi, x ∈ A:
rulei(X) = x iff ((∃y ∈ X : y ≺ x∧cx = cy)∨(∀y ∈ X : y ⊀ x∧cx = geni(X)))∧
(Datx = ∅ ∨Datx = ∪α(α,∪{(fi(V̄α), gi(V̄α), si(V̄α)) |

∃Yα ⊆ X : datα ⊆ ∩y∈YαDaty ∧ V̄α = ∪β∈datα{v̄|v̄ ∈ IVβ}})) ∧
(Relx = ∅ ∨ ∀o ∈ O(Relx) : o ∈ X ∪y∈X O(Rely)),

where geni(X) generates a new class for a new instance, fi(V̄ ) produces a value
based on values in (V̄ ) for an attribute of instance x, and gi(V̄ ) and si(V̄ ) inherit
grammatical and structural information from set of information values V̄ .

Consistency predicate Con and entailment relation ` correspond to the rules
of ontology population and data processing. Let x, x′ ∈ A and X ⊆ A. The
entailment relation connects informationally associated tokens:

– X ` x, iff x ∈ X, or x /∈ X ∧
((∃X ′ ⊆ X,X ′′ ⊆ A, rulei ∈ Rules : rulei(X

′ ∪X ′′) = x) ∨
(∃x′ ∈ A,X ′′ ⊆ A, rulei ∈ Rules : X ` x′ ∧ rulei({x′} ∪X ′′) = x)),

i.e. instance x is entailed from X, if it is in this set, or information from tokens
of this set is used for evaluating attributes of x.

The consistency predicate defines informationally consistent sets of tokens:
– X ∈ Con, iff for some rulei ∈ Rules holds ∀X ′ ⊆ X(∪x′∈X′cx ⊆ Classi)⇒

(∃x ∈ A,X ′′ ⊆ A : rulei(X
′ ∪X ′′) = x), i.e. if there exists some rule which can

find in a set of tokens some instances satisfying its class compatibility then these
instances should be consistent with some other set of tokens with respect to the
rule. Class compatible, but linguistically incompatible sets cannot be processed
by rules, hence we do not consider them consistent.

Let us prove the following theorem for the system R:

Theorem 1. Triple R = (A,Con,`) is a Scott information system.

Proof. Let us show that the consistency predicate Con and the entailment
relation ` satisfy properties 1–5 of information systems.

1. Y ∈ Con and X ⊆ Y ⇒ X ∈ Con. This fact follows from the definition
of the consistency predicate directly because the condition of definition should
hold for every subset of a consistent set.

2. a ∈ A ⇒ {a} ∈ Con. By the definition for every rulei ∈ Rules the class
of a is not included in Classi or single {a} can be complemented by some set of
tokens in such a way that the rulei produces a new token.
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3.X ∈ Con and X ` a⇒X∪{a} ∈ Con. X∪{a} is consistent because a ∈ X
or lexical information of a is inherited from X by definitions of the entailment
relation and process rules.

4. X ∈ Con and a ∈ X ⇒ X ` a. By the def. of the entailment relation.
5. ∀b ∈ Y : X ` b and Y ` c ⇒ X ` c. Let Yb = Y \ {b}. X ` c iff

(∃b ∈ Y, Yb ⊆ A, rule ∈ Rules : X ` b ∧ rule({b} ∪ Yb) = c)) by the def. of the
entailment relation.�

The proposition below directly follows from monotonicity of the entailment
relation and finiteness of input data.

Proposition 1. Information retrieval process of ontology population terminates.

For token x ∈ A: x↑ = {x} ∪ {x′ | x ≺ x′} and x↓ = {x} ∪ {x′ | x′ ≺ x}
are upper and down cones of x. Let a set of maximally determined instances
(maximal instances or tokens), which is the result of the analysis of input data,
be A↑ = {x ∈ A | x↑ = {x}}. These instances may populate an ontology.
Obviously,

Proposition 2. Triple I = (A↑, Con,`) is a Scott information system.

An information descendants of token a ∈ A↑ are all maximal tokens (all
information) that can be obtained from this token by the entailment relation:
Ds(a) = {x ∈ A↑|{a} ` x}. An information ancestors of token a ∈ A↑ are all
maximal tokens from which a can be obtained: An(a) = {x ∈ A↑|{x} ` a}.
In our framework for lexical objects the following equality holds: An(a) = {a}
because ontology instances are based on retrieved lexical objects. Information
descendants are a particular case of Scott information states [14]. Like in the
cited paper, we show that tokens from LO and their information descendants
form a concept lattice.

Proposition 3. Consistent sets of lexical objects form FCA concepts. Every
consistent set of instances is a base for FCA concepts.

Proof. Let every set x of information descendants of LO be an object, and
every l ∈ LO be an attribute. Lexical object l is an attribute of x iff l ∈ x.
The extension of a set of attributes L ⊆ LO is the set L′ = {x|L ⊆ x} and
the intension of L′ is the set {l|∀x ∈ L′, l ∈ x}. L is a concept iff the condition
on the intension of the extension of L holds: L = {l|∀x ∈ L′, l ∈ x} iff L is an
information state of information system I iff L is a consistent set. The intension
of a set of infostates X is the set X ′ = {l|∀x ∈ X, l ∈ x} and the extension of X ′

is the set {x|X ′ ⊆ x}. X is a concept iff the condition on the extension of the
intension of X holds: X = {x|X ′ ⊆ x} iff a set of all instances in set of infostates
X forms an infostate too: Xi = {a | a ∈ x ∈ X}, hence Xi is a consistent set.
Hence every consistent set of instances is a base for FCA concepts.�

3 Ambiguity and Resolution

(1) Lexical ambiguity.
Let l, l′ ∈ LO be in a conflict l ! l′ iff s(l) ∩ s(l′) 6= ∅. Let set AmbLO
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be a set of conflict lexical objects and Lex be a set of their descendants. We
consider that rules in Rules cannot generate instances which include inconsistent
information. I.e. for every rulei ∈ Rules holds ∀X ∈ Domi, a, a

′ ∈ X, l, l′ ∈
An(a) ∩ An(a′) ∩ LO : ¬(l! l′). Hence for lexical objects l and l′ in conflict:
Ds(l) ∩Ds(l′) = ∅.

For the lexical disambiguation of two conflicting lexical objects we prefer a
lexical object which is more incorporated in an input text than its competitor.
For l, l′ ∈ LO if |Des(l)| > |Des(l′)| we take l for evaluating attributes of
ontology instances and ignore l′.

(2) Syntactic ambiguity.
Detection of syntactic ambiguity frequently requires analysis of homogeneous
groups. Syntactic ambiguity is defined for ontology instances, not for lexical ob-
jects. Our types of syntactic ambiguity can depend on an ontology specification,
hence here we consider syntactic-semantic ambiguity really. We omit “-semantic”
for the brevity. Syntactic ambiguity usually can be expressed by corresponding
single lexical object to several ontology items in various ways. For disambigua-
tion it is necessary to find in an input text an evidence of correctness of the
correspondence. This could be performed using the following inequalities.

For every instance a and its data attribute α ∈ Data a set of information
values equal to v ∈ dα is EQ(a, α, v) = {v̄ ∈ IVα | vv̄ = v}. For every instance
a and its relation attribute ρ ∈ Rela a set of relation objects with an instance
equal to e ∈ cρa is EQ(a, ρ, e) = {(o, po) ∈ Oρ | o = e}. A power of these
sets is an evidence power. A triple (a, α, v̄) denotes information value v̄ ∈ IVα
of data attribute α ∈ Data of instance a. A couple (a, ρ) denotes a value of
relation attribute ρ ∈ Rela of instance a. A set of information values which effects
on (a, α, v̄) is V (a, α, v̄) = {(c, γ, w̄) | ∃rulei ∈ Rules,X ⊆ A↑ : rulei(X) =
a ∧ c ∈ X ∧ γ ∈ datα ∩ Datc ∧ w̄ ∈ IVγ ∧ v̄ = (f(V̄α), g(V̄α), s(V̄α))}. A set of
instances which effects on (a, ρ) is I(a, ρ) = {e ∈ A↑ | ∃rule ∈ Rules,X ⊆ A↑ :
rule(X) = a∧ e ∈ X ∧Oρ ∩O(Rele) 6= ∅}. Now we define a method of syntactic
disambiguation.

(1) Some value is incorrectly assigned to some attribute of an instance (Synt11).
An example: “The old men and women sat on the bench.” The women may
or may not be old. Hence, attribute “age” of instance “women” may not has
value “old”. Let a set of instances with ambiguity of this type be denoted as
Synt11. Let in instance a information value (c, γ, w̄) effect on (a, α, v̄): (c, γ, w̄) ∈
V (a, α, v̄). Then in a case of the ambiguity, (c, γ, w̄) is declared as effecting
on (a, α, v̄) iff |EQ(a, α, vv̄)| > 1. Let in instance a instance e effect on (a, ρ):
e ∈ I(a, ρ). Then in a case of the ambiguity instance e is declared as effecting
on (a, ρ) iff |EQ(a, ρ, e)| > 1.

(2) Some value is incorrectly assigned to attributes of several instances (Synt12).
An example: “Someone shot the maid of the actress who was on the balcony.”
Either the actress or the maid was on the balcony. Hence, either attribute “place”
of instance “actress” or attribute “place” of instance “maid” may has value
“balcony”. Let a set of instances with ambiguity of this type be denoted as
Synt12. Let in instances a and b information value (c, γ, w̄) effect on (a, α, v̄)

106



and (b, β, ū): (c, γ, w̄) ∈ V (a, α, v̄) ∩ V (b, β, ū). Then in a case of the ambiguity
(c, γ, w̄) is declared as effecting on (a, α, v̄) and not on (b, β, ū) iff |EQ(a, α, vv̄)| >
|EQ(b, β, ū)|. Let in instances a and b instance e effect on (a, ρ) and (b, o): e ∈
I(a, ρ)∩I(b, o). Then in a case of the ambiguity instance e is declared as effecting
on (a, ρ) and not on (b, o) iff |EQ(a, ρ, e)| > |EQ(b, o, e)|.
(3) A value is incorrectly assigned to several attributes of an instance (Synt112).
An example: “Cuban jazz band.” A group of Cuban musicians performing jazz
music or a group of musicians performing Cuban jazz. Hence, attribute “country”
or attribute “style” of instance “band” may has value “Cuban”. Let a set of
instances with ambiguity of this type be denoted as Synt112. Let in instance a
information value (c, γ, w̄) effect on (a, α, v̄) and (a, β, ū): (c, γ, w̄) ∈ V (a, α, v̄)∩
V (a, β, ū). Then in a case of the ambiguity (c, γ, w̄) is declared as effecting on
(a, α, v̄) and not on (a, β, ū) iff |EQ(a, α, vv̄)| > |EQ(a, β, vū)|. Let in instance
a instance e effect on (a, ρ) and (a, o): e ∈ I(a, ρ) ∩ I(a, o). Then in a case of
the ambiguity instance e is declared as effecting on (a, ρ) and not on (a, o) iff
|EQ(a, ρ, e)| > |EQ(a, o, e)|.
(4) Several values are assigned to one-valued attribute of an instance (Synt211).
An example: “Shakespeare is an author of the piece.” A gender of Shakespeare
may be either male or female. Hence, one-valued attribute “gender” of instance
“person” may has value either “male” or “female”. Let a set of instances with
ambiguity of this type be denoted as Synt211. Let in instance a information val-
ues (b, β, ū) and (c, γ, w̄) effect on (a, α, v̄) and (a, α, v̄′), respectively: (b, β, ū) ∈
V (a, α, v̄) and (c, γ, w̄) ∈ V (a, α, v̄′). Then in a case of the ambiguity (b, β, ū)
is declared as effecting on (a, α, v̄), and (c, γ, w̄) is declared as not effecting
on α iff |EQ(a, α, vv̄)| > |EQ(a, α, vv̄′)|. Let in instance a instance e and e′

effect on (a, ρ): e, e′ ∈ I(a, ρ). Then in a case of the ambiguity instance e is
declared as effecting on (a, ρ), and e′ is declared as not effecting on (a, ρ) iff
|EQ(a, ρ, e)| > |EQ(a, ρ, e′)|.

In a case of equalities of evidence powers the conflict is not resolved. We
consider systems in which all these ambiguities are independent, i.e. pairwise
intersections of sets Lex, Synt11, Synt12, Synt112 and Synt211 are empty.
Informal description of action protocols for instance agents presents resolution
of independent lexical and syntactic ambiguities. These protocols work correctly
if resolution of references and detection of syntactic ambiguities are correct.

4 Multi-agent Ambiguity Resolution

Let a set of lexical objects which effect on some information value of data at-
tribute α of instance a be L(a, α) = {l ∈ LO | ∃rulei ∈ Rules,X ⊆ A↑ :
rulei(X) = a ∧ (∃x ∈ X : x ∈ Ds(l) ∧ (∃β ∈ datα ∩ Datx : l ∈ L(x, β)))}.
For every x /∈ A↑, the corresponding maximally determined instance is x̃ such
that x̃ ∈ A↑ ∧ x ≺ x̃. Entailment relation ` generates information connections
between maximally determined instances. Let X ` x and y ∈ X ∧ y /∈ x↓. Then

– information connections between ỹ and x̃ are

– ỹ
ω̃−→ x̃ iff (∃α ∈ Datx, β ∈ Daty : ω ∈ L(x, α) ∩ L(y, β)) ∨ (ω ∈
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O(Relx) ∩O(Rely)

– of updating type ỹ
ω̃u−→ x̃ iff ∃x′ ∈ X : x′ ≺ x,

– of generating type ỹ
ω̃g−→ x̃ iff @x′ ∈ X : x′ ≺ x.

An information system of information retrieval R generates a multi-agent
system with typed connections. Agents of the system resolve the ambiguities
by computing and comparing the context cardinalities and evidence powers.
Information system (A,Con,`) generates Multi-agent System of Ambiguity Re-
solution (MASAR) as a tuple S = (A,C, I, T ), where

– A = {ax | x ∈ A↑} is a finite set of agents corresponded to maximally
determined instances;

– C = {ω̃ | ∃x, y ∈ A : x̃
ω̃−→ ỹ} is a finite set of connections;

– mapping I : C −→ 2A×A is an interpretation function of ordered
connections between agents: I(c) = (ax, ay) iff x̃

c−→ ỹ;
– mapping T : C×A×A −→ {gen, upd} is types of connections: T (c, ax, ay) =

gen iff I(c) = (ax, ay)→ (x̃
cg−→ ỹ), and T (c, ax, ay) = upd iff I(c) = (ax, ay)→

(x̃
cu−→ ỹ). Let (conflict) lexical agents correspond to (conflict) lexical objects.

Not every instance from A↑ is used for ontology population. There is a set of
utility instances Utl. They do not resolve ambiguities or populate an ontology.
They just transfer information to its descendants. Hence A↑ = LO ∪Ont ∪ Utl,
where only instances from Ont may populate an ontology.

For every agent a ∈ A we define the following sets of agents and connec-
tions. We omit symmetric definitions of ancestors Anc∗ (for Des∗) and utility
predecessors UtP∗ (for UtS∗) for the brevity:

– Ca = {c ∈ C|∃a′ ∈ A : (a, a′) ∈ IC(c)
∨

(a′, a) ∈ IC(c)} is connections of a;
– Scgca = {a′ ∈ A | (a, a′) ∈ IC(c) ∧ T (c, a, a′) = gen} is a set of generated

successors by c connection;
– Scuca = {a′ ∈ A | (a, a′) ∈ IC(c) ∧ T (c, a, a′) = upd} is a set of updated

successors by c connection;
– Scca = Scgca ∪ Scuca is a set of all successors by c connection;
– Prca = {a′ ∈ A | (a′, a) ∈ IC(c)} is a set of predecessors by c connection;
– UtSca = {a′ ∈ Utl | (a, a′) ∈ IC(c)} is a set of utility successors by c;
– Desca = Scca ∪

⋃
a′∈Scca

Desca′ is descendants by c connection;
MASAR is a multiagent system of information dependencies. In these systems
agents can use information from predecessors and can pass the (processed) in-
formation to successors. Hence Desca ∩ Ancca = ∅, i.e. every connection has no
cycle because of information transfer.

A weight of an agent corresponds to the number and the quality (in a case
of generation) of its non-utility ancestors and descendants. For every a ∈ A

– wtaPr(c) = 1 +
∑
a′∈Prca

wta
′

Pr(c) is the weight of connection ancestors,

– wtaSc(c) = 1+
∑
a′∈Scgca

wt(a′)+
∑
a′∈Scuca

wta
′

Sc(c) is the weight of connection
descendants,

– wtaUt(P/S)(c) = 1 +
∑
a′∈Ut(P/S)ca

wta
′

Ut(P/S)(c) is the weight of connection

utility ancestors/descendants,
– wt(a) = 1+

∑
c∈Ca(wtaPr(c)+wtaSc(c)−(wtaUtP (c)+wtaUtS(c))) is the weight

108



of information agents.
Weight of system S is wt(S) =

∑
a∈Ont wt(a).

Problem of conflict resolution in MASAR is to get a conflict-free MASAR of
the maximal weight. A multiagent algorithm below produces such system.

5 Conflict Resolution in MASAR

In this paper we consider independent ambiguities only. In this case an order of
their resolution is irrelevant. But it is naturally to resolve lexical ambiguity first,
because this disambiguation effects on existence of ontology instances. Syntactic
disambiguation refines distribution of information among instances.

Action protocols for conflict resolution used by MASAR agents form a multi-
agent system of conflict resolution MACR. The system MACR includes a set of
MASAR agents and an agent-master. Note, that a fully distributed version of
our algorithm could be developed but it should be very ineffective. The result of
agents’ interactions by protocols described below is the conflict-free MASAR. All
agents execute their protocols in parallel until the master detects termination.
The system is dynamic because MASAR agents can be deleted from the system.
The agents are connected by synchronous duplex channels. The master agent is
connected with all agents, MASAR agents are connected with their successors
and predecessors, and conflict lexical agents are connected too. Messages are
transmitted via a reliable medium and stored in channels until being read.

For correct lexical disambiguation it is necessary to find groups of lexical
agents which effect on weights of each other in a case of removing. Let us denote
these groups of relatives as Relatives. Agents of groups from Relatives have
common descendants: ∀Rlt ∈ Relatives(∀a ∈ Rlt(∃b ∈ Rlt : Ds(a) ∩ Ds(b) 6=
∅∧∀c ∈ AmbLO\Rlt : Ds(a)∩Ds(c) = ∅)). Due to the mutual effect of relatives
on their weights it is necessary to resolve conflicts between groups of relatives.
Let GR1 ⊆ Rlt1 and GR2 ⊆ Rlt2, where Rlt1, Rlt2 ∈ Relatives. Relative groups
GR1 and GR2 are in a conflict GR1 ! GR2 iff (∀a ∈ GR1∃b ∈ GR2 : a!
b) ∧ (∀b ∈ GR2∃a ∈ GR1 : b! a). Let sets G1 = ∪ni=1GR

i
1 = ∪mi=1Rlt

i
1 and

G2 = ∪ni=1GR
i
2 = ∪mi=1Rlt

i
2, where Rlti1, Rlt

i
2 ∈ Relatives for every i ∈ [1..m]

be groups of friends. These groups of friends are in a conflict iff (∀i ∈ [1..n] :
GRi1 ! GRi2). Note that due to proposition 3 set AmbLO can be disjoined to
nonintersecting subsets of relatives. A conflict is resolved for a benefit of the
group with the greater weight, i.e. if

∑
a∈G1

wt(a) >
∑
b∈G2

wt(b), then agents
of group G2 are removed from the system, and their descendants delete their
inherited values of attributes or the descendant is removed itself if the lexical
value from a lexical agent in G2 is generating for this descendant.

Hence, for resolving all conflicts in the system it is necessary to perform
the following steps: (1) to compute weights of agents, (2) to detect relative
groups, (3) to compute independent conflict groups of friends, (4) to resolve
lexical conflicts between the groups, (5) to make the corresponding change in
the system, and (6) to resolve all kinds of syntactic ambiguity. An agent-master
coordinates MASAR agents. It computes conflict groups and detects agents to be
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removed. All other activities are performed by MASAR agents asynchronously.
Due to parallel execution all computations take polynomial time.

(1) An interface protocol for system agents
This protocol specifies agent’s reactions for incoming messages. These messages
include information which actions should be performed by the agent: (1) Start:
to start; (2) CompWeight: to compute its weight; (3) FindRlt: to find relatives; (4)
Remove: to remove connections or itself; (5) ResSynt*: to resolve some syntactic
ambiguity. Until an input message causes an agent to react the agent stays in a
wait mode. Messages for an agent are stored in its input channel.

(2) The main algorithm for conflict resolution
Let us give an informal description of protocol Master. First, the agent-master
computes set of lexical agents LO, then it finds set of conflict lexical agents
AmbLO. After that it sends Start to all agents and launches parallel computing
agents’ weights and finding relatives for conflict lexical agents. After all agents
finish their job, the master computes conflict groups of relatives, then detects
conflict groups of friends. By comparing weights of conflict groups of friends,
it forms a list of agents to be removed. After finishing of this resolution of
group conflicts, the master launches the corresponding system changes. After
termination of the changing, it initiates all kinds of syntactic disambiguation for
instance agents in parallel.

Below we give informal descriptions of several protocols of the system agents.

(3) Computing agents’ weight
Following the definitions of the weights agent a computes in parallel weights
of (utility) descendants and (utility) ancestors by every connection c ∈ Ca,
launching the corresponding subprocesses for each c ∈ Ca. These non-utility
subprocesses send the weights of their descendants (ancestors) increased by 1 to
predecessors (successors) respectively. Utility subprocesses do not increase the
weights. If connection c is of type gen then the corresponding descendants’ sub-
processes send the weight of a to the predecessors. When these parallel computa-
tions are finished, the agent computes its own weight. The protocol of weights
computing belongs to the class of wave echo algorithms [12].

(4) Computing agents’ relatives
Let agents from AbmLO be numerated. Computing relatives consists of two
stages. Agents act asynchronously. (1) Pairwise search. Elder agent a using id of
every younger agent b sends couple of ids (a.id, b.id) to its descendants via its
successors. If some descendant of a finds both numbers among its connections
then it returns to a the id of b. After receiving agent a adds b to set of its relatives.
Termination of this computation can be detected by AB-algorithm from [4]. (2)
Merging. Elder agent a sends a request to every younger agent b for a set of its
relatives b.Rlt. If a.Rlt ∩ b.Rlt 6= ∅, then agent a merges both sets and agent b
removes its set of relatives and stops its computation. After termination of the
computation there are several agents with nonempty sets of relative groups.

(5) Removing LO-agents from the system
If agent a has to be removed from the system, then (1) all its predecessors remove
all connections with it and delete a from sets of successors; (2) its descendants
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remove a) all connections with it, b) the corresponding predecessors c) the cor-
responding attribute value; and d) if the removing connection is of generating
type then the descendant has to be removed from the system.

Resolution of syntactic ambiguities Synt11 and Synt12 consists of two steps.
(6) Synt11 resolution.
(1) Ambiguity detection. Every agent, using sets of its successors, checks if some
attribute value effects on values of several instances. If yes and these instances
form a homogeneous group, and satisfy a predefined grammar condition, then
it sends a message with the type of the conflict and the conflict value to every
agent in the group excluding the first agent in the group. (2) Agents in the group
resolve the ambiguities following the resolving formulas for Synt11. For this they
compute an evidence power of the ambiguous value.
(7) Synt12 resolution.
(1) Ambiguity detection. Every agent, using sets of its successors, checks if some
attribute value effects on values of several instances. If yes and these instances
do not form a homogeneous group, and satisfy a predefined grammar condition,
then it sends a message with the type of the conflict, the conflict value, and ids of
the competitors to every agent in the group. (2) Agents in the group send their
evidence power to the competitors. Then they resolve the ambiguities following
the resolving formulas for Synt12.
(8) Synt112 resolution.
If an agent finds attributes ω1 and ω2 with value c then it compares evidence
powers EQ(a, ω1, c) and EQ(a, ω2, c). The attribute value is removed from values
of an attribute with the less power.
(9) Synt211 resolution.
If an agent finds attribute ω with values c1 and c2 then it compares evidence
powers EQ(a, ω, c1) and EQ(a, ω1, c2). The attribute value with the less power
is removed from values of the attribute.

6 Conclusion

In this paper, we show that maximal instances of the ontology classes that take
part in the process of population form, together with the rules of data processing
and ontology population, a Scott information system. This result justifies reso-
lution of context-dependent lexical ambiguity by calculating context cardinali-
ties. The Scott information system is also a basis for our approach to syntactic
context-dependent ambiguity resolution. This system generates a multi-agent
system in which agents resolve the ambiguities by computing the cardinality of
their contexts and evidence powers. The suggested algorithm of lexical ambi-
guity resolution chooses the most powerful group of agents and removes their
competitors. The choice is based on agents’ weights and their effect on the sys-
tem.

We considered independent lexical and syntactic ambiguities only. In the near
future we plan to study disambiguation of combination of various types syntactic
and lexical ambiguities. In this work it is useful to introduce a membership
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probability of attribute ambiguity values and a degree of their effect on other
instances. We would like to try the developed technique for resolving references
also.
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Abstract. Data tables provide a convenient means of representation of descrip-
tive information about objects. They serve also as standard input for data analysis
tools or theories. In this paper we focus our attention upon the special class of
data tables, namely multivalued information systems introduced by Z. Pawlak
and E. Orłowska in the early 80s. The main idea presented in the paper is to in-
terpret multivalued information systems as semantically processed single valued
data tables. This interpretation allows us to describe classical rough set theory,
dominance-based rough set theory, and formal concept analysis within the frame-
work of multivalued information systems.

Keywords: information system, rough set, dominance relation, formal concept

1 Introduction

Data tables provide a simple and effective means of representation of collected pieces of
information about a given set of objects. They serve also as standard input for data anal-
ysis tools or theories, output of which is often referred to as knowledge. In the present
paper we shall focus our attention upon the special class of data tables, namely mul-
tivalued/approximate/nondeterministic information systems, introduced by Z. Pawlak
and E. Orłowska in the early 80s [3, 4]. These systems are generalisations of the stan-
dard data tables/information systems to the case in which for an object x and an attribute
A we are given (as the entry in the table) a set VA of attribute values instead of a single
value. The formal definitions of both multivalued and approximate information sys-
tems are actually the same (see [4]); it is the interpretation/semantics of the entries of
these tables which makes the difference: the first interpretation is the object x has all
values from VA for the attribute A (multivalued systems), whereas the second reads
as the object x has a single value from the set VA for the attribute A (approximate
systems). These systems equipped with a generalised semantics (which reads for the
object x and the attribute A the set VA provides some possible values) are called by
Z. Pawlak and E. Orłowska nondeterministic information systems [3]. Of course, the
semantics of the entries in the table determines how information is further processed; in
other words, which relations between objects are used to construct information granules
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being the building blocks of knowledge. The main concern of [4] is the informational
indiscerniblity between objects (an equivalence relation), whereas the main focus of
[3] are the information inclusion and the informational connection (a preorder and a
tolerance relation, respectively).

The main novelty of the present paper consists in taking multivalued information
systems as semantically enriched single valued data tables; this idea can be summarised
by the following equation:

data table + semantics = multivalued information system.

Thus multivalued information systems represent semantically processed data. We start
our study with some standard data tables used in the leading theories of data analysis:
single valued information systems from rough set theory (RST) [4–6], single valued in-
formation systems enriched by dominance relations taken from dominance based rough
set theory (DRS) [7, 8], and formal contexts from formal concept analysis (FCA) [1, 9].
Then we provide these structures with some specific interpretation/semantics. To this
end we use scales from FCA, which are tools to convert a multivalued formal context
(which is actually a standard information system) into a (single valued) formal con-
text. We are going to employ these scales in order to obtain multivalued information
systems. Then we focus upon informational relations of indiscerniblity and inclusion.
These steps allow us to consider RST, DRS, and FCA within a single conceptual frame-
work of multivalued information systems and to emphasise how these theories differ
semantically. Finally, we shall discuss different interpretations of RST, DRS, and FCA
based operators in the context of John Stuart Mill inductive reasoning [2].

2 Data Tables and Semantics

In the present section we discuss different forms of data tables considered in the lead-
ing theories of data analysis: rough set theory (RST) [4–6], dominance based rough sets
(DRS) [7, 8], and formal concept analysis (FCA) [1, 9]. Of course, apart from data tables
(input), each theory provides special tools to process the tables and produce some mean-
ingful output. However, in the present section we shall discuss only tables, whereas the
ways they may be further processed will be presented in the next section.

Definition 1 (Formal Context [1, 9]). A formal context is a triple (U,Att,R), where
U is a set of objects, Att a set of binary attributes and R ⊆ U ×Att.

If an object x stands in the relation R to A, then we mark it in the data table by 8.
Table depicted by Fig. 1 presents a very simple context; Bob is a good mathematician
whereas Agnes is not; on the bright side, she is rich.

Definition 2 (Information System [3, 4]). A quadruple I = (U,Att, V al, f) is called
an information system, where:

– U is a nonempty finite set of objects,
– A is a nonempty finite set of attributes,
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good mathematician rich
Steven 8

Bob 8 8

Agnes 8

Fig. 1. A simple formal context

– V =
⋃

A∈Att V alA, where V alA is the value–domain of the attribute A, and
V alA ∩ V alB = ∅, for all A,B ∈ Att (the last condition is not necessary, yet
it is mathematically convenient),

– f : U ×Att→ V al is an information function, such that for
all A ∈ Att and x ∈ U it holds that f(x,A) ∈ V alA.

If f is a partial function then the information system I is called incomplete. If the
codomain of f is the powerset of V al, then the system is called multivalued.

In what follows we shall confine our attention to the complete information (a simple
example is depicted by Fig. 2) systems and their multivalued version being the result of
scaling.

mathematician (1-6) rich
Steven 5 $ 0.1 million

Bob 4 $ 0.8 million
Agnes 2 $ 1 million

Fig. 2. An information system

Definition 3 (Dominance-Based Data Table [7, 8]). A dominance-based data table is
a system I = (U,Att, V al, f,≤D), where (U,Att, V al, f) is an information system
such that all attribute values are real numbers. Let us define: x ≤A y iff f(A, x) ≤
f(A, y), for x, y ∈ U . Then x ≤D y iff x ≤A y for all A ∈ Att.

Thus, information systems allow one to be more specific about the meaning of at-
tributes. In the case of dominance-based data tables, we additionally assume that the
attribute values are comparable with respect to some complete order. If f(A, x) ≤
f(A, y), then we say that y is at least as good as x with respect to A. If y is at least as
good as x with respect to all attributes then we say that y dominates x.

Of course, any information system may be converted into a formal context. The
easiest way of doing this is called in FCA a nominal scaling. Formally, a scale for
A is a formal context (V alA, V alA, RA) having V alA as both the set of objects and
the set of attributes. We also assume that the identity idV alA is included in RA. After
scaling each pair attribute-value (A, v) is regarded as a separate attribute of the new
context CI = (U, {(A, v)}A∈Att v∈V alA , R). For the fundamental relation in rough set
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theory is the indistinguishability, the values in (V alA, V alA, RA) are compared by the
equality relation: RA is =, for every A; and in consequence 1 is interpreted as 1, 2 as 2,
and so on. That is why in the scale depicted in Fig. 3 only the diagonal is marked by 8.
This type of scaling is called nominal. However, since all values in our exemplary data

1 2 3 4 5 6
1 8

2 8

3 8

4 8

5 8

6 8

$ 0.1 $ 0.8 $ 1
$ 0.1 8

$ 0.8 8

$ 1 8

mathematician rich
1 2 3 4 5 6 $ 0.1 $ 0.8 $ 1

Steven 8 8

Bob 8 8

Agnes 8 8

Fig. 3. Nominal scaling: the common ground of FCA and RST

table are real numbers, we can compare them with respect to ≤ instead of =. Actually,
when we order these values according to ≤ we do change the scaling, or better still, the
semantics (interpretation) of attribute values. Now, e.g., Bob’s score in physics 5 and
Agnes’s score 2 means that Bob is a better mathematician than Agnes. In other words,
whatever Agnes can solve, Bob can as well. Following DRS, we may say that Bob is at
least as good as Agnes with respect to the attribute mathematician. Formally, the higher
value (e.g., 5) with respect to ≤ implies the lower value (e.g., 2). Such scales are called
ordinal scales. Thus this time the mark 8 on 5 may mean that Bob has solved at least
5 problems. Under this reading Bob has solved at least 4 problems too. Therefore the
scaling representing this interpretation (semantics) may be defined as depicted in Fig. 4.
Please note that the values $ 0.1 or $ 0.8 are interpreted in the same fashion. Thus 8
on $ 0.8 means that Bob has at least $ 0.8 on his bank account, and in consequence
he has at least $ 0.1 too. Following DRS, we may say that Bob dominates Steven. In
consequence, both RST and DRS start with the same date table but use different scales
(interpretations). Of course, there are also (many) other possibilities. We conclude this

1 2 3 4 5 6
1 8

2 8 8

3 8 8 8

4 8 8 8 8

5 8 8 8 8 8

6 8 8 8 8 8 8

$ 0.1 $ 0.8 $ 1
$ 0.1 8

$ 0.8 8 8

$ 1 8 8 8

mathematician rich
1 2 3 4 5 6 $ 0.1 $ 0.8 $ 1

Steven 8 8 8 8 8 8

Bob 8 8 8 8 8 8

Agnes 8 8 8 8 8

Fig. 4. DRS in terms of formal contexts

part with a nontrivial interpretation offered by B. Ganter during his seminar at Warsaw
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University (a few years ago). He suggested to read the exam scores in a natural language
and take the “natural” scale. Under this reading, someone who has done a very good

1 may be interpreted as bad
2 may be interpreted as unsatisfactory
3 may be interpreted as satisfactory
4 may be interpreted as good
5 may be interpreted as very good
6 may be interpreted as excellent

1 2 3 4 5 6
1 8 8

2 8

3 8

4 8 8

5 8 8 8

6 8 8 8 8

Fig. 5. B. Ganter’s semantics of exam’s scores and scaling

job has done also a good job. The job of course is also satisfactory. However, someone
who has done a bad job has also done an unsatisfactory job, but not vice versa. In
consequence we obtain yet another scale, as depicted by Fig. 5. In this scale we use two
orderings, and this type of scaling is therefore called bi-ordinal. Thus, starting from the
information system depicted by Fig. 2 we can obtain a number of different multivalued
information systems, depending on which scale is applied to the original system (see
Fig. 6).

Nominal scaling⇒
mathematician (1-6) rich

Steven {5} {$0.1 million }
Bob {4} {$0.8 million }

Agnes {2} {$1 million }

Ordinal scaling⇒
mathematician (1-6) rich

Steven {1, 2, 3, 4, 5} {$0.1 million }
Bob {1, 2, 3, 4} {$0.1 million , $0.8 million }

Agnes {1, 2} {$0.1 million , $0.8 million $1 million }

B. Ganter’s scaling⇒
mathematician (1-6) rich

Steven {3, 4, 5} {$0.1 million }
Bob {3, 4} {$0.1 million , $0.8 million }

Agnes {2} {$0.1 million , $0.8 million $1 million }

Fig. 6. Multivalued information systems as the results of scaling, i.e. providing data tables with
interpretation/semantics

More formally, different interpretations/semantics of attribute values lead to differ-
ent formal contexts. When one starts with a multivalued context (an information system)
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I = (U,Att, V al, f) and a set of scales S = {(V alA, V alA, RA) : A ∈ Att} (as dis-
cussed above), then every pair (A, v), where A ∈ Att and v ∈ V alA, is regarded as the
attribute in the induced formal context CI = (U, {(A, v)}A∈Att v∈V alA , R), where R
is defined by

R = {(x, (A, v)) : v ∈ fs(x,A)},
fs(x,A) = {vi ∈ V alA : f(x,A) = v & (v, vi) ∈ RA}.

Of course every (multivalued) context I = (U,Att, V al, f) may also be converted
into a multivalued information system IS = (U,Att, V al, fs). The whole process of
providing I with semantics given by S is depicted by Fig.6.

3 Information Processing: Approximation Operators

In the previous section we have discussed information systems (collected pieces of data
about objects) which must be further processed to give some meaningful output (knowl-
edge). The information processing in rough set theory [4–6] and dominance based rough
set theory (DRS) [7, 8] is done by means of binary relations between objects. However,
formal concept analysis (FCA) [1, 9] is based upon a relation between objects and at-
tributes; in some special cases this relation may be reduced to the relation between
objects, but it is not always possible. In multivalued information systems, in contrast to
the classical information systems where there is considered a single relation, there are
three important relations between objects [3, 4].

Definition 4. Let (U,Att, V al, f) be a multivalued information system; then one can
define:

– Informational Indiscerniblity: x Ind y iff f(x,A) = f(y,A),
– Informational Connectivity (Similarity): x Sim y iff f(x,A) ∩ f(y,A) 6= ∅,
– Informational Inclusion: x Incl y iff f(x,A) ⊆ f(y,A),

for all A ∈ Att and x, y ∈ U .

Usually, the output of data analysis is related to some aspect of reality represented
by a decision attribute. For example, we could take the subjective quality of life as
the decision attribute. Then our aim would be to “express” the subjective quality of
life in terms of the attributes mathematician and rich, which are (in this case) called
conditional attributes (we would like to obtain knowledge how the subjective quality of
life “depends” on wealth and education in mathematics). Information systems having a
single attribute distinguished as a decision attribute are called decision tables. In such a
case, all informational relations (indiscerniblity, connectivity, and inclusion) are defined
with respect to (only) conditional attributes.

As earlier, we shall start discussion in this section with FCA (and its operators).

Definition 5 (Derivation Operators). For a formal context C = (U,Att,R), define:

R′(X) = {A ∈ Att : ∀x ∈ X ((x,A) ∈ R)},

R′(A) = {x ∈ U : ∀A ∈ A ((x,A) ∈ R)},
for all X ⊆ U and A ⊆ Att.

118



Semantic Rendering of Data Tables: Multivalued Information Systems Revisited

mathematician (1-6) rich
Steven 5 $ 0.1 million

Bob 4 $ 0.8 million
Agnes 2 $ 1 million

sub. quality of life (1-3)
3
3
1

Fig. 7. A decision table

Definition 6 (Formal Concept). A formal concept is a pair (X,A) such that X =
R′(A) and A = R′(X). X is called an extension and A is called an intention of this
concept.

Let us start with a complete information system I = (U,Att, V al, f) and a semantics
S, that is, a family of scales RA, for all A ∈ Att. As one can easily observe, for every
object x in CI = (U, {(A, v)}A∈Att v∈V alA , R), a pair (R′(R′({x})), R′({x})) is a
concept, and y ∈ R′(R′({x})) provided that x Incl y in the corresponding multivalued
information system IS = (U,Att, V al, fs):

R′(R′({x})) = {y ∈ U : x Incl y}.

However, it usually happens that

R′(R′(X)) 6= {y ∈ U : ∃x (x Incl y & x ∈ X)}.

But it always holds that

X ⊆ {y ∈ U : ∃x (x Incl y & x ∈ X)} ⊆ R′(R′(X)).

However, after conversion of an information system I = (U,Att, V al, f) to the formal
context CI = (U, {(A, v)}A∈Att v∈V alA , R) we lose the contact with original attributes
(we shall discuss this issue in detail later in the paper).

Definition 7 (Lower and Upper Approximations). A pair (U,E), where E is an
equivalence relation, is called an approximation space. Define after Z. Pawlak:

LowE(X) = {x ∈ U : [x]E ⊆ X},

UppE(X) = {x ∈ U : [x]E ∩X 6= ∅}.

LowE(X) is called the lower approximation of X , whereas UppE(X) is called the
upper approximation of X .

Coming back to information systems, every set of attributesA ⊆ Att of an information
system I = (U,Att, V al, f) induces an approximation space (U,EA), where EA =
{(x, y) : f(x,A) = f(y,A) for all A ∈ A}. In order to simplify the notation, we
shall write LowA(X) and UppA(X) for LowEA(X) and UppEA(X), respectively. In
the case when A = Att, we shall leave E without any subscript.

Every information system I = (U,Att, V al, f) (together with a family of scales S)
induces also a multivalued information system IS = (U,Att, V al, fs) and another ap-
proximation space (U, Ind). Due to scaling, Ind and E may be two different relations.
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For any A ⊆ Att of (U,Att, V al, fs) the corresponding indiscernibility relation will
be denoted by IndA. This notational convention will also be used for other relations.

As usual, we can generalise E to any reflexive relation P (e.g. Sim or Incl) and
obtain generalised approximation operators. Let [x]P = {y ∈ U : (x, y) ∈ P} and
define:

LowP (X) = {x ∈ U : [x]P ⊆ X},
UppP (X) = {x ∈ U : [x]P ∩X 6= ∅}.

As one can note, it holds that

UppIncl(x) = R′(R′({x})) = {y ∈ U : x Incl y},

and
UppIncl(X) = {y ∈ U : ∃x (x Incl y & x ∈ X)}.

However, R′(R′(X)) is much more complex in the settings of information systems
than it might seem at the first sight. It is worth noting that R′(X), for X ⊆ U , is a set
consisting of pairs (A, v). So, in order to go back to the level of information systems
we need a method of retrieving the original attributes from this set, so as it would act as
A ⊆ Att. Let Atex (attribute extraction) be defined by Atex(H) = {A : (A, v) ∈ H}
for H ⊆ Att × V al. Obviously, this a projection operation on the first coordinate and
it makes sense only for a family of regular scales. Consider the following example. Let
V al = {1, 2, 3, 4, 5, 6} be a set of values of some attribute A. Assume that a scaling
converts 1 to {1, 2}, 2 to {2, 3}, and all other values to {3, 4, 5, 6}. So after scaling A has
three value sets: {1, 2}, {2, 3}, {3, 4, 5, 6}. Let f(x,A) = {1, 2} and f(y,A) = {2, 3}.
Now, let us start with (U, {A}, V al, f), then go to the corresponding CI , and compute
R′({x, y}), which is {(A, 2)} – but this item does not make sense in our semantics S:
{2} is the meaning of neither element of V al. Thus, using set intersection ∩ we may
produce a new non-empty value set, which is not present in IS = (U,Att, V al, fs). A
scale is regular if that is not possible. Nominal and ordinal scales are regular.

Only for regular scales we are able to define the concepts of the formal context on
the level of attributes of information systems. Let IS = (U,Att, V al, fs) be a multi-
valued information system obtained from an information system I = (U,Att, V al, f)
by means of regular scales S; then

R′(R′(X)) = {y ∈ U : ∀A ∈ Atex(R′(X)) ∃x ∈ X (x InclA y)}.

If the scale is not regular, then the following inclusion holds only:

R′′(X) = {y ∈ U : ∀A ∈ Atex(R′(X)) ∃x ∈ X (x InclA y)} ⊆ R′(R′(X)).

Therefore, in such a case we need a new name R′′ for this operator.
Let us now consider a decision table IG = (U,Att, V al,G, f), that is, an informa-

tion system I = (U,Att, V al, f) equipped with a decision (goal) attribute G 6∈ Att
and f being defined on Att ∪ {G}. The semantics S for IG needs now to include a
scale RG = (V alG, V alG, RG) for the decision attribute. The main goal is to approx-
imate a given pair (G, [v]RG

), where v ∈ V alG is a specific distinguished value. More
precisely, we want to approximate the set X = {x ∈ U : (v, f(x,G)) ∈ RG}.

Let us take two scaling methods for the decision attribute subjective quality of life:
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nominal scale Nom: RG = {(i, j) : i, j ∈ {1, 2, 3} & i = j};
ordinal scale Ord: RG = {(i, j) : i, j ∈ {1, 2, 3} & j ≤ i}.

The nominal scale NomG interprets 1 as low quality of life, 2 as average quality of life,
and 3 as high quality of life. As expected, the ordinal scale OrdG interprets 1, 2, and 3
as: at least low quality of life, at least average quality of life, and at least high quality
of life, respectively. Now, let us take the value 3 as the distinguished value of the deci-
sion attribute. Then under NomG we are going to approximate the set {Bob, Steven},
however, under OrdG the set to be approximated is {Agnes,Bob, Steven}.

The dominance-based rough set approach (DRS) [7, 8] is actually a kind of rough
set theory rendered according to the above ideas and the ordinal scaling method. An
information system is equipped with a dominance relation ≤D, that is, we consider
the system I = (U,Att, V al, f,≤D) (see Section 2). This system induces a multi-
valued information system IS = (U,Att, V al, fs), where S consists of ordinal scales
(V alA, V alA, RA) for every A ∈ Att. Before we recall the definitions of the approxi-
mation operators, we need a few auxiliary concepts:

– D+(x) = {y ∈ U : x ≤D y} (a set of objects dominating x, or better than x);
– D−(x) = {y ∈ U : y ≤D x} (a set of objects dominated by x, or worse than x);
– Decision attribute G, VG = T , Clt = {x ∈ U : f(x,G) = t},

Cl≤t =
⋃

s≤Gt

Cls and Cl≥t =
⋃

t≤Gs

Cls,

where t, s ∈ T . It is additionally assumed that

Cls ∩ Clt = ∅ for s 6= t and
⋃
s∈T

Cls = U.

Classification patterns to be discovered are functions representing granules Cl≤t and
Cl≥t by means of granules D+(x) and D−(x). It is worth emphasising that due to
the preference order, the sets to be approximated are not the particular Clt (for some
t ∈ VG), but the upward and downward unions.

As said in the previous section, DRS may be represented in terms of ordinal scaling.
In what follows we would like to make this scaling explicit in DRS and use relations
Ind and Incl (from multivalued information systems) rather than the dominance re-
lation ≤D. Let us consider a multivalued information system IS = (U,Att, V al, fs)
obtained from I = (U,Att, V al, f,≤D) by means of a scaling set S. Please note that
due to the ordinal scaling of all attributes of I, it holds that:

D+(x) = {y ∈ U : x Incl y} = R′(R′({x})),

D−(x) = {y ∈ U : x Incl−1 y} = {y ∈ U : y Incl x},

Cl≥t = {y ∈ U : ∃x (x Incl{G}y & x ∈ Clt)},

Cl≤t = {y ∈ U : ∃x (x Incl−1{G}y & x ∈ Clt)}.

The specific interpretation of ordinal scaling in DRS makes a new type of inconsistency
in data tables possible:
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(a) an object x belongs to Cl≥t (that is, it belongs to Clt or a class better than Clt),
but it is dominated by some objects y 6∈ Cl≥t (it is dominated by some object from
a worse class),

(b) an object x belongs to the class Cl≤t (that is, it belongs Clt or a class worse than
Clt), but it dominates some object y 6∈ Cl≤t (it dominates some object from a
better class).

These objects are regarded as borderline cases: they might or might not belong to a
given class. In consequence, in DRS we consider the following approximations:

Cl≤t = {x ∈ U : D−(x) ⊆ Cl≤t },

Cl≤t = {x ∈ U : D+(x) ∩ Cl≤t 6= ∅},

Cl≥t = {x ∈ U : D+(x) ⊆ Cl≥t },

Cl≥t = {x ∈ U : D−(x) ∩ Cl≥t 6= ∅}.

As earlier, our aim is to express these approximation operators by means of Incl. Thus,
let be given an information system I = (U,Att, V al, f,≤D) and its corresponding
multivalued information system (U,Att, V al, fs), obtained by means of the ordinal
scaling method Ord. Then

Cl≤t =
⋃

D−(x)⊆Cl
≤
t

D−(x) = {y ∈ U : ∀x ∈ U (x Incl y ⇒ x ∈ Cl≤t )},

Cl≤t =
⋃

x∈Cl
≤
t

D−(x) = {y ∈ U : ∃x ∈ U (x Incl−1 y & x ∈ Cl≤t )},

Cl≥t =
⋃

D+(x)⊆Cl
≥
t

D+(x) = {y ∈ U : ∀x ∈ U (x Incl−1 y ⇒ x ∈ Cl≥t )},

Cl≥t =
⋃

x∈Cl
≥
t

D+(x) = {y ∈ U : ∃x ∈ U (x Incl y & x ∈ Cl≥t )}.

So, we are able to transfer FCA, RST, and DRS, along with explicitly given semantics S
(a family of scales RA for every attribute A ∈ Att) into the framework of multivalued
information systems. The connections between the operators discussed above are as
follows:

Cl≤t = LowIncl−1(Cl≤t ),

Cl≤t = UppIncl(Cl≤t ),

Cl≥t = LowIncl(Cl≥t ),

Cl≥t = UppIncl−1(Cl≥t ) ⊆ R′(R′(Cl≥t )).

Two important comments are needed. As long as we regard all above operators as ap-
proximation operators, RST and DRS based results are better than that coming from
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FCA. However, when we change the context, then the FCA operator may be more
preferable. Secondly, in DRS, x Incl y is read as y is better than x. However, there are
other readings possible, e.g., we have more pieces of information about y than about x.

Let us consider an example which brings new meanings for relations and opera-
tors we have discussed so far. Let w be a serious disease which we have an antibiotic
working against. Let us assume that we have a test checking whether someone is ill,
but the antibiotic should be given to a patient before the disease develops. So, our aim
is to select people who will be given the medicine. One very expensive solution is to
give the medicine to all people (that is, all elements of the universe U ). On the other
extreme, we could give the medicine only to people who test positive for w. Of course,
both solutions are not good and we need to find another method of selection. We are
going to employ the John Stuart Mill inductive reasoning [2] here, which was designed
to solve problems of this type, but under complete knowledge. We shall focus our atten-
tion on the very basic cannon, namely the direct method of agreement (Fig. 8). We are
not going to use the pure form of this cannon, but rather its rough set based rendering.

A B C D occur together with w, v
A E F G occur together with w, z

Therefore A is the cause of w

Fig. 8. Direct method of agreement: If two or more instances of the phenomenon under investi-
gation have only one circumstance in common, the circumstance in which alone all the instances
agree, is the cause (or effect) of the given phenomenon [2].

Let be given an information system I = (U,Att, V al, f) representing our (medical)
knowledge about people. At first, we employ a semantics S consisting only of ordinal
scales such that for each attribute A of IS = (U,Att, V al, fS), the relation x InclA y
means that y is in a worse medical condition than x with respect to A and w. In our
settings, Mill’s inductive reasoning is modelled in the following way. The concept w
is actually a set {x ∈ U : f(x,w) = >), where V alw = {>,⊥} (truth and false,
respectively). The scale Rw is given by {(>,>), (>,⊥), (⊥,⊥)}, so if f(x,w) = >,
then fS(x,w) = {>,⊥}, and if f(x,w) = ⊥, then fS(x,w) = {⊥}. Thus, as required,
if x Inclw y, then y is in the same or worse medical condition than x, so if x is ill, then
y must be ill as well. Let Cl> be a set of positive examples of w (direct method of
agreement). The term “in common” (Fig. 8) is beyond the expressive power of pure
RST and DRS. However, in our case we can retrieve common attributes by means of
Atex(R′(Cl>)). Now we can compute possible solutions to our problem:

Cl> ⊆ UppInd(Cl>) ⊆ Upp−1Incl(Cl>) = Cl
≥
> ⊆ R′(R′(Cl

≥

>).

As said Cl> is an extreme solution, another one may be given by UppInd(Cl>) (that is,
we give the antibiotic to all people with exactly the same medical description in terms of
conditional attributes as some patients having positive test for w). It seems reasonable,
however the next solution Upp−1Incl(Cl>) = Cl

≥
> is much better: we give the medicine

to all people with the same or worse medical condition than some patients who have
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positively tested for w. Better still, we may apply the direct method of agreement and
give medicine to all people in R′(R′(Cl

≥

>) having medically worse results only for
attributes which seem to be relevant to w. It is worth emphasising that regarded as
an approximation of Cl>, the set R′(R′(Cl

≥

>) is the worst candidate, but in this very
settings it is the best solution for the problem at issue. Consider a non-regular scale
now and assume that all people who positively tested on w have problems with blood
pressure A. So scaling of A shows how unstable is the pressure. Some patients may
have value {normal, high}, some {low, high}, and some {low, normal, high}, but
none of them has {normal}. This time R′(R′(Cl

≥

>) is a very bad solution, because it
may include people with a normal blood pressure. However, we can still use the direct
method of agreement in a modified version, and take R′′(Cl

≥

>) as the solution.

4 Conclusions

In the paper we have investigated the implicit semantics used in some leading theo-
ries of data analysis: rough set theory (RST) [4–6], dominance based rough set theory
(DRS) [7, 8], and formal contexts from formal concept analysis (FCA) [1, 9]. We have
presented all theories within the unifying framework of multivalued information sys-
tems [3, 4], enriched with the scaling methods from FCA. We have also discussed the
relations between the operators coming from these theories, and presented their differ-
ent interpretations in the context of John Stuart Mill inductive reasoning [2].
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Abstract. In the existing abundance of different hybrid automata for-
malisms concurrent composition is seldom considered or requires addi-
tional semantics which is not always defined. This work considers three
common reasons of problems with hybrid automata composition: con-
tradicting resets in the discrete transitions, global time reference with
contradicting initial conditions and redundant non-determinism for fir-
ing time. An overview is provided of the existing formalisms and the
attempts to solve these particular problems. A reduced hybrid automata
formalism, called linear time-invariant hybrid automata, is introduced.
It avoids all those problems and yet provides a powerful modeling tool
with practical applications. Also, a short discussion is provided for the
problem of Zeno behavior and what conditions are demanded for a model
to fulfill so that Zeno behavior would not arise during composition.

1 Introduction

Hybrid systems modeling has various applications in model-driven design and
verification of embedded and reactive systems. It has been a topic of intensive
research in the past 20 years [MMP91]. Their hallmark is the combination of
discrete and continuous behavior. Most hybrid systems include computational
components which operate in discrete steps and physical components with con-
tinuous behavior over time. Typical examples are aerospace systems, robotic
systems, or process control systems. Since most of these systems are too com-
plex to design and build as a whole, they are decomposed into subsystems and
components with reduced complexity and simpler behavior. This process can, of
course, be recursively repeated until complexity is manageable. In order for this
process to be supported on the modeling level, it is necessary that the applied
formalism allows for (de)composition with respect to the verifiable properties
such as reachability or liveness. The process of decomposition has been histori-
cally used in the control systems engineering applications [Nis11]. An important
property which is often used to simplify design and analysis is the superposition1

principle which is mathematically defined as:

h(ax1 + bx2) = ah(x1) + bh(x2)

1 also called linearity
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Since their introduction, hybrid automata formalisms have been emerging
with restricted properties to simplify analysis and sometimes composition [AD94]
[Hen96] [LSV03] [Ábr12]. Examples of subsets of hybrid automata are timed
automata [AD94], linear hybrid automata [Hen96], rectangular hybrid automata
[HKPV98], hybrid I/O automata [LSV03], etc. Several definitions of the general
hybrid automata exist as well, each with slight deviations in the underlying
semantics.

A handful of frameworks leave some of the semantics unspecified which makes
it difficult for the designer to apply them - separately or compositionally [Hen96]
[Ras05] [Ábr12] [LLL09]. An example is a general structural definition of HA
where each location has an invariant and several outgoing transitions with re-
spective guards [Hen96] [Ras05] [LLL09] [Ábr12]. The problem arises when the
invariant is violated thus forcing the automaton to switch its location to another
one but no guarding condition of the outgoing transitions is enabled. It remains
unspecified what happens to the model in such a situation. Another example
is the passage of time in several parallel composed automata with synchronis-
ing labeled transitions [Ábr12]. Since the event (action) semantics is not always
specified fully and consistently, i.e. are events buffered or ignored, or what is
the global time reference for two composed automata, it is unclear whether one
synchronising edge should wait for another one with the same label in the second
automaton. There are formalisms which allow for such ”waiting” which enables
to model physical systems where objects are floating in space waiting for some
other event to occur.

Thorough comparison of the existing HA formalisms has lead to the conclu-
sion that three common reasons of problems for hybrid automata composition
exist:

1. contradicting resets in the discrete transitions,

2. global time reference with contradicting initial conditions and

3. redundant non-determinism for firing time.

For the practical application of composable control systems a formalism is needed
which has none of the aformentioned problems and fulfills the property of su-
perposition of continuous functions.

The contribution of this work lies in the introduction of a new formalism for
modeling hybrid systems with a fully specified timing, firing, event and com-
position semantics and fulfilling the property of superposition motivated by the
applicability from the control systems engineering. Our approach is driven by the
motivating example of a dedicated domain specific language for the verification
of a space mission at the early design phases where superposition is a critical
issue [ASGW16], [ATW15], [STF+13].

The article starts with an overview of the existing hybrid automata for-
malisms which experience and/or partially solve the composition problems. The
general definition of the utilized hybrid automata variation is given in Section 3.
The text continues with a detailed discussion of composition semantics and the
arising problems. Section 4 shows how the LTI-HA solve these problems. The
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paper is concluded by a discussion of further work and possible applications of
the formalism.

2 State of the Art

In the existing abundance of different hybrid automata formalisms concurrent
composition is seldom considered in full depth or requires additional semantics
which is not always defined [Ras05] [LLL09] [Ábr12]. In the general setting, HA
experience all of the three mentioned problems [Hen96] [Ras05] [Ábr12] [LLL09]
[Alu15]. In [Ábr12], an overview is provided of the existing hybrid automata for-
malisms with rising complexity, starting from labeled transition systems, timed
automata and ending with the general hybrid and rectangular automata. That
work provides a conceptualized structural view on the hybrid systems. All three
types of problems occur in the generalized HA and at least partially in the
other formalisms. Furthemore, many formalisms suffer from incompleteness of
semantics definition [Hen96] [Ras05] [LLL09] [Ábr12].

Hybrid I/O automata (HIOA) were introduced by Lynch et al. first in 1996
[LSVW96] but have been modified several times since [LSV03]. The definition
of hybrid I/O automata is unique in the sence that it eliminates a handful of
problems by defining the hybrid automata by the notion of hybrid traces. Hybrid
I/O automata have been demonstrated to be both composable and receptive2.
However, HIOA are too restrictive for some of the control applications where
explicit notion of superposition is important. For example, HIOA are required
to have disjunct output trajectories [LSV03, p.131,p.141] which excludes the
possibility of superposition.

Superposition of the flow functions of hybrid automata has been exploited
in the linear hybrid automata, however, the introduced formalisms still have
at least one of the semantic problems listed in the problem statement [Hen96]
[Pap98].

3 Linear Time-Invariant Hybrid Automata (LTI-HA)

In the following section, a new formalism is introduced to solve the problems
1-3.

3.1 Definition

Before the linear time-invariant hybrid automata are defined, several supporting
definitions are provided.

Definition 1 (Valuation of a variable). A valuation V (x) of a variable x is
the assignment to x of a value from its domain D: V (x) : x 7→ D(x).

This definition can be extended to a set of variables:

2 Not experiencing Zeno behavior, even under the composition.
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Definition 2 (Valuation of a set of variables). A valuation V (X) of a
variable set X is the union of all valuations for all x ∈ X of a value from the
corresponding domains D(x): V (X) : X 7→ D(x).

The set of all possible valuations is defined as V(X ) = D(x1)×D(x2)×...×D(xn).

Definition 3 (State of a hybrid system). A state of hybrid system is a pair
(L,V)(t) consisting of two time-dependent components: the discrete state (L) and
the continuous state (V).

Definition 4 (LTI-HA). A linear time-invariant hybrid automaton H is a tu-
ple (L, T ,X ,SI ,SO, E ,A, G,F , I), where:

– L = (L1, . . . , Ln) is a set of discrete locations also called modes;
– T ⊆ L × L is a (not necessarily complete) multiset transition relation;
– X is a set of continuous state variables. To each x ∈ X , a value from
D(x) ⊆ Rm ∪ {dc} can be assigned where m ≥ 1 but is finite and dc is a
special term for unspecified (”don’t care”) value;

– SI and SO are two disjunct sets of input and output events, respectively,
which define the automaton’s event signature;

– E : T 7→ P(P(SI)) and A : T 7→ P(SO) are assignments of the interface
events SI ,SO to the transitions of the automaton;

– G : T ×V(X )×P(SO)×P(P(SI)) 7→ {true, false} is a guard function. For
all transitions τ , G(τ,V(X ),A(τ), E(τ)) = gτ (V(X ),A(τ), E(τ)) is called the
guard (function) of τ ;

– For any location L and for all variables from X there exists a linear differen-
tial equation F(fL(x, t)) = g(x, t), x ∈ X , t ∈ R≥0 with g(x, t) : X × R≥0 7→
Rm describing the change of the corresponding variable, where fL(x, t) :
X × R≥0 7→ V (X ) is called a flow function, F(fL) is a linear operator

P0(t)f
(k)
L + P1(t)f

(k−1)
L + ... + Pk(t)fL with f

(l)
L =

dlfL
dtl

and Pi(t) : R 7→ R
being any functions. The set of all flow functions in a given location describe
how the valuations of continuous state variables change over time in that
location;

– I is the initial state of the system (LI , VI), where LI ∈ L is the initial
active mode and VI = VI(X ) is the initial valuation of all the variables in
X .

In contrast, the general definition of hybrid automata usually also includes
additional constructs such as location invariants, variable resets along the tran-
sitions, flow functions are uncostrained and events that are labels with a simple
synchronisation semantics.

Definition 5 (Time Semantics). Evaluation of flow functions is based only
on the duration of time interval spent in the corresponding location. In each
active location, time elapses at the same rate. Transitions are timeless.

Global time reference can be implemented by taking any fixed reference time
value which is progressing along with the automata execution. At any time,
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exactly one location is active, beginning with the LI . Automaton’s state changes
either with time with respect to the flow functions of the corresponding locations
or the discrete transitions, starting in the initial state I.

Definition 6 (Transition Semantics). As long as an automaton has an active
location L, the valuation of continuous variables V (X ) changes according the
location’s flow function fL. If no explicit flow function is given for some variables
from X their rate of change is assumed to be 0 at the given location. If at some
time point a guard gτ of an outgoing transition (Lc, Ld) evaluates to true, Ld
becomes the new active location without delay and all events e ∈ A(τ) occur.
If more than one guard of an outgoing transition evaluates to true, one of the
transitions is chosen non-deterministically.

Definition 7 (Event Propagation Semantics). The output events have a
one-to-all semantics, that is, every output event is broadcasted. The input events
have a one-to-one semantics and are therefore only generated by a single other
automaton. Each input event has to be defined and specified.

Definition 8 (Event Structure Semantics). The input events for a transi-
tion τ form a set E(τ) ∈ P2(SI) where P2(SI) is a power set of a power set
over the set of input events, that is complex events can be formed by coupling the
(elementary) input events in the following way: for the transition τ to become
enabled, at least one of the (complex) events S ∈ P2(SI) in the set E(τ) has to
occur. Occurrence of such an event implies that all participating events s ∈ S
have occurred (simultaneously).

Definition 9 (Event Timing Semantics). Events don’t have duration and
occurrences are not buffered.

There are two possibilities to describe interval events: by two events, one
for the start es and one for the completion ef , respectively, or by setting global
variables values. Problem with modeling by just events arises when they are
not caught thus leading to either offsets in the interval perceptions or overly
complex conditions for well-definedness and composability. Overlapping intervals
are easily modeled by global variables with constant values.

3.2 Semantics of the LTI-HA

Definition 10 (Timed Transition System (TTS)). A timed transition sys-
tem (TTS) is a tuple (Σ,Σ0,S,→) where Σ is a (possibly infinite) state space
with Σ0 ⊆ Σ being the initial state and S is a (finite) set of labels. Transition
relation is defined as →⊆ Σ × S ∪ R≥0 ×Σ.

Definition 11 (Trace Semantics of a Hybrid Automaton). Trace seman-
tics of a hybrid automaton H = (L, T ,X ,SI ,SO, E ,A, G,F , I) is defined as a
transition system where:

– the (possibly infinite) state space is the set of pairs (l, Vl(X )), where Vl(X )
is in the range of possible valuations in l, defined by fl
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– initial state is I
– and the transitions ”→” are either:
• discrete: ∀T ∈ T ∃(li, Vi(X ))→σ (lj , Vj(X )), σ ∈ P(S), li, lj ∈ L
• or continuous: ∃δ ∈ R≥0, δ = tf ∃(li, Vi(X )) →δ (li, Vj(X )) ∧ fli is

differentiable on [0, δ] and the following conditions hold:
1. fli(0) = Vi(X ),
2. fli(δ) = Vj(X ),and
3. fli(0) is closed under subintervals.

Thus, a trace of a hybrid automaton is a finite sequence alternating between
continuous evolutions with finite durations and discrete transitions:

π = s0ε0s1ε1, ..., εn−1sn,

where si are the states in TTS, εi are the transitions (discrete or continuous)
between them and s0 = I. Duration of a trace d(π) is defined as the sum of all
durations along that trace. Since a HA can be non-deterministic, many different
traces are possible. Generating a control sequence of external events C ⊂ (S, t),
where S ⊂ SI and t is a time point with respect to the global time reference, is
not part of the model but a task for an external solver.

3.3 Composition of LTI Hybrid Automata

Definition 12 (Composability). Two LTI hybrid automata H1,H2 are called
composable, H1 f H2, iff ∀x ∈ X 1∩X 2 : V 1

I (x) = V 2
I (x), where dc = κ is always

true for all values of κ.

Definition 13 (Composition). Given two composable hybrid automata H1

and H2, the composition H1 ◦ H2 provides a new hybrid automaton
Hc = (Lc, T c,X c,ScI ,ScO, Ec,Ac, Gc, F c, Ic) where

1. Lc = L1 × L2 = {(L1
1, L

2
1), . . . , (L1

1, L
2
n2

), (L1
2, L

2
1), . . . , (L1

n1
, L2

n2
)}

= {Lc11, Lc12, . . . , Lc1n1
, . . . , Lcn1n2

};
2. T c = {t = (Lcij , L

c
kl)|t ∈ Lc × Lc, (L1

i , L
1
k) ∈ T 1 ∨ (L2

j , L
2
l ) ∈ T 2}

3. X c = X 1 ∪ X 2,
4. ScI = (S1I ∪ S2I )\S1O\S2O
5. ScO = S1O ∪ S2O
6. ∀τ ∈ T : Ac(τ) = {e | τ = (Lcij , L

c
kl)∧(

(e ∈ A1((L1
i , L

1
k)) ∧ j = l) ∨ (e ∈ A2((L2

j , L
2
l )) ∧ i = k)

)
}

7. ∀τ ∈ T : Ec(τ) = {S | ∀E ∈ E1(τ) ∪ E2(τ) : S = E\S1O\S2O}
8. Gc = {gc(Lcij ,Lckl) = g1

(L1
i ,L

1
k)
|(Lcij , Lckl) ∈ T ∧ j = l}∩

{gc(Lcij ,Lckl) = g2
(L2
j ,L

2
l )
|(Lcij , Lckl) ∈ T ∧ i = k}

9. ∀Lij ∈ Lc: fLij = fLi + fLj
10. Ic = (Lci1i2 , V

1
I ∪ V 2

I )

Properties from semantics definitions 5-9 remain preserved.
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Properties 1 and 2 define the new location set which is now a cartesian
product of two initial location sets, and the transition in a new location set
exists if there was at least one transition in the corresponding locations of initial
automata H1 and H2. The variable set is defined as a union set. All variables
with the same names are to be considered global and can be adjusted in a
composed manner (property 9). Properties 4-7 describe how the input and output
events of the automata are composed. Since the input events have the one-to-
one semantics, if there one of the two composed automata H1 and H2 having
an output event which is the input event for the second automata this event
can be cancelled out in the input set of the resulting composed automaton.
This, however, does not apply for the output events because of their one-to-
all semantics. Properties 6-8 define how the input and output events and the
guards are assigned to their corresponding transitions in the initial automata
and. Mildly speaking, G builds a cut set of enabling valuations in two composed
transitions and a union of the input and output events, respectively. Property
9 follows trivially from the linearity property of the superpositioned differential
equations. Since H1 and H2 are composable it is safe to apply property 10.

4 Semantics of Composition of Hybrid Automata

4.1 General Hybrid Automata

In the general setting, hybrid automata are defined as follows [Hen96, p.2] [Ras05,
p.4] [LLL09] [Ábr12]:

Definition 14. A hybrid automaton consists of:

– A set of continuous variables X;
– A finite directed multigraph (V,E) representing the discrete modes and the

transitions between them;
– Initial conditions describe how the continuous variables are reset after a time-

less discrete transition has been taken;
– Invariants are the predicates assigned to the discrete locations and must hold

in the respective location when it is active;
– Flow conditions describe how the variables in X change continuously with

time;
– Guard conditions which are the predicates over the values of variables of X

and are the enabling conditions for a transition to be taken;
– Events which are assigned to the transitions of the automaton. Transitions

with with the same labels in different automatas must synchronise.

There are some extensions and small differences between the definitions which
both solve some problems and introduce others. For instance, in [Ábr12] it is
proposed that discrete transitions in concurrent automata are interleaved, and
synchronisation is enhanced with special τ -transitions for the automaton which
is waiting on the synchronising edge. It is immediately clear that this extension
solves the problem of race conditions of the resets with non-determinism for the
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case when, e.g. two transitions with different labels fire simultaneously with the
following resets: x = y + 1 and y = x + 1. However, introducing τ -transitions
allows for modeling of a satellite in the orbit which, while waiting for some
maneuver comand from an operations control center, suddenly freezes dead in
its orbit since τ -transitions are also timeless. Furthermore, it does not solve
a problem of possible Zeno behavior when time is prevented from passing. A
trivial example is given in Fig. 1. If the automata start in states A and B with
x = 0, y = 0, then after 10 time units, the system will converge and generate an
infinite amount of discrete events. The execution trace would be (A → B) ⇒
(C → D)⇒ (B → A)⇒ (D → C)⇒ ...

A
y ≤ 10
ẏ = 1

start
B

x ≤ 200
ẋ = 1

x := 100

y := 15

C
x ≤ 20
ẋ = 1

start

D
y ≤ 10
ẏ = 1

x := 250

Fig. 1: Example of time convergence because of the discrete resets

In the general setting, usually no assumption is made3 about the type of
differential equations governing the continuous change of the state variables. If
those are not time invariant, it leaves the question open as to how the flow func-
tions are overlapped during parallel composition. Another important drawback
is the lack of specification of the semantics in the case when a state invariant is
violated prior to enabling of any outgoing transition [HKPV98] [Ras05] [LLL09]
[Ábr12].

4.2 Other Formalisms

Several other formalisms based on the general hybrid automata have been pre-
sented [Hen96] [Ras05] [LLL09] [Ábr12].

An overview of the three possible problems mentioned earlier occurring in the
HA formalisms is provided in table (1). Timed automata, being the simplest form
of the HA, avoid most of the problems of composition, as well as lack expressivity
to describe complex hybrid phenomena [LLL09] [Cas05]. Linear hybrid automata
have support for superposition but still have the invariants and resets, and,
hence, the implied problems that could arise. Rectangular automata, just as the

3 An exception would be [LLL09]
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general automata, experience all of the three problems and also increase the
complexity by introducing randomness and uncertainties [Hen96] [HKPV98].

Hybrid I/O automata solve all of the mentioned problems of composition but
have explicitly eliminated the possibility for superposition of trajectories for the
continuous variables [LSV03, p.131,p.141].

HA Formalism
Problems with composition

Superposition Support
R IC FTND

Timed Automata [AD94] - - X -

Linear Hybrid Automata X - X X
I/O Hybrid Automata - - - -

General Hybrid Automata X X X -

Rectangular Hybrid Automata X X X -
Table 1. Compositional problems with the HA formalisms - R: resets; IC: initial
conditions; FTND: fire time non-determinism.

4.3 Composition in LTI Hybrid Automata

Since composition is the cornerstone of the new formalism that is introduced
in this paper, the absence of each of the three undesirable prooerties Pi can be
only guaranteed if and only if LTI hybrid automata as a formalism fulfill the
following two conditions:

1. the property Pi cannot exist in a single automaton;
2. the Pi-freeness is preserved and Pi not induced by composition,

where P1 ≡ R, P2 ≡ IC and P3 ≡ FTND.

Theorem 1. No contradicting resets are possible in the LTI hybrid automata.

Proof

1. Discrete transition resets are not a part of the LTI definition 4. Furthermore,
since there is no composition taking place, no contradictions are possible.
The proof follows trivially.

2. The proof of preservation also follows trivially from the definition 13 of
composition, since no rule introduces discrete resets. The only discrete jumps
of the variable values are possible due to Dirac impulses which do not violate
the superposition and time-invariance property.ut

Theorem 2. No global time reference exists with the contradicting initial con-
ditions in the LTI hybrid automata.

Proof
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1. As per definition 5, time flow is identical for all discrete states, hence time
invariance. Definition 4 implies that the flow functions are also linear. Since
every variable can only be assigned with value once in the initial state, no
contradictions are possible.

2. Proving that this statement is preserved and not induced by composition is
equivalent to proving that if two automata are composed with each other
the induced automaton is also composable with some other third automaton,
since non-contradicting initial conditions are the necessary and sufficient
condition for composability.
We assume that automata H1,H2 and H3 are pairwise composable. Without
loss of generality, rules 3 and 10 of the composition definition 13 are applied
to automatas H1,H2:

Theorem 2
H1 f H2,H2 f H3,H1 f H3

(H1 ◦ H2) f H3

After applying rule 13.11, V 12
I = V 1

I ∪ V 2
I . Thus, set V 12

I can be divided to
three subsets, elements only from V 1

I , elements only from V 2
I and elements

from V 1
I ∩V 2

I . Let us assume that V 1
I ∩V 3

I 6= ∅ and V 2
I ∩V 3

I 6= ∅. Then, from
the initial assumption and the definition 12,

∀x ∈ X 1 ∩ X 3 : V 1(x) = V 3(x) ∧
∀x ∈ X 2 ∩ X 3 : V 2(x) = V 3(x)

Hence,

∀x ∈ X 1 ∩ X 2 ∩ X 3 : V 1(x) = V 2(x) = V 3(x)

Linearity and time-invariance are preserved with respect to superposition
[Nis11]. Since all of the flow functions in the LTI-HA are linear and time-
invariant, the same applies for the composed automata after applying rules
1 and 9 of definition 13. ut

Theorem 3. Execution of LTI-HA never stalls due to the contradicting invari-
ants and guard conditions.

Proof

1. Invariants are absent in the definition of the LTI-HA 4. Hence, it is not
possible for the behavior of the model to be unspecified due to a violated
invariant with no guards enabled.

2. The rule for guards in the composition definition, 13.8, combines several
guards of the initial automata. If the guards are contradicting each other,
transition is omitted altogether. No invariants are created and the firing
enforcement (definition 6) is preserved. ut
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5 Discussion

Although some of the common problems mentioned in the introduction of this
work have been eliminated in the LTI-HA, others may remain which cannot
be completely excluded for hybrid systems or are implied by the semantics of
the modeled system itself. It is therefore useful to determine a set of properties,
which, combined, will introduce a notion of well-definedness of the model. A well-
defined model would guarantee correct behavior with respect to the property
of interest, that is, model would behave without experiencing unexpected or
unwanted behavior. One of such properties is divergence of time. If a model is
Zeno-free, time never converges, i.e. it is impossible to find a subsequence of the
model execution trace which includes an infinite amount of events in a finite
time. This notion has been extended by Lynch et al. in [LSV03] with the case
where a trajectory of a continuous variable is never asymptotic.

Introduction of such a notion into the LTI-HA formalism would allow for
automatic checking if a model can or cannot end in a Zeno execution thus making
verification impossible. One possible condition for guaranteeing Zeno-freeness
would be the absence of closed transition loops of length ≥ 1 consisting of only
transient modes, i.e. modes for which at least one outgoing transition is enabled
when the mode is entered. If there exists such a cycle, then the model will be
executed, following the transition semantics 6, endlessly without the progress of
time.

6 Conclusion

We presented a formalism that allows the semantic description of linear control
systems based on hybrid automata. Several problems of composition of other
formalisms have been demonstrated with a comparative analysis to our method.

As next steps, we intend to derive the necessary and sufficient conditions
for non-Zenoness of the LTI-HA models and demonstrate that this property is
preserved by composition. Furthermore, the problem of analysis of liveness and
reachability and the implementation of a corresponding tool support will follow.
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[ATW15] Jafar Akhundov, Peter Tröger, and Matthias Werner. Considering concur-
rency in early spacecraft design studies. In CS&P 2015 Proceedings, pages
22–30, Rzeszow, Poland, 9 2015.

[Cas05] B. Brard F. Cassez. Comparison of the expressiveness of timed automata
and time Petri nets. In In Proc. FORMATS05, vol. 3829 of LNCS, pages
211–225. Springer, 2005.

[Hen96] T. A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science, LICS ’96, pages
278–, Washington, DC, USA, 1996. IEEE Computer Society.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of Computer and System
Sciences, 57(1):94 – 124, 1998.

[LLL09] Jan Lunze and Franoise Lamnabhi-Lagarrigue, editors. Handbook of hybrid
systems control : theory, tools, applications. Cambridge University Press,
Cambridge, UK, New York, 2009.

[LSV03] Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O automata.
Inf. Comput., 185(1):105–157, August 2003.

[LSVW96] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hy-
brid I/O automata, pages 496–510. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1996.

[MMP91] Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid systems.
In Real-Time: Theory in Practice, REX Workshop, Mook, The Netherlands,
June 3-7, 1991, Proceedings, pages 447–484, 1991.

[Nis11] N.S. Nise. Control Systems Engineering. Wiley, 2011.
[Pap98] G. Pappas. Hybrid Systems: Computation and Abstraction. 1998.
[Ras05] Jean-François Raskin. An Introduction to Hybrid Automata, pages 491–517.
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Appendix: A Modelling and Composition Example

To further motivate the use of composable hybrid automata as introduced in
this work, a small practical example for satellite functionality is discussed in
this Appendix.

In the early conceptual study phase of development, a satellite downlink
module which sends gathered information back to Earth can be modelled as
having only two distinct states: Sending, when a ground station is visible and
there is data to send, or Not Sending, when either no ground station is available
or no data is there to be sent (or both). In the Sending state the rate of change
of available data and sent data is the same with opposite signs, whereas in the
Not Sending state both parameters remain constant (Fig. 2).

Not Sending

˙datasent = 0

˙dataavailable = 0

start

Sending

˙datasent = κ

˙dataavailable = −κ

∀dataavailable > 0, ∀clkduration mod d 6= 0:

G((Not Sending, Sending), (dataavailable, clkduration), ∅, {∅}) = true

∀dataavailable ≤ 0:

G((Sending, Not Sending), (dataavailable), ∅, {∅}) = true

∀clkduration mod d == 0:

G((Sending, Not Sending), (dataavailable), ∅, {∅}) = true

Fig. 2: Downlink module model definition using a composable LTI hybrid au-
tomaton.

The automaton representing ground station availability is presented in Fig.
3. Here, as well, the system has only two states, since a ground station is ei-
ther available or not. For now, we ignore irregularities of this otherwise periodic
process, such as orbit perturbations and communication faults - they can be
integrated into the model by taking the worst, shortest possible availability pe-
riod. Ground station visibility is modelled by two running clocks, one for the
period and one for the duration. Once the period time is up, ground station
becomes visible for the possible duration time which is measured by the second
clock, clkduration. When the clock reaches its maximum value, the automaton
switches its discrete state back to the ”Not Visible” mode. Since there are no
resets in the LTI-HA formalism, it is not possible to reset the clocks. Hence,
modular arithmetic is applied. When either of the transitions is taken in the
ground station automaton, an output event is generated, one for the start of the
visibility period, and one for the end, so that other concurrent automatas could
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synchronise their transitions with this periodic interval. However, it is also pos-
sible to model communication by using the global values of the two clocks of the
ground station automaton. This approach is used in the Fig. 2 - it is easy to see
that whenever the value of the clock clkduration is not zero modulo the interval
duration, the ground station automaton is in its visible state, so the transition
from ”Not Sending” to ”Sending” modes remains enabled. However, when the
value is zero modulo interval duration and the downlink module is active, or
there is no data to be sent, it should switch back to the ”Not Sending mode”.

Not Visible

˙clkperiod = 1
start

Visible

˙clkduration = 1

∀clkperiod mod (P − d) == 0:

G((Not Visible, Visible), (dataavailable),{gs visibility start},{∅}) = true

∀clkduration mod d == 0:

G((Visible, Not Visible), (dataavailable), {gs visibility end},{∅}) = true

Fig. 3: Periodic ground station visibility model definition using a composable
LTI hybrid automaton.

It is assumed that initial states for the initial automata are (”Not Sending”,
{datasent = 0, dataavailable = C}) and (”Not Visible”, {clkperiod = 0, clkduration =
0}). Obviously, both are composable, since the cut set of their initial valuations
does not have contradictions. The composed automaton is built by applying
composition rules 1-10 and its control graph is depicted in Fig. 4:

1. Lc = ( (’Not Sending’, ’Not Visible’), (’Not Sending’, ’Visible’), (’Sending’,
’Not Visible’), (’Sending’, ’Visible’) ) = ( nsnv, nsv, snv, sv )

2. T c = { ((nsnv, nsv), (nsnv, snv), (nsnv, sv), (snv, nsv), (snv, nsv), (snv,
sv), (snv, nsnv), (snv, nsnv), (nsv, sv), (nsv, snv), (nsv, nsnv), (sv, nsv),(sv,
nsv), (sv, nsnv), (sv, nsnv), (sv, snv))}

3. X c = {dataavailable, datasent, clkperiod, clkduration} ∪ {clkperiod, clkduration} =
{dataavailable, datasent, clkperiod, clkduration},

4. ScI = ∅ ∪ ∅ = ∅
5. ScO = ∅∪{gs visibility start, gs visibility end} = {gs visibility start, gs visibility end}
6. It is clear that for all the cases when only one of the states in a pair changes,

transitions remain unchanged from the corresponding initial automaton. The
output events of the corresponding edges are:
– (nsnv, nsv): { gs visibility start };
– (nsnv, snv): ∅;
– (nsnv, sv): { gs visibility start };
– (snv, nsv): { gs visibility start };
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– (snv, nsv): { gs visibility start };
– (snv, sv): { gs visibility start };
– (snv, nsnv): ∅;
– (snv, nsnv): ∅;
– (nsv, sv): ∅;
– (nsv, snv): { gs visibility end };
– (nsv, nsnv): { gs visibility end };
– (sv, nsv): ∅;
– (sv, nsv): ∅;
– (sv, nsnv): { gs visibility end };
– (sv, nsnv): { gs visibility end };
– (sv, snv): { gs visibility end }.

7. Since the set of input events is empty, {∅} is assigned as input events to the
all of the transitions.

8. The guards of the resulting transitions are:

– (nsnv, nsv): g((∀clkperiod mod (P−d) == 0), { gs visibility start }, {∅}) =
true;

– (nsnv, snv): g((∀dataavailable > 0,∀clkduration mod d 6= 0), ∅, {∅}) =
true; this transition will never be taken, since this condition cannot be
fulfilled before the ground station becomes visible;

– (nsnv, sv): g((∀dataavailable > 0,∀clkduration mod d 6= 0,∀clkperiod mod (P−
d) == 0), { gs visibility start }, {∅}) = true this transition is never
taken since decision about taking a transition falls before time starts
ticking in the ground station visibility mode which is required to enable
the second condition;

– (snv, nsv): g((∀dataavailable ≤ 0), { gs visibility start }, {∅}) = true;
this transition will never be taken, since the ground station should have
been visible for the sending to be possible before this transition;

– (snv, nsv): g((∀clkduration mod d == 0), { gs visibility start }, {∅}) =
true; same as the last point;

– (snv, sv): g((∀clkperiod mod (P−d) == 0), { gs visibility start }, {∅}) =
true; same as last point;

– (snv, nsnv): g((∀dataavailable ≤ 0), ∅, {∅}) = true; this transition will
never be taken since the automaton cannot send when the ground station
is unavailable;

– (snv, nsnv): g((∀clkduration mod d == 0), ∅, {∅}) = true; same as the
last point. The only exception is if the snv state is transitive and was
jumped in from the state sv;

– (nsv, sv): g((∀dataavailable > 0,∀clkduration mod d 6= 0), ∅, {∅}) = true
– (nsv, snv): g((∀dataavailable > 0,∀clkduration mod d 6= 0, ∀clkduration

mod d == 0), { gs visibility end }, {∅}) = true; contradicting con-
ditions, transition will never be taken;

– (nsv, nsnv): g((∀clkduration mod d == 0), { gs visibility end }, {∅}) =
true

– (sv, nsv): g((∀dataavailable ≤ 0), {∅}, {∅}) = true
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– (sv, nsv): g((∀clkduration mod d == 0), ∅, {∅}) = true this transition
will never be taken since the automaton cannot stop sending available
data while the ground station is available;

– (sv, nsnv): g((∀dataavailable ≤ 0,∀clkduration mod d == 0), { gs visibility -
end }, {∅}) = true

– (sv, nsnv): g((∀clkduration mod d == 0), { gs visibility end }, {∅}) =
true

– (sv, snv): g((∀clkduration mod d == 0), { gs visibility end }, {∅}) =
true; this transition will be immediately followed by the (snv, nsnv),
since the guard is also fulfilled

9. The flow functions of the resulting automaton are:
– nsnv: ˙datasent = 0, ˙dataavailable = 0, ˙clkperiod = 1, ˙clkduration = 0

– nsv: ˙datasent = 0, ˙dataavailable = 0, ˙clkperiod = 0, ˙clkduration = 1

– snv: ˙datasent = κ, ˙dataavailable = −κ, ˙clkperiod = 1, ˙clkduration = 0

– sv: ˙datasent = κ, ˙dataavailable = −κ, ˙clkperiod = 0, ˙clkduration = 1
10. Initial state of the composed automaton is given as:
Ic = (nsnv, {datasent = 0, dataavailable = C} ∪ {clkperiod = 0, clkduration =
0}) = (nsnv, {datasent = 0, dataavailable = C, clkperiod = 0, clkduration = 0})

nsnv snv

nsv sv

Fig. 4: The resulting control graph for the composed automaton. Labels are omit-
ted for simplicity. Since snv-state is transient, it is coloured.
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Extending Taylor Approximation to Hybrid
Automata with Integrals

Ruggero Lanotte1 and Simone Tini1

University of Insubria (IT)

Abstract. In [10, 11] we proposed a technique to approximate Hybrid
Automata (HA) with Polynomial HA. The idea was to replace functions
appearing in formulae with their Taylor Polynomials. Here we extend this
technique to HA with formulae admitting integral functions. We prove
that we get over-approximations of the original HA. We study the condi-
tions ensuring that: 1. the “distance” between the formulae of the original
HA and its approximation get close to 0 when increasing the degree of the
Taylor polynomial (syntactical approximation), 2. the “distance” between
the configurations reached in n steps by the two HA get close to 0 when
increasing the degree of the Taylor polynomial (semantic approximation).

1 Introduction

Hybrid automata [1, 2] (HA, for short) are a widely studied model for hybrid
systems [13], i.e. systems with discrete and continuous state changes. HA ex-
tend classic finite state machines with continuously evolving variables, and ex-
hibit two kinds of state changes: discrete jump transitions, occurring instanta-
neously, and continuous flow transitions, occurring while time elapses. The two
kinds of transitions are guarded by jump conditions and activity functions, resp.,
which are formulae expressing constraints on the source and target value of the
variables. Extensions to HA are considered to deal with particular scopes. As an
example in [12, 8] HA are extended with data structures to face with safety and
security problems. But most of hybrid system applications is modelling and
verifying systems where digital computational processes interact with analog
physical ones. In this setting, integrals have several applications. In physics and
engineering, where hybrid systems are widely used, we mention: work and im-
pulse, electromagnetism, first moment and center of mass, application in fluid
mechanics.

As an example, the HA in Fig. 1 models a controller of a tank. The con-
troller continuously senses the level of water and fills or empties it, aiming
to keep the level between m and M litres (M > m). The water level, repre-
sented by variable x, varies with time depending on input/output flows. When
the controller fills the tank (state in), the flow rate depends on time y, and is
1 − cos(y2) litres/second. Thus, after a time t the water level is increased by∫ t

0 1−cos(y2) dy, as modeled by activity function φin. When the controller emp-
ties the tank (state out), the flow rate at time y is y2. Thus, after a time t the
water level is decreased by

∫ y
0 y

2 dt = 1
3 t

3, as modeled by activity function φout.

141



-x =M

'
&

$
%

out

φout

x,x′ ∈ [m,M]

-

x =m∧ x′ = x

�

x =M ∧ x′ = x

'
&

$
%

in

φin

x,x′ ∈ [m,M]

φin ≡ x′ = x+
∫ t
0 1− cos(y2)dy

φout ≡ x′ = x −
∫ t
0 y

2 dy

Fig. 1. The tank controller

In this example it is relevant to solve integrals by finding their antideriva-
tives. Unfortunately, it is well known that the integration problem is ”difficult”,
and in many cases impossible. For instance the antiderivative is non elementary
for the filling flow function 1− cos(y2) we consider. Indeed the antiderivatives
cannot be expressed by an algebraic expression of rationals, exponentials, log-
arithms, absolute values and trigonometric functions. A classical practical ex-
ample of non elementary antiderivative function is given by the Gauss integral

error
∫ b
a
ex

2
dx. Therefore this problem cannot be considered a problem with re-

stricted impact. Moreover in [14] it is showed that the integration problem is
undecidable for functions with a non elementary antiderivative.

Our work is inspired by the necessity of using integrals in modeling real
problems with HA, meanwhile dealing with the problem of managing and solv-
ing integrals, which is in general hard and even impossible for non elementary
antiderivatives.

HA are usually used to prove safety properties (i.e. properties requiring that a
given set of bad configurations cannot be reached). The decidability of reachabil-
ity problem (i.e. whether or not a given configuration can be reached) becomes
determinant. Unfortunately, for most classes of HA, reachability is undecidable
[7] and the introduction of integrals complicates this analysis. However, for
some classes of HA, computing the successors (or predecessors) of configura-
tions sets is reasonably efficient, and, therefore, reachability in a limited number
of steps is decidable. For instance for Polynomial HA computing the successors
of configuration sets is decidable [15]. A methodology proposed in [6] fills this
gap: the idea is to over-approximate an HA H with another HA H ′ s.t. com-
puting the successors of configuration sets for H ′ is decidable and the compu-
tations of H ′ are a superset of the set of all the possible computations of H .
Hence, if we prove that a bad configuration cannot be reached by H ′ then we
can infer that it cannot be reached by the original H . In [6] it is required that
the approximation H ′ is in the class of the Linear HA, for which the successors
of configuration sets are computable.

The notion of approximation is then strengthened in [6] by ε-approximation,
which is motivated by the need to limit the error introduced by the approxima-
tion. In [6] an asymptotically complete approximation operator, called ratio-
nally rectangular phase-portrait approximation, is given which approximates any
jump condition or activity function by a predicate satisfied by all points lying
in a space consisting of a products of intervals with rational endpoints.

In [10, 11] over-approximations are based on replacing functions over vari-
ables with their Taylor polynomial. Since Taylor polynomials allow us to ap-
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proximate functions and integrals, in the present paper we extend our tech-
nique in [10, 11] to over-approximate HA with integrals. In detail, given any
HA H and k ∈ IN, A(H,k) is the set of the Polynomial HA (for which succes-
sors of configuration sets is decidable) that are obtained by replacing in jump
conditions and activity functions of H each integral

∫ u
l
f (−~x)dx with a polyno-

mial based on Taylor polynomial theory. The resulting polynomial HA over-
approximates the original one according to [6]. We study the conditions en-
suring that our approximation is asymptotically complete, in the sense that,
for each ε > 0 there exists some k0 s.t., for all k > k0, A(H,k) contains only ε-
approximations for H . This analysis of the error is syntactic, meaning that it
does not consider the behaviour of H and its approximation. We consider also
semantic analysis of the error and study conditions ensuring that, when k tends
to the infinity, the behaviour of any Hk ∈ A(H,k) gets close to the behaviour of
H .

2 Hybrid Automata

In this section we recall the formalism of Hybrid Automata (see, e.g., [13]).
A vector of dimension n over a setU is a tuple −~u = (u1, . . . ,un) inUn. By −~ui we

denote the ith element ui . We denote by −~u ⊕ (u) the vector (u1, . . . ,un,u) ∈ Un+1.
Then, for −~u = (u1, . . . ,un) and −~v = (v1, . . . , vm), we denote by −~u ⊕ −~v the vector
(u1 . . . ,un,v1, . . . , vm) in Un+m. A space over Un is a set of vectors in Un.

We assume a finite set of real variables X ranged over by x,y,z,w, . . .. Each
x ∈ X can assume values in Dom(x) ⊆ IR. An evaluation over X is a mapping
v : X→ IR s.t. v(x) ∈ Dom(x) for x ∈ X. For an evaluation v, a variable y and a real
c ∈ Dom(x), the evaluation v[y := c] is defined by v[y := c](x) = v(x), for x , y,
and v[y := c](y) = c. For vectors −~x = (x1, . . . ,xn) over Xn and −~u = (u1, . . . ,un) with
ui ∈ Dom(xi), we write v[−~x := −~u] for v[x1 := u1] . . . [xn := un]. Then, v(x1, . . . ,xm)
denotes the vector (v(x1), . . . , v(xm)) ∈ IRm. We denote by

−~X the vector (x1, . . . ,x|X|)
over X|X|. Finally, we write [

−~X := −~u] to denote the evaluation v s.t. v(
−~X) = −~u.

We assume a set of function symbols F, together with an arity mapping r : F→
IN that assigns to each f ∈ F its rank r(f ). If r(f ) = 0 then f is called a constant.
We assume a unique interpretation I associating to each function symbol f ∈ F
a continuous function I(f ) : Dom(f )→ IR s.t. Dom(f ) ⊆ IRr(f ). Being I unique,
sometimes with abuse of notation we use f for I(f ). In order to build polyno-
mials with rational coefficients, we require that F contains the constant symbol
q with I(q) = q for all q ∈Q, and symbols +, ·, − denoting, resp., binary summa-
tion, binary multiplication and unary negation over reals.

Definition 1. The set Φ(F,X) of the formulae over F and X is the least set s.t.:

– Φ(F,X) contains all basic formulae of the form∫ u1

l1

(
. . .

(∫ un

ln

f
(
g1(w1), . . . , gr(f )(wr(f ))

)
dwin

)
. . .

)
dwi1 ∼ ax, where:
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• n ≥ 0 and, whenever n > 0, then l1,u1, . . . , ln,un ∈ X∪Q;
• w1, . . . ,wr(f ) ∈ X \ {l1,u1, . . . , ln,un} and {i1, . . . , in} ⊆ {1, . . . ,r(f )};
• g1, . . . , gr(f ) ∈ F are polynomial functions s.t. Dom(wi) ⊆ Dom(gi);
• f ∈ F with Dom(f ) ⊆ g1(Dom(w1))× . . .× gr(f )(Dom(wr(f )));
• ∼ is a comparison operator in {<,≤,=,≥,>};
• x ∈ X and a ∈ {0,1};
• [min(l, r),max(l, r)] ⊆ Dom(wij ) for l ∈ Dom(lj ), r ∈ Dom(uj ), j = 1, . . . ,n.

– ¬φ is in Φ(X,F) whenever φ is in Φ(X,F);
– φ1 ∨φ2 and φ1 ∧φ2 are in Φ(X,F) whenever both φ1 and φ2 are in Φ(X,F);
– ∀y.φ and ∃y.φ are in Φ(X,F) whenever y ∈ X and φ is in Φ(X,F).

The subset of polynomial formuale is obtained by restricting to (i) those f ∈ F that
are polynomial functions s.t. Dom(f ) is a product of intervals with bounds in Q∪
{±∞}, (ii) those variables x ∈ X s.t. Dom(x) is an interval with bounds in Q∪ {±∞}.

In [11] we restricted to basic formulae of Def. 1 with n = 0, i.e. general
continuous function without integrals. The definition of basic formulae could
appear restrictive at first glance. We argue that Def. 1 gives us expressiveness
and flexibility by some examples:

1. By existential quantification, arbitrary expressions be compared. For in-
stance, ex+siny ≤ x/(y2 + 1) is expressed by ∃z. (ex+siny ≤ z ∧ x/(y2 + 1) = z).

2. By existential quantification, we give to the user as much freedom as possi-
ble in choosing the functions to be approximated. For instance, for f ,g ∈ F,
we can rewrite a formula h(−~x) ∼ ax with h = f ◦ g by ∃y.g(−~x) = y ∧ f (y) ∼ ax.
In the first case the function f ◦g is approximated, in the second case f and
g are approximated separately, e.g. in order to approximate the exponential
and the sin separately, the formula ∃z. (ex+siny ≤ z ∧ x/(y2 +1) = z) in item 1
can be rewritten as ∃z1.∃z2. (ez1 ≤ z2 ∧ x+ siny = z1 ∧ x/(y2 + 1) = z2).

3. Also arbitrary expressions dealing with integrals can be compared. For
instance, the expression h(x) +

∫ y
x
f (z)dz =

∫ y
x
g(z)dz can be expressed by

∃w1∃w2.
∫ y
x
f (z)dz = w1 ∧

∫ y
x
g(z)dz = w2 ∧ h(x) +w1 = w2.

4. Expressions with integrals can be arguments of functions. For instance,
cos

(∫ y
x
f (z)dz

)
> 0 can be expressed by ∃w. cos(w) > 0 ∧

∫ y
x
f (z)dz = w,

and
∫ 5

0 f
(
x,

∫ 3
0 g(y)dy

)
dx ≤ 7 by ∃z.

∫ 3
0 g(y)dy = z ∧

∫ 5
0 f (x,z)dx ≤ 7.

5. We can deal also with general bounds for integrals. For instance the formula∫ ex
4 f (y)dy ≤ x can be expressed by ∃z.

∫ z
4 f (y)dy ≤ x ∧ ex = z.

We write v |= φ to denote that the evaluation v satisfies the formulaφ. Relation
|= is defined inductively as follows:

– v |=
∫ u1

l1

(
. . .

(∫ un
ln
f
(
g1(w1), . . . , gr(f )(wr(f ))

)
dwin

)
. . .

)
dwi1 ∼ ax iff∫ v(u1)

v(l1)

. . .∫ v(un)

v(ln)
I(f )

(
I(g1)(e1), . . . , I(gr(f ))(er(f ))

)
dwin

 . . .dwi1 ∼ I(a)v(x)

where either ej = wj , if j ∈ {i1, . . . , in}, or ej = v(wj ), otherwise.
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– v |= ¬φ iff v 6|= φ (namely v |= φ does not hold).
– v |= φ1∧φ2 (resp. v |= φ1∨φ2) iff v |= φ1 and v |= φ2 (resp. v |= φ1 or v |= φ2).
– v |= ∀y.φ (resp. v |= ∃y.φ) iff v[y := c] |= φ for all (resp. for some) c ∈ Dom(y).

For a formula φ ∈ Φ(F,X), let ~φ� denote the set {v : X→ IR | v |= φ} of the
evaluations satisfying φ. Two formulae φ1,φ2 are equivalent iff ~φ1� = ~φ2�.

Definition 2. The subset of the normal forms in Φ(F,X) contains the formulae of
the form Q1y1. . . . Qmym. φ, where: (i) Qi ∈ {∀,∃} for i = 1, . . . ,m; (ii) φ contains
neither quantifiers nor negations; (iii) φ contains only relations in {<,≤}; (iv) all
basic formulae in φ are of the following form, for n ≤ r(f ) and z1, . . . , zn ∈ X:∫ z1

0

(
. . .

(∫ zn

0
f
(
g1(w1), . . . , gr(f )(wr(f ))

)
dwn

)
. . .

)
dw1 ∼ ax.

Proposition 1. Given any formula φ ∈ Φ(X,F), there exists a normal form equiva-
lent to φ that can be constructed from φ.

E.g.
∫ z

4 e
ydy ≤ w is equivalent to the normal form ∃x.

∫ x
0 e

y+4dy ≤ w∧z−4 = x.

Definition 3. An Hybrid Automaton (HA for short) H over X and F is a tuple of
the form H = 〈φinit,Q,q0,T ,Act〉, where:

– φinit ∈ Φ(F,X) is the initial condition.
– Q is a finite set of states, and q0 ∈Q is the initial state.
– T ⊆Q ×Φ(F, {x1, . . . ,x|X|,x

′
1, . . . ,x

′
|X|})×Q is a finite set of transitions. Variables

x′1, . . . ,x
′
|X| represent the values taken by x1, . . . ,x|X| after the firing of a transition.

– Act : Q → Φ(F, {x1, . . . ,x|X|, t,x
′
1, . . . ,x

′
|X|}) is the activity function assigning to

each state q a formula Act(q). Variable t represents time elapsing. 1

Then, H is a Polynomial Hybrid Automaton (PHA for short) iff φinit, Act(q) for
all states q and φ for each transition (q,φ,q′) are all polynomial formulae.

Example 1. The tank controller represented in Fig. 1 has two states: in state in
the controller fills the tank, in state out the controller empties the tank. The
jump condition x =m∧ x′ = x (resp. x =M ∧ x′ = x) ensures that the jump from
out to in (resp. from in to out) happens when the level of the water is m (resp.
M), and the firing of the transition does not cause any change in the water level.

In state in, the water flow rate at time y is 1−cos(y2). Hence, staying in in for
t units of time causes a water level growing of

∫ t
0 1−cos(y2) dy. This is modelled

by the activity function φin, which can be written in normal form in several
ways. Let φ′ be the formula x ≤M∧x ≥m∧x′ ≤M∧x′ ≥m, or x,x′ ∈ [m,M] for
short. Given the functions f ,g s.t. f (y) = 1−cos(y2) and g(y) = −cos(y2), we can
write φin in the two following ways, which are semantically equivalent:

φ1
in ≡ φ

′ ∧ x′ − x = z∧
∫ t

0
f (y)dy = z φ2

in ≡ φ
′ ∧ x′ − x − t = z∧

∫ t

0
g(y)dy = z

1 Note that invariants can be expressed by means of universal quantifiers (see [11]).
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However, when non-polynomial functions are approximated by their Taylor
polynomials, in the former case we approximate f and in the latter g.

In state out, the water flow rate at time y is y2. Hence, staying in state out for
t units of time causes a water level decrement of

∫ t
0 y

2 dy. This is modelled by

the activity function φout ≡ φ′ ∧x−x′ = z∧
∫ t

0 y
2 dy = z. Obviously

∫ t
0 y

2 dy = t3
3 .

Therefore in this case no approximation is necessary.

A configuration of an HA H is a pair (q,−~u), with q ∈ Q and −~u = (u1, . . . ,u|X |) a
vector in IR|X| representing that each variable xi has value ui .H can evolve from
(q,−~u) to (q′ ,−~u′), written (q,−~u)→ (q′ ,−~u′), by an activity or transition step. An ac-
tivity step describes the evolution from (q,−~u) due to remaining in q and passing
of time. In δ time units, Act(q) takes H to a new evaluation of the variables:

if δ ≥ 0 and [
−~X := −~u, t := δ,

−~X′ := −~u′] |= Act(q), then (q,−~u)→ (q,−~u′).

A transition step describes the evolution from (q,−~u) due to a transition from q:

if (q,φ,q′) ∈ T and [
−~X := −~u,

−~X′ := −~u′] |= φ, then (q,−~u)→ (q′ ,−~u′).

A run is a sequence of (activity and transition) steps (q0,
−−−~u0)→ . . .→ (qi ,

−−~ui) . . .
with q0 the initial state and [

−~X := −−−~u0] ∈ ~φinit�. A configuration (q,−~u) is reachable
in n steps iff there is a run (q0,

−−−~u0)→ . . .→ (qn,
−−−~un) . . . s.t. qn = q and −−−~un = −~u. A

configuration is reachable iff it is reachable in n steps for some n ≥ 0.
A region R of a HA H is a set of configurations. The region reachable by H

from a region R is denoted Post(R,H). Formally: Post(R,H) = {(q′ ,−~u′) | ∃(q,−~u) ∈
R such that (q,−~u) → (q′ ,−~u′)}. Let Postn(H) denote either the region {(q0,

−−−~u0) |
[
−~X := −−−~u0] ∈ ~φinit�}, if n = 0, or the region Post(Postn−1(H),H), if n > 0. Moreover,

let Post(H) denote the region
⋃
n∈INPostn(H). The following result is folklore.

Theorem 1. For each n ∈ IN, a configuration (q,−~u) is reachable in n steps iff (q,−~u) ∈
Postn(H). Hence (q,−~u) is reachable iff (q,−~u) ∈ Post(H).

The following result follows from Tarski’s results [15] and from the fact that
the antiderivative of a polynomial is a polynomial.

Theorem 2. If H is polynomial and n ∈ IN then (q,−~u) ∈ Postn(H) is decidable.

3 Taylor Approximation

The ith derivative of f ∈ F wrt. coordinate jth is denoted Dijf . Let Ck denote the

set of the functions that are derivable k times, namely f ∈ Ck iff D
j1
1 . . .D

jr(f )

r(f )f

exists whenever j1 + . . .+ jr(f ) = k.

Definition 4. Assume a function f ∈ Ck and a vector −~v ∈ Dom(f ). The polynomial
of Taylor of degree k for f wrt. −~v is defined by

Pk(f ,−−~w,−~v) =
∑

j1+...+jr(f )≤k

(Dj11 . . .D
jr(f )

r(f )f )(−~v) · (w1 − v1)j1 . . . (wr(f ) − vr(f ))
jr(f )

j1! · . . . · jr(f )!
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where −−~w is the vector of variables (w1, . . . ,wr(f )). For −~u ∈ Dom(f ), the value rk(f ,−~u,−~v)
defined by rk(f ,−~u,−~v) = f (−~u)− Pk(f ,−~u,−~v) is called the remainder.

The intuition is that Pk(f ,−−~w,−~v) is a polynomial that approximates f (−−~w), and
the error of the approximation in −~u ∈ Dom(f ) is given by rk(f ,−~u,−~v). This error
is quantified by the following result, known as Lagrange Remainder Theorem.

Theorem 3 (Lagrange). For a function f ∈ Ck+1, a convex set S ⊆ Dom(f ) and
two vectors −~u,−~v in S, there exists a vector −~z on the segment linking −~u and −~v s.t.:

rk(f ,−~u,−~v) =
∑

j1+...+jr(f )=k+1

(Dj11 . . .D
jr(f )

r(f )f )(−~z) · (u1 − v1)j1 . . . (ur(f ) − vr(f ))
jr(f )

j1! · . . . · jr(f )!
.

Our aim is to give an upper bound to |rk(f ,−~u,−~v)|, under suitable hypothesis.

Definition 5. A function f ∈ Ck+1 is analytic in S ⊆ Dom(f ) if there are two
constants C, L s.t., for all j1, . . . , jr(f ) with j1 + · · ·+ jr(f ) ≤ k + 1 and −~z ∈ S, we have

|(Dj11 . . .D
jr(f )
n f )(−~z)| ≤ L ·Cj1+...+jr(f ) .

Then, f is analytic if f is analytic in Dom(f ) and Dom(f ) is convex.

Example 2. Trigonometric functions are analytic. For instance, for the function
sin(x) it is sufficient to take the constants L = C = 1. Exponential and logarith-
mic functions are analytic in finite intervals. For instance, for function e2x and
interval [0,10], it is sufficient to take the constants C = 2 and L = e20.

Let us assume an analytic function f ∈ Ck+1. Then, for Ĉ and L̂ the minimal
values satisfying the condition of Def. 5, for any k we denote with C(f ,k) the
value L̂ ·Ĉk+1. Moreover, let Rk(f ,−−~w,−~v) denote the polynomial over −−~w defined by

Rk(f ,−−~w,−~v) =
C(f ,k) · (r(f ))k+1 ·

∏r(f )
j=1((wj − vj )

2·
⌈
k+1

2

⌉
+ 1)⌊

k+1
r(f )

⌋
!

By definition, Rk(f ,−~u,−~v) is an upper bound to |rk(f ,−~u,−~v)| for all −~u ∈ Dom(f ).
Moreover, Rk(f ,−~u,−~v) gets close to 0 when k tends to the infinity. Formally:

Proposition 2 ([11]). Let f ∈ F be analytic. Then, for all −~u,−~v ∈ Dom(f ) we have:
(1) |rk(f ,−~u,−~v)| ≤ Rk(f ,−~u,−~v), and (2) limk→∞Rk(f ,−~u,−~v) = 0.

From |rk(f ,−~u,−~v)| ≤ Rk(f ,−~u,−~v), f (−~u) = rk(f ,−~u,−~v) + Pk(f ,−~u,−~v) and monotonicity
of the integral we get the following result.

Proposition 3. Let f ∈ F be analytic and −~v ∈ Dom(f ). Then for all vectors −~e =
(g1(w1), . . . , gn(wn))⊕(gn+1(cn+1), . . . , gr(f )(cr(f ))) with cn+1, . . . , cr(f ) ∈ IR, and r1, . . . , rn ∈
IR s.t. g([0, r1])× · · · × g([0, rn])× {gn+1(cn+1)} × · · · × {gr(f )(cr(f ))} ⊆ Dom(f ), we have∫ r1

0

(
. . .

(∫ rn

0
f (−~e) dwn

)
. . .

)
dw1 ≥

∫ r1

0

(
. . .

(∫ rn

0

(
Pk(f ,−~e,−~v)−Rk(f ,−~e,−~v)

)
dwn

)
. . .

)
dw1.
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If we replace f (g1(w1), . . . , gr(f )(wr(f ))) with Pk(f , (g1(w1), . . . , gr(f )(wr(f )),
−~v) −

Rk(f , (g1(w1), . . . , gr(f )(wr(f )),
−~v) in a basic formula, by Prop. 3 we get a less de-

manding formula, provided the operator ∼ is in {<,≤}, like in normal forms.

4 Approximation of Hybrid Automata

Approximations of HA are obtained by weakening formulae [6].

Definition 6 ([6]). An HA H ′ is an approximation of an HA H if H ′ is obtained
from H by replacing each formula φ in H with a formula φ′ s.t. ~φ� ⊆ ~φ′�.

We aim to give a notion of approximation for HA respecting Def. 6. We start
with a notion of approximation for normal forms inspired by Prop. 3.

Definition 7. For a normal form φ ∈ Φ(X,F) and k ∈ IN, if each f ∈ F\{+, ·,−} that
appears in φ is derivable k+1 times and is analytic, then the approximation of φ of
degree k is the set of formulae denoted A(φ,k) defined inductively wrt. φ as follows:

1. Ifφ ≡
∫ z1

0

(
. . .

(∫ zn
0 f (g1(w1), . . . , gr(f )(wr(f ))) dwn

)
. . .

)
dw1 ∼ ax, then either A(φ,k)

is the singleton {φ}, if f is a polynomial, or A(φ,k) contains all the formulae

φk,−~v ≡
∫ z1

0

(
. . .

(∫ zn

0

(
Pk(f ,

−−−−−−~g(w),−~v)−Rk(f ,
−−−−−−~g(w),−~v)

)
dwn

)
. . .

)
dw1 ∼ ax

with
−−−−−−~g(w) = (g1(w1), . . . , gr(f )(wr(f ))) and −~v ∈ Dom(f );

2. If φ ≡ φ1 ∧φ2 then A(φ,k) = {φ1
k ∧φ

2
k | φ

1
k ∈A(φ1, k) and φ2

k ∈A(φ2, k)};
3. If φ ≡ φ1 ∨φ2 then A(φ,k) = {φ1

k ∨φ
2
k | φ

1
k ∈A(φ1, k) and φ2

k ∈A(φ2, k)};
4. If φ ≡ ∃y.φ′ then A(φ,k) = {∃y.φ′k | φ

′
k ∈A(φ′ , k)};

5. If φ ≡ ∀y.φ′ then A(φ,k) = {∀y.φ′k | φ
′
k ∈A(φ′ , k)}.

Let us prove that all formulae in A(φ,k) are less demanding than φ.

Theorem 4. For a normal form φ and k ∈ IN s.t. A(φ,k) is defined, then ~φ� ⊆ ~φ′�
for all φ′ ∈A(φ,k).

Proof (sketch). By structural induction over φ. The proof of the base case fol-
lows from Prop. 3, the inductive steps are standard.

From the approximation of normal forms we get an approximation of HA.

Definition 8. Assume an HAH s.t. A(φ,k) is defined for each formula φ inH . The
approximation of degree k for H is the set of the PHA denoted A(H,k) that are
obtained from H by replacing each formula φ in H with some formula in A(φ,k).

An immediate corollary of Thm. 4 states that Def. 8 respects Def. 6.

Corollary 1. Given any HA H and k ∈ IN, all PHA in A(H,k) are approximations
of H according to Def. 6.
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Example 3. Let us consider the tank controller H of Ex. 1 where φin ≡ φ2
in. The

set A(H,4) contains the automaton obtained from H by approximating func-
tion g in φin by choosing the real 0 as vector −~v. (φout does not change since all
functions are polynomial). Since Dkw(−cos(w)) = −Dkw cos(w) = −cos(w+ k · π2 ), it

holds that P 4(cos, y2,0) ≡ −cos(0) − cos(π2 ) · (y2)1 − cos(2 · π2 ) · (y2)2

2! − cos(3 · π2 ) ·
(y2)3

3! − cos(4 · π2 ) · (y2)4

4! = −1 + y4

2 −
y8

24 . Moreover, R4(cos, y2,0) = C(cos,4) · (y2)6+1
120 .

Now, C(cos,4) = max{| − cos(w+ 4 · π2 )| : w ∈ Dom(g)} = 1, therefore we have that

(
φ2

in

)
4,0
≡ φ′ ∧ x′ − x − t = z∧

∫ t

0
−1 +

y4

2
−
y8

24
+
y12 + 1

120
dy = z.

The behaviour of any PHA Hk in A(H,k) approximates the behaviour of H ,
meaning that any configuration reachable by H is reachable also by Hk , in the
same number of steps.

Theorem 5. Given any HA H and k,n ∈ IN, if A(H,k) is defined, then, for all PHA
Hk ∈A(H,k) it holds that Postn(H) ⊆ Postn(Hk).

Proof (sketch). By Thm. 4 and the monotonicity of Post.

Thm. 5 gives us a sound method for showing that H cannot reach some bad
configuration (q,−~u) in n steps. In fact, by Thm. 2 it is computable if (q,−~u) can be
reached in n steps by a PHAHk in A(H,k). By Thm. 5 if (q,−~u) cannot be reached
in n steps by Hk then it cannot be reached in n steps by H as well.

5 Analysis of the Error

In order to limit the error introduced by the approximation, Def. 6 is strength-
ened in [6] by the notion of ε-approximation, which requires that any vector
satisfying a formula φ′ of the approximation H ′ must be “close” to at least one
vector satisfying the corresponding formula φ in the original HA H . We refor-
mulate this notion in terms of a notion of neighborhood of a space in IRn.

Given two vectors −~u = (u1, . . . ,un) and −~v = (v1, . . . , vn) in IRn, let d(−~u,−~v) denote
their distance d(−~u,−~v) =

√
(u1 − v1)2 + . . .+ (un − vn)2.

Given a vector −~v and a real ε > 0, let N(−~v,ε) denote the space of vectors
{−~u | d(−~v,−~u) ≤ ε}. Then, for a space S ⊆ IRn and a real ε ≥ 0, the neighborhood of ray
ε of space S is the set of spaces N(S,ε) = {S ′ ⊇ S | ∀−~v′ ∈ S ′ ∃−~v ∈ S s.t. d(−~v,−~v′) ≤ ε}.

Definition 9. A formula φ′ ∈ Φ(F,X) is an ε-approximation of a formula φ ∈
Φ(F,X) iff {v(

−~X) | v ∈ ~φ′�} ∈ N({v(
−~X) | v ∈ ~φ�},ε).

Definition 10 ([6]). An HA H ′ is an ε-approximation of an HA H if H ′ is ob-
tained from H by replacing each formula φ in H with a formula φ′ s.t. φ′ is an
ε-approximation of φ.
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Our aim is to study the conditions over formulae in H ensuring that, for
any ε > 0, there exists some k0 ∈ IN s.t. for all k > k0 we have that the set A(H,k)
contains only ε-approximations for H . In [11] we argued that formulae of the
form f (−~x) ∼ c with ∼∈ {<,>} should be avoided, since they describe open sets. In
[11] we argued also that we can manage only formulae constraining variables
within bounded intervals, thus avoiding variables that can tend to the infinity.

Definition 11. A normal form φ ∈ Φ(F,X) is bounded iff for any variable x in φ
we have that Dom(x) = [lx, rx], for suitable rationals lx, rx ∈ Q, and for each func-
tion f in φ we have that Dom(f ) = [l1, r1] × . . . × [lr(f ), rr(f )], for suitable rationals
l1, r1, . . . , lr(f ), rr(f ) ∈Q.

5.1 Syntactical Analysis of the Error

First of all let we give the intuition why for bounded normal formulae with
comparison operator ≤ we have that and for all ε > 0 there exists some k0 s.t.
for all k > k0, A(φ,k) contains only ε-approximations of φ.

Consider a normal form φ ≡
∫ d

0 f (x,y)dx ≤ 0. All formulae in A(φ,k) are of

the form
∫ d

0

(
P(f , (x,y), (cx, cy))−Rk(f , (x,y), (cx, cy))

)
dx ≤ 0 for a vector (cx, cy) ∈

Dom(f ). Since φ is bounded, we can split Dom(
∫ d

0 f (x,y)dx) (which is a function
over variable y) in m closed intervals S1, . . . ,Sm of size strictly < ε. Let i1, . . . , il ∈
{1, . . . ,m} be the indexes s.t. no evaluation in ~φ�maps y to Si1 ∪ . . .∪Sil , namely

there is no u ∈ Si1 ∪ . . .∪Sil satisfying
∫ d

0 f (x,u)dx ≤ 0. It is enough to show that
no evaluation vk in any ~φk� with φk ∈ A(φ,k) maps y to Si1 ∪ . . .∪Sil . In fact, if
vk(y) ∈ Sj with j < {i1, . . . , in}, by the definition of j1, . . . , jl there is some v ∈ ~φ�
with v(y) ∈ Sj and, since the size of Sj is bounded by ε, we infer vk(y)−v(y) < ε.

Hence the target is to show that there exists some k0 s.t. for all k > k0 we
have that for all u ∈ Si1 ∪ . . .∪ Sil the following inequality holds:

∫ d

0

(
P(f , (x,u), (cx, cy))−Rk(f , (x,u), (cx, cy))

)
dx > 0. (1)

Since Si1 ∪ . . .∪ Sil is a closed set,
∫ d

0 f (x,u)dx is a continuous function (which
follows by the continuity of f ), and the comparison symbol ≤ guarantees that∫ d

0 f (x,u)dx is strictly positive in Si1∪. . .∪Sil , we can define ϑ = min{
∫ d

0 f (x,u)dx |
u ∈ Si1 ∪ . . . ∪ Sil }. Since [0,d] × Si1 ∪ . . . ∪ Sil is a closed set, we can define
ek = max{Rk(f , (u′ ,u), (cx, cy))) | u′ ∈ [0,d] ∧ u ∈ Si1 ∪ . . . ∪ Sil }. By Prop. 2.2 we
can find a k0 s.t. for all k > k0, ek < ϑ/(2 · d). Assume k > k0. We show Eq. 1 by
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∫ d

0
(P(f , (x,u), (cx, cy))−Rk(f , (x,u), (cx, cy)))dx

≥
∫ d

0
(P(f , (x,u), (cx, cy))− ekdx

=
∫ d

0
(P(f , (x,u), (cx, cy)) + rk(f , (x,u), (cx, cy))− rk(f , (x,u), (cx, cy))− ekdx

=
∫ d

0
f (x,u)− rk(f , (x,u), (cx, cy))− ekdx ≥

∫ d

0
f (x,u)− ek − ekdx

>

∫ d

0
f (x,u)− ϑ

d
dx =

∫ d

0
f (x,u)dx −ϑ ≥

∫ d

0
f (x,u)dx −

∫ d

0
f (x,u)dx = 0

with the first inequality by the definition of ek and the monotonicy of the inte-
gral, the second by |rk(f , (x,u), (cx, cy))| ≤ Rk(f , (x,u), (cx, cy)) and the definition
of ek , the third by ek <

ϑ
2·d , and the last inequality by the definition of ϑ.

Theorem 6. Given any bounded normal form φ ∈ Φ(F,X) s.t. each subformula∫ z1

0

(
. . .

(∫ zn

0
f (g1(w1), . . . , gr(f )(wr(f ))) dwn

)
. . .

)
dw1 ∼ ax

in φ is such that ∼ is ≤, then, for each ε > 0, there exists some k0 s.t. for each k > k0,
the set A(φ,k) contains only ε-approximations for φ.

The result above can be immediately extended to automata.

Corollary 2. Given any HA H s.t. each formula in H satisfies the hypothesis of
Thm. 6, then, for each ε > 0, there exists some k0 s.t. for each k > k0 the set A(H,k)
contains only ε-approximations for H .

5.2 Semantical Analysis of the Error

Our aim is to measure how close the behaviors of the PHA in A(H,k) and the
behavior of H are.

Definition 12. Let ε ≥ 0. The neighborhood of ray ε of a region R is the set of
regions N(R,ε) = {R′ ⊇ R | ∀(q′ ,−~u′) ∈ R′ . ∃ (q,−~u) ∈ R. q = q′ and d(−~u,−~u′) ≤ ε}.

Under the hypothesis of Thm. 6, for all n ∈ IN, if k tends to the infinity, then
the behavior of length at most n of each PHA Hk ∈ A(H,k) gets close to the
behavior of H , in the sense that Postn(Hk) is in a neighborhood of Postn(H) of
ray arbitrarily small. This comes from the fact that Postn(Hk) can be expressed
by means of a formula by using existential quantifications.

Theorem 7. Consider an HA H s.t. each formula in H satisfies the hypothesis of
Thm. 6. For each ε > 0 and n ∈ IN, there exists some k0 s.t., for all k > k0, we have
Postn(Hk) ∈ N(Postn(H),ε) for all Hk ∈A(H,k).
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6 Conclusion and Future Works

In this paper we have defined syntactical over–approximations for Hybrid Au-
tomata enriched with integrals. The approximation is based on Taylor polyno-
mials. We have also studied their syntactical and semantical convergence w.r.t.
the original specifications.

As future work we will also study under–approximations based on the same
technique. The idea is to define the under–approximation of degree k of a for-
mula φ by using the polynomial which approximates the reminder to increas-
ing the Taylor polynomial. Moreover we can extend our work with function
variables by following the theory developed in [4, 5]. Finally, our results can be
used to study cyber physical attacks ([9]) by using tools like as Ariadne ([3])
based on Taylor theory.
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Abstract. Second generation of Multi-agent heterogeneous intrusion
detection system (M-AHIDS) is a prototype proposed to detect untrusted
and unusual network behaviour. The M-AHIDS is based on online traffic
statistics in sFlow format acquired by network device with the sFlow
agent and is able to perform a real-time surveillance of the 10 Gb net-
works. However, after an immense reimplementation it is capable to pro-
cess also offline data set from DARPA Intrusion Detection Evaluation
Data Set and KDD99 Cup data set. Offline data sets are used for the
correct comparison with another IDSs. The main contribution of the
system is the integration of several anomaly detection techniques, new
future state prognostic and new machinery of multi-agent temporal logic
with hybrid argumentation. Every detection technique is represented by
featuring a specific detection autonomous agent. At this stage, every
agent determines the flow trustfulness from aggregated connection. The
anomalies are used as an input for machinery of multi-agent temporal
logic which is represented by the logical agent. M-AHIDS is already par-
tially implemented, tested and modified accordingly for more than three
years.

1 Introduction

The number of users using internet and local networks is increasing every day.
Consequently, there are many threats of trying to have an access to private pass-
word, to data or to injure users by other ways. Fortunately, current generation
of network devices allows a real-time scraping of structured snapshots of a traf-
fic on the networks. This information is provided by various technologies. Two
the mostly used technologies are the NetFlow format introduced by CISCO and
the sFlow format. These technologies allow us to observe the individual flows
on the network. A flow is an unidirectional component of TCP connection (or
UDP/ICMP equivalent), defined as a set of packets with identical source and
destination IP addresses, ports and protocol, packed size, MAC addresses, switch
ports, flags and more.

A piece of information provided by NetFlow or sFlow can be used to detect a
network attack. The most frequent attacks on networks can be divided to three

153



main classes [1]: Breaks privacy rules, compromising the information con-
fidentiality; Alters information, compromising the data integrity; Denial of
service attacks (DOS or DDOS attacks), which makes a network infrastructure
unavailable or unreliable, compromising the availability of the resource.

The protection of networks is, therefore, more than useful, if it is vital for
long time. This issue requires monitoring of real distributed hosts, of various
events and of exchanges between these hosts. Multi agent system (MAS) is very
effective approach for this kind of problems as it can integrate many different
techniques to one solution.

The aim of this paper is to propose the second generation of multi-agent
system for network intrusion detection M-AHIDS. The first generation was pre-
sented in [2]. This generation is based on several years of experiences with devel-
oping, improving, implementing, deploying and testing of M-AHIDS. The main
contribution of the second generation of M-AHIDS is the integration of several
anomaly detection techniques, new future state prognostic and new machinery
of multi-agent temporal logic with hybrid negotiation based on argumentation.
Every detection technique is represented by featuring a specific detection au-
tonomous agent and every agent determines the flow trustworthiness from ag-
gregated connection. Inspiration for our agents came from project CAMNEP [3,
4]. All CAMNEP agents are more or less separate IDS and the project CAM-
NEP tries to connect their results to the more trustworthy results. But we have
decided to use another approach in our IDS. Our agents are as simple as possible.

We are also still improving our unique 1 Web agent. The web agent is based on
our past project [5–7] about de-anonymization of an Internet user. This project
has been deployed on all web pages of Comenius University for more than three
years. We can detect ordinary users’ behaviour from its data. We used all the
collected data for deep analysis and we created Web agent which is able to detect
a trustworthy host based solely on his activity on the web pages.

We have used another new approach for making decisions about intrusion
from agent’s knowledge base detection. For this purpose we have used specifically
developed multi-agent temporal logic (M-ATL). The anomalies are used as an
input for machinery of M-ATL and the new version of hybrid argumentation
which are represented by a logical agent. The logical agent is one of the system
advantages because it has huge capabilities for making the right decision about
the intrusions from detected anomalies. All detected intrusions are the past states
in M-ATL and we are using newly implemented prediction methods base on
regression models of time series for the future states. The regression models are
used for computation of the future states from the collection of the past and the
actual connections.

The most important contributions of our research presented in this paper are
THE FOLLOWING: Improving the integration of the several anomaly detection
techniques in a form of an agent; Extension of machinery of the multi-agent
temporal logic and hybrid negotiation about the future state; Major update
of argumentation framework; Presenting new testing approach based on offline

1 with our best knowledge
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DARPA Intrusion Detection Evaluation Data Set and KDD99 Cup data set.
M-AHIDS is partially implemented and tested on local network of Department
of Applied Informatics. Results obtained on KDD99 are comparable to another
IDS.

The organization of the paper is as follows: in Section 2 – overview of the
IDS and selected existing solutions and approaches; in Section 3 – proposal of
detection system architecture; in Section 4 – detailed description of all agents
in M-AHIDS; in Section 5 – overview of case study, tests and results.

2 Intrusion detection systems

Intrusion Detection System or IDS is a software, hardware or combination of
both used to detect an intruder’s activity. The base characteristics of IDS [8] are
neutralizing illegal intrusion attempts in the real time. Consequently, it must be
executed constantly in a host or in a network.

There are many types of IDS and each of them has some advantages and
disadvantages. Their strengths and weaknesses depend mostly on the way they
recognize the threats. Two main approaches for detection intrusion are [1]:
Behaviour-based intrusion detection approach discovers intrusive activity by

comparing user’s or system’s behaviour profile with normal behaviour profile;
Knowledge-based (signature-based) intrusion detection approach detects in-

trusions upon a comparison between the parameters of users’ session and
the known pattern attacks stored in a database.

In recent years, several new approaches in IDS systems have been published.
Certain approaches have been identified as relevant for our project. The first,
multi-agent distributed IDS(DIDS) model based on the BP neural network
adopts the modes of distributed detection and distributed response [9]. The sec-
ond, emulation-based network intrusion detection systems have been devised
to detect the presence of shellcode in the network traffic by trying to execute
(portions of) the network packet payloads in an instrumented environment and
checking the execution traces for signs of shellcode activity [10]. The fourth,
multi-stage approach to constructing hierarchical classifiers that combines
process mining, feature extraction based on temporal patterns and constructing
classifiers based on a decision tree [11]. The fifth, content anomaly detection
(CAD) models the payloads of traffic instead of the higher level attributes. Zero-
day attacks then appear as outliers to the properly trained CAD sensors [12]. The
sixth approach is to detect TCP connection based attacks using certain data
mining algorithms[13]. J-48 decision tree algorithm and Nave Bayes classifiers
were learnt on 19 selected features from KDD 99 dataset. The selected feature
had been chosen by Markov blanket and Pearson correlation. The approach could
detect about 74% of novel attacks with 19 features.

3 M-AHIDS

The following section briefly proposes the foundations for the second generation
network intrusion detection multi-agent system M-AHIDS. Design of the system
arose from theoretical research as well as from practical experiences which have
been already obtained by testing for more than three years.
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Fig. 1. Architecture of IDS

3.1 System layers

M-AHIDS network intrusion detection system consists of four layers.
The first layer contains the 10Gb network switch with the sFlow agent.

This switch can be replaced by another network device with the sFlow agent.
The sFlow agent sends sFlow datagram to M-AHIDSwhich functions also the
sFlow collector.

The second layer contains sFlowTool and the pre-processing agent. sFlow-
Tool receives the sFlow UDP datagrams. M-AHIDS reads the encoded result
from sFlowTool and the important data are saved to the in-memory database.
Here we use this information from sFlow: ’srcIP’, ’dstIP’, ’srcMAC’, ’dstMAC’,
’srcPort’, ’dstPort’, ’IPProtocol’, ’sampledPacketSize’, ’UDPBytes’, ’TCPFlags’,
’inPort’, ’outPort’ and ’time’.

The third layer contains upgraded detection agents. Every agent is im-
plemented as an independent thread. The number of the actually active agents
depends on the number of the computer processor cores.

The forth layer contains the new version of the logical agent, database with
results and the front-end for network administrator which can be used to correct
the results.

3.2 sFlow

sFlow is a multi-vendor sampling technology embedded within network switches
and routers. It provides the ability to continuously monitor application level
traffic flows at wire speed on all interfaces simultaneously. sFlow monitoring
of high-speed, routed and switched networks has the following properties [14]:
Accurate, Detailed, Scalable, Low Cost and Timely.

M-AHIDS saves approximately 10 minutes window of received sFlow data-
grams in SQLlite in-memory database. In-memory database enables to analyse
large amounts of received data very quickly. All detection agents work with this
database and the database is also an input to the logical agent.

3.3 Implementation details

Diagram of the second generation M-AHIDS is shown in figure 1. M-AHIDS is
based on Microsoft .Net 4.5 framework and multi-vendor sampling technology
sFlow. It originally runs on Microsoft Server 2012. However, it can also be run
on Linux based operating systems using mono platform. M-AHIDS is imple-
mented as multi-thread application which uses sFlow for receiving sFlow UDP
datagrams.
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4 Agents

As written in [2], our agents were inspired by the project CAMNEP [3, 4]. How-
ever, there are several main differences: We have built the agents differently, we
have added new type of agent - the Web agent, we have used the hybrid negotia-
tion with argumentation and immune cell inspiration, prediction of future states
and we have created a logical agent to complete the final decisions.

4.1 The pre-processing agent

The first step after IDS receives the sFlow datagram is pre-processing, as can be
seen on figure 1. For the coverage of this function, a pre-processing agent is imple-
mented. M-AHIDS is designed for a very high network traffic on 10Gb network
switch. For this reason, agent needs to make quick decisions which connections
are important (connection has probability of being an intrusion). Similarly to the
other mentioned IDS we implemented this with several rules. The rules define
which source, destination, port and protocol or their combinations are problem-
free and they are not interesting for the detection agents. The administrator of
the network can define and edit these rules.

4.2 Detection agents DA

Six types of innovated intrusion detection agents have been tested. Two of these
agents have the arguments suitable for specification. Using this, we get 15 in-
truder detection agents. Every detection agent evaluates every connection from
the pre-processing agent. The output of this evaluation is an integer. Higher
number indicates behaviour that is more unusual.

The count agent is the first scalable type of agent which is counting number
of connections with the same property (’dscIP’, ’srcIP’, ’dscPort’, ’srcPort’).
Higher number of connections with particular property means that connections
are more suspicious. The exact mathematical formula is:

RCO(V ) = {rv|rv = |Cv| : ∀v ∈ V } (1)

where RCO is the set of results of the count agent, rv is the result for all
connections with particular property 2 v ∈ V . Cv is the set of the connections
with property v and V is the set of all properties. M-AHIDS has a separate agent
for every connection’s property which is running in its own thread.

The average agent is the second scalable type of agent and it computes
average number of connections with the same property (’dscIP’, ’srcIP’, ’dsc-
Port’, ’srcPort’). Higher difference between the number of connections and the
average number of connections with particular property means more suspicious
connections. The exact mathematical formula is:

RAVG(V ) = {rv|rv = ||Cv| − Avg(RCO(V ))| : ∀v ∈ V } (2)

where RAVG is the set of the results of the average agent.
The volume agent counts the number of connections which have the same

value in linked properties. Specifically, agent links srcIP to dstIP, dstIP to srcIP,

2 e.g. dscPort 45
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srcIP to dstPort and dstIP to srcPort. All of these links are provided by separate
agents, which are running in parallel. The exact mathematical formula is:

RV OL(V ) = {rv|rv = |Cv| : ∀v ∈ V } (3)

where V is the set of ordered pairs {(v1,1, v1,2), (v2,1, v2,2), . . . , (vn,1, vn,2)} and
Cv is the set of all connections which have property v1 ∈ v ∈ V and they are
linked with connections with property v2 ∈ v ∈ V .

The cluster agent is the most computationally complex agent. This agent
computes normalization distance between each of the connections. Agent uses
dscIP, srcIP, dscPort, srcPort, dstMac and srcMac for distance computations.

RCLU =

{
r|r =

∑
c′∈C |c, c′|

n
: ∀c ∈ C

}
(4)

where C is the set of connections, |c, c′| is the distance between two connections
from C, c, c′ ∈ C and n is the capacity of set C.

The Web agent is one of our contributions in this area of research. The
web agent uses the database from de-anonymization system shown on left side of
the fig. 1. It compares the IP from the sFlow database with IP address of all the
visitors of all web pages. If the IP address is in both databases, agent calculates
if there is a higher probability of a system or a real user behind a connection and
then agent determines the intrusion score for the connection using the analysis
of the visited pages. If the web pages are systematically visited page by page,
then there is a high probability that the visitor is a system. If the same page is
visited more than once in short time, then there is a high probability that the
visitor is a real user. The database of the university serving as web page visitors
database was created using Internet users anonymity research [5–7].

Entropy agent captures the degree of diffusion or gathering of distribution
of the connection properties. This detection method is based on equation:

H(X) = −
∑N

i=1(ni

S )log2(ni

S )

where S =
∑N

i=1 ni and X is the set of connection properties X = {n1, ..., nN}.

4.3 The logical agent (LA)

The logical agent makes the final decision about every connection and if this
agent evaluates that this connection is an intrusion, then the agent inserts this
connection to the permanent database and can be used to alert server admin-
istrator. The LA is based on Multi-Agent Temporal Logic M-ATL which was
presented in [2] with argumentation upgrades described below. The M-ATL and
also the argumentation was developed specifically for the needs of M-AHIDS.

The new (upgraded) version of LA also contains computation of the future
states. The past states in M-ATL come from previous results which are saved
in the permanent database. The future states are computed based on regression
models of time series [15]. This approach was chosen as it is one of the fastest
prediction technique. Low computational complexity is very important for real
time IDS. The inputs are the counts of the same connection during each 10
seconds from 10 minutes time window. That means that we have 60 counts for
each connection which makes the time series. From the time series six future
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states are computed for the following one minute. The trend part of the time
series is chosen based on MAPE [16] rating from linear trend T = a0 + a1t,
parabolic trend T = a0 + a1t + a2t

2 or exponential trend T = a0a
t
1; where T is

trend function, ai is parameter of the function and t is time.
The LA has three important tasks. The first one is to build a knowledge base

from the results of the DA. At this stage, LA normalizes the results to interval
〈0, 1〉. The normalization uses the network administrator’s corrections and the
immune inspiration for updating the DA’s trust weights. The trust weights are
also real numbers from interval 〈0, 1〉. Higher number means more trust for the
agent. LA converts the results of DA to boolean value. This conversion is based
on agents’ trust and the mathematical formula is:

CA = {cAi|∃rAi ∈ RA : rAi > (1−WA)} (5)
where CA = {cA1, cA2, . . . , cAn} is the set of intrusions detected by DA A, RA =
{rA1, rA2, . . . , rAn} is the set of normalized results from agent DA A and WA is
the trust weight of the agent A.

After normalization, LA uses the new argumentation framework to negotiate
the final decision – which connections are intrusions. We describe our argu-
mentation framework below. The last task for LA is to save the results to the
permanent database.

The argumentation framework (FA) is one of the approaches for negotia-
tion amongst agents. The implemented FA can evaluate all used logical clauses
but is not complete as the intrusion detection is computationally hard and M-
AHIDS must work in parallel with network operation.

However, as the logic machinery of our M-ATL runs after all our DA agents
in M-AHIDS have finished evaluation of all connections, we do not have to
think about incomplete knowledge in our argumentation framework. This fact
simplifies the proposal of argumentation framework.

The new version of argumentation framework is based on work of Dung [17]
An argumentation framework AF is ordered pair AF = 〈AR, attacks〉 where

AR is set of arguments and attacks is binary relation based on AR: attacks ⊆
AR×AR

A conflict-free set of arguments S is if there are no arguments A,B ∈ S
such that (A,B) ∈ attacks

An acceptable argument A ∈ AR with respect to a set S iff for each argu-
ment B ∈ AR: if B attacks A then B is attacked by S.

An admissible set of arguments is a conflict-free set of arguments S iff
each argument in S is acceptable with respect to S.

A preferred extension of an argumentation framework AF is a maximal (with
respect to set inclusion) admissible set of AF , which defines the (credulous)
semantics of an argumentation framework.

Important provable conclusion [17] is, that every argumentation framework pos-
sesses at least one preferred extension.
A stable extension is a conflict-free set of argumentsS iff S attacks each

argument which does not belong to S.
S is a stable extension iff S = {A|A is not attacked by S}

159



Another important conclusion that every stable extension is also preferred
extension, but not vice versa, is proved in [17]. This determination of the argu-
mentation framework is sufficient for our proposes.

The base of our new version of argumentation is also the binary relation
of preferences (attaks) 7−→. ϕ 7−→ ϕ′ means that ϕ is stronger than ϕ′. The
logical formulas ϕ and ϕ′ belong to 7−→ iff both contain the same atomic formula
p with an opposite value. That means that the two DAs have contradict results
about trust of the same connection. For building relation of preferences we use
rules:

XIϕ : wI 7−→ XJϕ : wJ iff
∑
i∈I

wi >
∑
j∈J

wj , (6)

pI : wI 7−→ pJ : wJ iff
∑
i∈I

wi >
∑
j∈J

wj (7)

Xipi 7−→ pj (8)

Hiϕ 7−→ Pjϕ (9)

Giϕ 7−→ Fjϕ (10)

XAϕ iff ϕ (11)

where X ∈ {F,G, P,H}, pi is the evaluation of connection by agent ai, I, J are
same sets of labelling of agents, i ∈ I, j ∈ J and wi is the weight of agents’
ai trustfulness. The connectors F (some future state), G (all future states), P
(some past state), H (all past states) and logical formula ϕ are defined in our
previous paper [2]. Rules 6 - 11 should be interpreted as: 6 and 7 - the agents with
higher collective trust beat the agents with lower trust; 8 - complex knowledge
beats simple knowledge; 9 - all past states beat one past state; 10 - all future
states beat one future state; 11 - formula is true iff all agents have the same
evaluation.

The LA computes preferred extensions of AF and that is a solution for the
problem with evaluation of the connection represented by one atomic variable p.
If this extension is also stable extension and it contains arguments which claim
that the connection is part of the intrusion, LA will write this connection to the
permanent database of results.

5 Results
We have implemented M-AHIDS bottom up using several iterations, because
the most important requirement on IDS is the real time detection. After each
iteration performance test and optimization were performed.

Table 1. False negative (FN) rate of DA and LA

Agents
Attack # Count Average Volume Cluster Web Entropy Logical FP
DOS 100 96 98 99 99 95 97 99 1,00%
DDOS 100 94 95 60 97 99 99 96 4,00%
Port Scans 100 96 97 95 96 98 95 98 2,00%
BitTorrents 100 70 73 98 95 23 96 97 3,00%
Malwares 100 62 59 99 97 56 94 97 3,00%

ALL 500 418 422 451 484 371 481 487 2,60%
FN 16,40% 15,60% 9,80% 3,20% 25,80% 3,80% 2,60%
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Table 2. False positive (FP) rate of DA and LA

Agents
Attack # Count Average Volume Cluster Web Entropy Logical FP
DOS 100 177 183 80 125 137 145 127 27,00%
DDOS 100 165 170 58 128 165 150 129 29,00%
Port Scans 100 139 144 122 123 135 128 132 32,00%
BitTorrents 100 69 75 146 124 33 134 143 43,00%
Malwares 100 70 59 161 138 68 126 157 57,00%

ALL 500 620 631 567 638 538 683 688 37,60%
FP 24,00% 26,20% 13,40% 27,60% 7,60% 36,60% 37,60%

M-AHIDS is now running on server based on Intel i7-4770S, 2x8GB 1600MHz
DDR3 CL10 DIMM RAM, 1TB HDD and OS Windows 2012 server. The sFlow
agent is running on switch Zyxel GS1910-24.

During the tests, the system was supervised and it learnt the usual network
behaviour. After three days of learning we tested system for attacks like DoS,
DDoS, Port Scanning, BitTorrent (usually unwanted in commercial networks)
and Malware attacks.

The Table 2 shows a false positive rate of the agents and the Table 1 shows a
false negative rate of the agents.M-AHIDS was tested during usual week network
operation. Every attack was sent 100 times and with these attacks we sent the
same number of connections with similar properties as the sent attacks.

This test scenario was repeated two times. Once with the simpler LA with
smaller AF and afterwards with the new AL with more complex AF. The new
LA had better FN about 0, 4 percentage points which is 13, 33 percentage
progress and it had the worst FP about 1, 2 percentage points which is only
3, 3 percentage retrogression.

5.1 Benchmark KDD99 Cup data set

Furthermore the second generation M-AHIDS was adapted for KDD99 Cup data
set. KDD99 Cup data set was adopted for this study because it is widely used
intrusion detection data set. The paper [18] compared 125 intrusion detection
systems using KDD99 Cup data set between 2010 and 2015. This indicates that
although KDD99 dataset is more than 15 years old, it is still widely used in the
academic research. By this way the comparison between M-AHIDS and other
similar studies is achieved. KDD99 Cup data set is created by extracting some
features (IP number, port number, initial date) from DARPA 98 and it has about
4 900 000 data vectors. This data set is prepared by Stolfo et al. [19] and is built
based on the data captured in DARPA98 IDS evaluation program [20]. KDD99
Cup data set includes 80% of attack and 20% of normal data. The package with
the cup data set also contains training data set (labelled) and testing data set
(without label). Each connection vector has 41 features and is labelled either
normal or attack.

However M-AHIDS was not compatible with KDD99 Cup data set, because
it was designed for recognizing intrusion directly from sFLOW. So it had to be
adapted for comparison. The adaptation processes was done in two major steps:
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1. The first step was about the changing of M-AHIDS to process offline data.
The raw data from DARPA Intrusion Detection Evaluation Data Set [21]
was used. This was similar to data set which had been provided by sFlow.

2. The second step was the modification of M-AHIDS to process extracted
features provided by KDD99 Cup data set. Difference between KDD99 data
set and data set provided by sFLOW is significant. For that reason all agents
had to be updated.

The detailed description about those adaptation processes are out of range of
this paper. Only results achieved after each step are presented.

The biggest disadvantage of using the DARPA Intrusion Detection Evalua-
tion Data Set and KDD99 Cup data set is that the important Web Agent feature
of M-AHIDS cannot be used because there are no data for it. Despite this fact
we compared our approach with both data sets.

In addition, the measures were used to evaluate the performance of MAS-IDS:
accuracy, detection rate, false alarm rate:

DedectionRate =
NumberOfDetectedAttacks

NumberOfAttacks
· 100% (12)

FalsePositive =
MisclassifiedConnections

NumberOfNormalConnection
· 100% (13)

Accuracy =
CorrectClassifiedConnections

NumberOfConnections
· 100% (14)

The detailed results can be seen in Tables 3 and 4

Table 3. Darpa success rates

Agents
Measures Count Average Volume Cluster Entropy Logical
Detection Rate 78,4 81,4 79,4 85,3 83,9 93,1
False Positive 10,1 9,8 10 9,2 9,3 8,8
Accurancy 78,2 80,9 79,1 84,8 83,1 92,3

Table 4. KDD99 success rates

Agents
Measures Count Average Volume Cluster Entropy Logical
Detection Rate 77,9 81,1 78,8 84,9 82,4 91,9
False Positive 10,6 10,1 10,1 9,5 9,7 9,1
Accurancy 77,7 80,5 78,2 84,1 82,6 91,5

6 Conclusion

In this paper we presented the proposal for the second generation of the sys-
tem for detection intrusions in a network. The most important system features
of the developed and partially implemented M-AHIDS are integration of sev-
eral innovated anomaly detection techniques in a form of agent, machinery of
a multi-agent temporal logic, hybrid negotiation with new version of argumen-
tation and immune cell inspiration, newly implemented computation of future
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states and last but not least the new innovative Web agent which is able to
detect trustworthy host from his activity on web pages. This agent is based on
our previous research which is deployed on all web pages of Comenius University
for three years.

When the system passed 2, 6% false negative in the normal connections, the
system achieved 37, 6% false positive in the malicious connections. That is a
satisfactory result as project CAMNEP [4] achieved with 1% false negative in
the normal connections only 40% false positive in the malicious connections.

Satisfactory results were achieved on DARPA Intrusion Detection Evaluation
Data Set (Detection Rate = 93,1; False Positive = 8,8; Accuracy = 92,3) and
KDD99 Cup data set (Detection Rate = 91,9; False Positive = 9,1; Accuracy
= 91,5) which are comparable witch other IDS systems. However we have to
consider that one of our major feature (Web agent) can not be used due to the
lack of data. There is a reasonable belief that the results in the online testing
with Web agent will yield better results.

M-AHIDS is still in the development phase, but parts of the system are
deployed for more than three years on the department network. Here, we have
implemented the most of the presented features of M-AHIDS.

As the next step we would like to implement the rest of the features to M-
AHIDS, to optimize the already implemented features and to provide more and
longer lasting tests. Here we also consider more sophisticated approach for data
clustering as in [22].
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A graph-based reduction in Planics abstract
planning, based on partial orders of services

(Extended Abstract)
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Abstract. The paper deals with the abstract planning problem – a stage
of the Web Service Composition in the Planics framework. The planning
task is viewed from the graph perspective, searching a graph built of ver-
tices representing service and object types, and edges connecting service
types to object types processed by each corresponding service. The pre-
processing search identifies all the service and object types, which can
potentially participate in a plan bounded by the given length. Then, the
planning problem is split into subproblems, at the basis of the relation of
independence between the sets of object types listed in user query as the
desired result of the composition. The ontology is divided into disjoint
sub-ontologies, each of which contains only the types relevant for the
respective set. If there is a sub-plan for every sub-ontology, the resulting
plan is composed out of these sub-plans.
The presented approach uses similarily defined graphs, and makes use of
planners as external tools, as in [Szr15] describing graph-based pruning
of ontologies, however the aim is different. In [Szr15], there are removed
all the service and object types which, for the given user query, cannot
occur in any plan bound by a fixed length. The current work optimizes
planning in what is left by this reduction.

1 Introduction

The key concept of Service-Oriented Architecture (SOA) [Erl05] consists in us-
ing independent (software) components available via well-defined interfaces. Fre-
quently, there is no web service directly satisfying the user objective, but a com-
position of services can deliver the requested result. An automatic composition
of Web services should relieve the user of a manual preparation of detailed exe-
cution plans, matching services to each other, and of choosing optimal providers
for all the components. The problem of finding such a composition is hard and
well known as the Web Service Composition Problem (WSCP) [Erl05]. There is
a number of various approaches to solve WSCP [LOKX10].

Automated composition of web services Web services are widely used to
implement SOA paradigm, but much of their benefits is revealed when they can
be composed automatically. The existing solutions to WSCP are divided into
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several groups. Following [LOKX10] our approach belongs to AI planning meth-
ods, including also approaches based on: automata theory, situation calculus,
Petri nets, automated theorem proving, and model checking.

In the paper [SPAS03] Sycara et.al. present DAML-S, the predecessor of
OWL-S, which is one of the standards to describe Semantic Web services. The
authors show how to compose services using the DAML-S virtual machine and
matchmaking mechanism with a support of a planning-capable agent. Another
approach to WSC using OWL-S is described in [KG05] where Klusch et.al. in-
troduce the OWLS-Xplan framework.

Graph-based approaches to planning and web services composition
Several papers use graph-based approach to the WSCP. An example is [HM06],
where information about inputs and outputs of services is represented by inter-
face automata. The key difference between these papers and our approach is that
we model matching of the service input and output at the graph level, by reduc-
ing it to the problem of testing reachability in graphs. Graph vertices model not
only services, but also objects read and produced by services. Due to introducing
the abstract planning we can reduce matching of service and object types to the
problem of existing paths between selected graph vertices. The other approaches
use graphs as a model for representing the state space, but test matching objects
to services by calling specialized algorithms. This can hamper the performance.
Another original feature is using graph databases for representing graphs and
doing operations on them. To the best of our knowledge, we could also find no
experimental analysis showing that graph-based approaches can effectively deal
with ontologies with significant numbers of service and object types.

Graph databases [RWE13] are a relatively recent addition in the domain
of the NoSQL databases, defined by rejecting the traditional database model
of relational tables, and using alternative solutions, in this case graphs. Neo4j
[Lal15] is one of the most popular implementations.

2 Solution

For the efficiency reason, the planning process in Planicsis divided into two
phases: abstract and concrete planning. The former deals with matching types,
and the latter with matching the exact values of attributes. The current paper
deals only with the former one. Here, we briefly recall the formulation of the
abstract planning problem (APP) in Planics. We present only the intuitions,
but all the formal definitions can be found in [D+11].

Planics has much in common with well known approaches to composition
of web services in the Semantic Web environment. One of similarities between
Planics and DAML-S/OWL-S is the description of service capabilities. That is,
both the approaches use the implicit capability representation, i.e., a service is
described by the state transformation, its input, and output. This paradigm is
often called IOPE - Input, Output, Precondition, Effect. Services process objects:
read those placed in their input list, and write or produce those in output lists.
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In addition, objects from inout lists can be both read and written. We refer to all
these lists as input and output lists. Objects have as attributes either primitive
types such as integers, booleans, and strings, or other objects. Pre- and post-
conditions formulae, assigned to service types, determine the state of (some of)
these attributes before and after executing the service. All the service and object
types are organized in an inheritance hierarchy and represented in an ontology. A
user query represents the aim of the composition, with similar input and output
lists, and pre-/postcondition formulae as for services, determining the initial and
the expected state of the composition process. The precisely defined semantics
defines which sequences of services are the solution of the user query.

Semantics of abstract planning In abstract planning, the aim is to find
the abstract plan(s). A world is a set of objects with valuations assigned to
their attributes. An transformation is an application of a service to an input
world, producing an output world such that the valuations of objects from both
worlds occuring in the lists for the service are consistent with the pre- and
postcondition formulae. A solution is a sequence of service types, with a context
function assigning instances of objects to the input and output list of every
service. A solution explains which transformations are needed in order to deliver
all the object types requested in the user query, with the appropriate attributes
set or not. Note that the objects needed by services can be provided in the input
lists of the user query, or by services producing objects while taking no input.
Two solutions are equivalent if they contain the same number of occurences for
every service type. An abstract plan is an equivalence class with respect to this
relation, so that the irrelevant orderings of services are abstracted away.

Currently there are three Planics solvers, based on SMT [NP13], Genetic
Algorithms (GA) [SNP13] and the hybrid (H) [NPS15] being the combination
of SMT and GA. For testing the performance, an ontology generator has been
implemented, with several parameters characterizing the randomly generated
ontologies. These parameters include the minimal and maximal numbers of ser-
vices, objects, object attributes, objects in service lists, and objects in the user
query. The structure of the plans is determined by the number of partial orders
out of which which every object from the final world can be constructed.

The performance of the planners exhibits some general characteristics. SMT
planner can handle smaller ontologies than GA, but finds all the plans and can
determine that no plan exists at all. The hybrid planner combines the features of
both SMT and GA planner. A common feature of all the planners is that their
performance degrades when the length of the solutions increases. Also, all the
plans found for the given depth need to be of the equal length.

Graph-based reduction of ontology In [Szr15] we have shown a graph-based
pruning approach removing from an ontology all the service and object types
which are not relevant for any plan of the given length, as determined by the
user query. The search is implemented using a graph database. This improved
significantly the performance of all the tested planners, and it corresponds to a
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typical scenario where only a small part of the ontology is relevant for the user
query. Now we briefly describe this reduction.

First, the ontology graph is constructed for the given ontology, so that every
service type and every object type are uniquely represented by a graph vertex.
For every vertex representing a service type, there are incoming edges from
vertices for the object types present in the input lists of the service, and there
are outgoing edges to vertices for the object types in the output lists.

For the given user query, the additional two vertices are added to the ontology
graph: the start and final vertex. The start vertex has outgoing edges to every
object type from the input lists of the user query. The final vertex has incoming
edges from every object type from the output lists of the user query. Then,
we search for all the paths leading from start to final vertex, yielding query
k-subgraph Gqs. We proved that only the service and object types present in
Gqs, with their supertypes and the subtypes of the object types from the query,
can occur in any plan of the length bound by k, and all the other types can be
pruned.

Some pruned ontologies are still hard for the planners. We diagnosed that
the problem is caused by the length of the plans rather than by their number.
Usually, even restricting the ontology with more plans only to the types occuring
in a single plan does not improve the situation.

Paper contribution: finding sub-ontologies in the reduced ontology
Now we will focus on more efficient planning for the ontologies pruned by the
graph reduction. In particular, we identify the disjoint sub-ontologies which can
be checked independently, so that the resulting plans can be composed by taking
a sub-plan found for every sub-ontology. The sub-ontologies are identified by
using the graph approach based on analysis of Gqs. In particular, for every
object type occurring in the output lists of the user query, we define a Object
Type Derivation Graph (OTDG) which is Gqs restricted to the paths going via
the vertex representing this type.

Then, we introduce the independence relation between the subsets of object
types occurring in the output lists of the user query. Two such subsets are in-
dependent iff for every pair of object types from both these sets, their OTDGs
are disjoint (have no common vertices). For every subset, the sub-ontology con-
tains all the service and object types present in the OTDGs for the object types
from the set, and the predecessors of these types. The user query is restricted to
sub-queries accordingly.

The correctness of the reduction is shown in the following way. We claim that
the set of plans generated by our construction at the basis of sub-plans found
for every sub-ontology is equal to the set of plans for the k-reduced ontology. To
show this, first we prove that every plan composed of sub-plans for sub-ontologies
is a plan in the k-reduced ontology. Then, we show that for every plan from the
k-reduced ontology, there exists a plan composed from the elements of union of
a sub-plan for every sub-ontology such that these two plans are equivalent.
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Note that if there is no sub-plan for a sub-ontology, then no plan exists for
the complete ontology.

Experiments We briefly describe experiments in which we compared the per-
formance of two planners (SMT and GA) for three approaches: the full ontology
(FO), the k-reduced ontology (RO) and the sub-ontologies (SO). The exam-
ine two groups of benchmarks produced by a scalable generator accepting sev-
eral parameters. There are five objects of distinct object types to be produced
(n|EW | = 5). 102 object types and 64 service types are present in every ontology.
In the group A the length for every subplan is len = k/n|EW |, compared to k
being the length of every plan for FO and RO. There are 4 plans, because two
object types can be produced in two ways, and other object types in a single
way. In the group B, we scale the number of ways in which some two object types
can be produced. The length of every plan is thus constant but the number of
plans changes.

We implemented the described algorithm generating the k-query subgraphs
for every query, and determining the sub-ontologies corresponding to the sub-
graphs determined by our independence relation. Its running time is very short
(well below 1 second) for all the benchmarks presented in the paper.

A len = 2 + id1, n|EW | = 5, k = 5 ∗ len, |p| = 4 B len = 2, k = 10, n|EW | = 5, |p| = 2id2

id1 SMTFO SMTRO SMTSO GAFO GARO GASO id2 SMTFO SMTRO SMTSO GAFO GARO GASO
|p| t |p| t |p| t |p| t |p| t |p| t |p| t |p| t |p| t |p| t |p| t |p| t

1 4 7.7 4 3.2 4 0.4 4 3.9 4 2.7 4 1.3 1 2 1326.5 2 549.9 2 1.7 2 7.0 2 4.8 2 1.6
2 4 88.5 4 34.8 4 0.7 4 6.4 3 4.4 4 1.3 2 4 785.8 4 384.0 4 1.7 4 7.1 4 4.7 4 1.8
3 4 1025 4 560 4 1.1 2 12.1 3 6.9 4 1.4 3 8 1610.8 8 861.5 8 1.8 5 6.6 6 5.2 8 1.9
4 4 TO 4 TO 4 2.3 0 20.6 1 11.9 4 1.5 4 16 TO 16 TO 16 2.0 6 6.7 7 7.5 16 2.1
5 4 TO 4 TO 4 2.9 0 32.7 0 19.9 4 1.6 5 32 TO 32 TO 32 2.1 6 10.4 6 5.3 32 2.3
6 3 TO 3 TO 4 3.2 0 50.7 0 30.2 4 1.8
7 0 TO 1 TO 4 3.9 0 73.9 0 49.3 4 2.1

Table 1: Experimental results for two sets of parameters. |p| is the number of
plans, t time in seconds. TO denotes times longer than 2000 seconds. For GA,
10 instances have been run, and we report the maximal number of plans found.

The conclusion is that the sub-plans are found very quickly, because they are
much shorter than the complete plan.

3 Conclusion

As the experiments testify, the presented algorithm can shorten the planning
times by several orders of magnitude, when it is applicable. Conceptually, it is
different from the well-known partial-order reductions used in formal verification.
The key difference is that the latter approaches deal with global states, possibly
pruning some executions not relevant for preserving the requested properties.
Here we identify independent sub-systems at the basis of their local behavior.

The future research will consist in proposing weaker independence condi-
tions, relaxing the requirement for disjoint OTDGs. Another research direction
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is to encode OTDGs directly into a planner. This would enable finding plans of
different lengths for a fixed depth bound. An ultimate aim is a fully graph-based
planner directly exploating the structure of the problem.
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1 Introduction

Automatic composition of Web services is a very active area of research which has pro-
vided a lot of important results [10, 1, 15, 6] as well as many implemented approaches
[11, 12, 2, 3, 13]. In this paper we present the system TripICS - a real-life application
of our Web service composition system PlanICS [8, 9, 13] to planning trips and travels
around the world. While there are systems offering some support for planning excur-
sions and travels [4, 5], our system uses advanced automated concrete planning methods
[13, 16, 14]. TripICS is a specialization of the concrete planning viewed as a constrained
optimization problem to the ontology containing services provided by hotels, airlines,
railways, museums etc. The system finds an optimal plan (solution) satisfying the re-
quirements of the user by applying the most efficient concrete planners of PlanICS based
on a combination of an SMT-solver [7] with the nature inspired algorithm: GA, SA,
and GEO [16, 14]. Contrary to PlanICS, the first phase of planning, called abstract plan-
ning, is realized by TripICS in a semi-automatic way by giving the user a possibility to
choose the elements of an abstract plan using a Graphical User Interface (GUI). In the
remainder we present: the description of the system TripICS, the theory behind it, and
the implementation followed by some experimental results and conclusions.

2 TripICS Description

Our system is to allow the user for an easy and user-friendly planning of visits to in-
teresting cities and places around the world in combination with travels in and out,
arranged in the way satisfying the user’s requirements. The general assumption is that
the user would like to receive an optimal plan of a travel starting and ending in given lo-
cations and offering a possibility of visiting some specified cities within some specified
dates. A plan is optimal if its quality value is the highest according to the given criteria.
Below, we make the above description much more precise by giving three lists of re-
quirements: 1) the user has to set (obligatory requirements), 2) the user can optionally
set (optional requirements), and 3) the predefined quality requirements.
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2.1 Obligatory Requirements

1. Trip starts and ends in two given locations (cities),
2. Trip starts from a given date (or a period of time) and lasts for a given number of

days (optionally can be shorter or longer by a specified number of days),
3. Trip involves visiting given cities, each city within a specified minimal/maximal

number of days,
4. Hotels with the free cancellation option are booked (optionally free cancellation is

not required if this reduces the price by a given factor in %),
5. In each city to be visited, the attractions specified in the optional rules, are available

within the period of stay.

2.2 Optional Requirements

1. In each city, attractions (museums, exhibitions, matches, concerts, restaurants etc.)
to attend are specified,

2. Quality of hotels is specified by giving a minimal number of stars (0 - 5) and a
minimal score (0 - 10),

3. Travels do not last longer than a given number of hours.

Clearly, a plan should be optimal in the sense that the travels should conveniently fit to
the stays and the prices should be as low as possible for a required quality of hotels. The
aim of TripICS is to return such plans if they exist. Formally, these plans need to satisfy
the user requirements as well as the quality requirements specified below.

2.3 Quality Requirements

1. A travel connection between two cities is always direct if it exists,
2. Costs, durations, and the numbers of breaks of the travels are minimized,
3. Costs of the visits are minimized while their standards and durations are maxi-

mized.

3 Theory behind TripICS

Typically, PlanICS realizes planning in three well defined phases called: abstract plan-
ning, offer collecting, and concrete planing, after receiving a user query specifying the
requirements. In TripICS we depart from using an abstract planner, which does free
the user from formulating a user query in the specification language. Instead, the user
is given a possibility to set the obligatory and optional requirements about expected
plans using GUI, described briefly in Section 3.2. All the user’s choices, as well as the
quality requirements, are automatically encoded as a user query and passed to the offer
collector and the concrete planners. The available options result from the underlying
ontology.
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3.1 Ontology

This section discusses the ontology exploited by TripICS. Fig. 1 shows a part of the ontol-
ogy corresponding to a travel domain. The ontology defines three service types Travel,
Stay, and Entertainment aimed at providing instances of the Ticket, Attraction,
and Accommodation object types (and operating also on objects of type Person and
Location) which are the trip elements constituting (among others) the abstract plan.

A ticket represents a journey from one location to another, for a certain price. An
accommodation corresponds to a stay in some location, for a certain price as well. An
attraction represents an admission ticket for an event, a reservation, or a confirmation
that the attraction is available at the specified time. All these objects contain attributes
describing contexts and details of the particular trip elements. We introduce also two
auxiliary object types: ABlock and V Block. This is to avoid duplication of common
attributes using the inheritance mechanism.

Thing

ServiceStamp

Accommodation

Ticket
Person

Travel StayLocation

Attraction

Entertainment

Artifact

ABlock

VBlock

Object type Attributes’ names and types
Location continent, country, city: String
Person name: String; loc: Location
ABlock begin, end: Date; price: Real; type: String
T icket from, to: Location; breaks: int
V Block reviews: Real; loc: Location
Accommodation stars: Int; freeCancel: Bool
Attraction reserved: Bool

Fig. 1. The TripICS ontology. The rectangles stand for object types while the rounded rectangles
correspond to the service types. The types irrelevant for the working example are marked grey.
The table describes the object types and their attributes.

For example, all the mentioned trip elements are described by the attributes begin,
end, price, and type, and therefore they are inherited from the object type ABlock. The
type attribute defines the transportation type (bus, train, plane, ship, etc.), the accommo-
dation type (hotel, guest house, hostel, apartment, etc.), or the attraction type (museum,
exhibition, match, concert, restaurant etc.), when used in the Ticket, Accommodation,
or Attraction object, respectively. On the other hand, the number of breaks is specific
to travels only, and thus the attribute breaks is introduced in the object type Ticket.
Each accommodation (and attraction) has been assigned a number stored in the attribute
reviews corresponding to the average score given by people who stayed there (or en-
joyed the attraction) before. Similarly, since a fixed location is a common feature of
accommodations and attractions, the attribute loc of type Location is introduced in the
class V Block and inherited by Attraction and Accommodation object types. The at-
tributes are summarized in Fig. 1. Note that their meanings follow intuitively from their
names.
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3.2 Specifying requirements

First, using an intuitive GUI, the user inputs information about the dates and trip dura-
tion. The next step is to select the cities to be visited by clicking on the map or searching
them by name. The cities are added to the list at the left hand side (see Fig. 2). Then, the
user adds accommodations and attractions to enjoy in the particular cities, and inputs
his preferences in the forms attached to the list.

Fig. 2. TripICS GUI

Finally, the user starts the planning process using the dedicated button, and option-
ally sets some planner options, such as a planning algorithm (SMT, GA, IPH, SCGEO,
SCSA3 [16, 14]), timeout, maximal number of offers etc., as well as some parameters
specific to the particular planning method, e.g., a population size of GA and IPH.

3.3 Collecting Offers and Planning

Basing on the city list and other data provided in the previous step, an abstract plan, i.e.,
a sequence of service types, is built. Next, this abstract plan is used by the offer collector
(OC), i.e., the tool which in cooperation with the service registry queries real-world
services. The service registry keeps an evidence of web services, registered accordingly
to the service type system. Usually, each service type of the ontology represents a set
of real-world services of similar functionality. For example, using the service type Stay
one could register Booking.com as well as Hilton service.

OC queries web services of types present in the abstract plan and retrieves data
called offers. An offer is a tuple of values representing a possible realization of one

3 SMT - the SMT-based planner, GA- the GA-based planner, IPH - the initial population hybrid
planner (SMT + GA), SCGEO - the SMT combined with GEO planner, SCSA - the SMT com-
bined with SA planner, where SMT (Satisfiability Modulo Theories), GA (Genetic Algorithm),
SA (Simulated Annealing), GEO (Generalised Extremal Optimization)
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service type of the plan. Each value corresponds to an attribute of some object processed
by the service type. The offers collected from a single service type of the plan constitute
so called offer sets. The offers are searched by a concrete planner in order to find the
best solution satisfying all constraints and maximizing the quality function. Thus, the
concrete planning problem can be formulated as a constrained optimization problem
(see [13]). Its solution consists in selecting one offer from each offer set such that all
constraints are satisfied and the value of the quality function is maximized.

The constraints and the quality function result from the user requirements and pref-
erences what is shown in the next subsection.

3.4 Constraints and Quality Function

The constraints and the quality function play a crucial role in the planning process. In
this section, using a simple example, we show how the user requirements and prefer-
ences in combination with several general rules (described in Sec. 2) result in a set of
constraints and a quality function.

Example 1. Assume that the user wants to make a trip on the 15th of August from War-
saw (W) to Berlin (B) and then back in a few days. In Berlin, he prefers to stay in a
3-star hotel for 3 days and during the visit he plans to take a city tour and attend a con-
cert. The specified requirements result in an abstract plan consisting of the following
5 service types: (Travel, Stay, Entertainment, Entertainment, Travel). Then,
OC searches for the matching offers, and retrieves the following example five offer sets
(O1, . . . , O5).

O1(Travel)
id begin end price type from to breaks
1 15.08, 10:40 15.08, 12:05 565 plane W B 0
2 15.08, 06:20 15.08, 07:45 565 plane W B 0
3 15.08, 07:20 15.08, 12:05 533 plane W B 1
4 15.08, 14:05 15.08, 19:18 170 train W B 0
5 15.08, 18:05 15.08, 22:58 276 train W B 0

O2(Stay)
id begin end price type score loc stars freeCanc
1 15.08, 14 18.08, 11 1044 hotel 9.1 B 3 yes
2 15.08, 15 18.08, 11 1211 hotel 9.1 B 3 yes
3 15.08, 15 18.08, 12 1729 hotel 9.0 B 3 yes
4 15.08, 15 18.08, 11 1032 hotel 7.0 B 3 yes
5 15.08, 15 18.08, 12 1259 hotel 8.9 B 3 yes

O3(Entertainment)
id begin end price type score loc reserv.
1 15.08, 18 15.08, 21 84 tour 8.5 B yes
2 16.08, 12 16.08, 15 84 tour 8.5 B yes
3 16.08, 15 16.08, 18 84 tour 8.5 B yes
4 17.08, 12 17.08, 15 79 tour 7.2 B yes
5 17.08, 15 17.08, 18 79 tour 7.2 B yes

O4(Entertainment)
id begin end price type score loc reserv.
1 16.08, 20 16.08, 23 280 concert 7.2 B yes
2 16.08, 21 17.08, 1 130 concert 8.1 B yes
3 17.08, 21 18.08, 1 110 concert 3.0 B yes
4 17.08, 18 17.08, 22 580 concert 9.3 B yes
5 16.08, 20 16.08, 23 164 concert 7.9 B yes

O5(Travel)
id begin end price type from to breaks
1 18.08, 11:50 18.08, 16:30 429 plane B W 1
2 18.08, 15:10 18.08, 19:30 524 plane B W 1
3 18.08, 08:50 18.08, 10:10 561 plane B W 0
4 18.08, 09:37 18.08, 15:19 170 train B W 0
5 18.08, 14:37 18.08, 20:36 276 train B W 0

This example deals with a plan of length 5 where every service of the plan has 5
possible realizations. Thus, the search space is of size 55 = 3125 as there is so many
possible offer combinations. However, the number of plans (solutions) is much lower if
we take constraints into account.
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For example, assume that the user wants to synchronise travels and hotel in such
a way that the time between arrival and hotel check-in is not longer than 3 hours.
Similarly, the return travel should be not later than 3 hours after the hotel check-
out time. After adding these two constraints the number of the possible solutions de-
creases to 2200. Another constraint could be to have at least a three-hour break be-
tween attractions. When this constraint is taken into account, there are only 1408 pos-
sible solutions. The underlying constraints are encoded by the following expressions:
(o2.begin− o1.end ≤ 3), (o5.begin− o2.end ≤ 3), (o4.begin− o3.end ≥ 3), where
oi represents an offer from the i-th offer set.

As to the quality function, the user can choose between several schemes, but he
can also enable/disable some of the function components. For example, if the user
prefers only to minimize the total price, the quality function is expressed by Wprice ∗∑

i=1..5 oi.price, and the optimal solution is (4, 4, 5, 3, 4) with the price 1561, where
Wprice is some negative constant (a weight). The numbers in the sequence correspond
to the numbers of the offers in the corresponding offer sets. That is, both the travels are
by train for the price of 170 each, the stay is in the cheapest hotel, and the cheapest tour
and concert are chosen. However, if the user also wants to maximize the reviews of the
stay and attractions, the quality function is then as follows: Wprice ∗

∑
i=1..5 oi.price+

Wscore ∗
∑

i=2..4 oi.score. Assuming Wprice = −1 and Wscore = 10, we obtain
the optimal solution (4, 1, 3, 2, 4) where the accommodation and attractions with a low
price and a high score are chosen. Fig. 3 presents the resulting plan.

Fig. 3. The example plan

4 TripICS Implementation and Experiments

The TripICS application is implemented in Java. It consists of several planning engines,
Offer Collector, and the GUI module. GUI exploits GMapsFX [17] project which pro-
vides a wrapper to the Google Map’s Javascript API, allowing to exploit and interact
with maps using a pure Java. The map is the central component in GUI. It is used to
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Table 1. The experimental results for the travel benchmarks. In each entry of the table having
three rows of values, the first row contains the average values (bold), the second row contains the
best values (normal font), the third row contains the standard deviation (italic).

SMT SCSA SCGEO GA IPH1 IPH500

Instance t[s] / Q t[s] / Q t[s] / Q t[s] / Q P [%] t[s] / Q t[s] / Q
T1 52.4 / 228.3 0.9 / 222.0 0.8 / 221.4 1.7 / 201.5 80 1.8 / 202.5 1.9 / 222.8

47 / 228.3 0.8 / 222.0 0.7 / 222.0 1.5 / 222.0 1.6 / 222.0 1.6 / 228.3
3.6 / 0 0.1 / 0.0 0.0 / 4.1 0.1 / 13 0.1 / 18.5 0.1 / 6.3

T2 400.6 276.2 1.2 / 268.9 1.0 / 268.4 1.8 / 222.7 92 1.9 / 223.6 1.7 / 277.1
400.3 / 276.2 1.0 / 276.2 0.9 / 276.2 1.7 / 284.2 1.8 / 284.2 1.6 / 284.2

0.3 / 0 0.1 / 13.8 0.1 / 10.9 0 / 37.3 0.1 / 38.5 0.1 / 7.6
T3 400.3 / 79.3 1.5 / 270.3 1.2 / 249.7 1.8 / 235.7 72 2.1 / 209.7 2.8 / 266.2

400.3 / 79.3 1.3 / 290.4 1.0 / 290.4 1.6 / 306.1 2 / 269.3 2.5 / 290.3
0 / 0 0.1 / 16.8 0.1 / 26.0 0.1 / 33.8 0.1 / 39.6 0.2 / 4.9

T4 400.2 / 106.9 1.7 / 217.3 1.8 / 216.7 3.3 / 178.5 70 3.2 / 169 3.4 / 173.6
400.2 / 106.9 1.6 / 217.3 1.7 / 217.3 3.1 / 238.8 3.1 / 214.8 2.7 / 210.4

0 / 0 0.1 / 0.0 0.1 / 4.1 0.1 / 27.4 0.1 / 22.5 0.4 / 10.5
T5 400.3 / 73.4 2.1 / 191.5 2.2 / 190.8 3.2 / 211.2 76 3.5 / 193.8 7.1 / 331.3

400.3 / 73.4 1.9 / 191.7 2.0 / 191.7 3 / 281.4 3.4 / 336.9 3.7 / 344.8
0 / 0 0.1 / 0.5 0.1 / 1.6 0.1 / 33.7 0.1 / 39.3 1.9 / 9.2

T6 400.4 / 12.5 2.5 / 277.6 2.7 / 262.0 3.2 / 206.9 80 3.8 / 199.7 8 / 304.1
400.4 / 12.5 2.3 / 320.3 2.4 / 320.3 3.1 / 286.1 3.7 / 264.4 7.8 / 308.5

0 / 0 0.1 / 19.6 0.2 / 16.4 0.1 / 36.7 0.1 / 31.5 0.2 / 3.1
T7 400.3 / 19.6 2.6 / 210.9 3.6 / 210.1 4.7 / 158.8 80 5.6 / 186.2 4.3 / 181.2

400.3 / 19.6 2.5 / 214.2 3.4 / 214.2 4.6 / 258.6 5.1 / 211.1 4.1 / 191.9
0 / 0 0.1 / 5.8 0.1 / 6.2 0.1 / 38.1 0.2 / 14.3 0.1 / 5.8

T8 400.4 / 38.1 3.0 / 162.0 4.0 / 155.4 4.6 / 177.3 60 6.1 / 95.1 9.3 / 226.4
400.3 / 38.1 2.8 / 180.4 3.8 / 180.4 4.3 / 237.0 5.7 / 143.2 9.1 / 242.3

0.1 0 0.1 18.6 0.1 20.9 0.1 38.8 0.2 23.5 0.1 11.2
T9 400.5 / 35 3.6 / 258.5 4.5 / 255.0 4.5 / 180.2 62 6.2 / 187,4 10.8 / 187.1

400.4 / 35 3.4 / 266.2 4.2 / 266.2 4.4 / 285.6 5.4 / 250.3 10.4 / 227.7
0.1 / 0 0.1 / 7.6 0.1 / 10.6 0 / 38.2 0.6 / 33 0.2 / 19.9

specify user requirements as well as to visualize plans. The application is still being
extended and improved.

We have evaluated the efficiency of TripICS focusing on the planning modules. At
the moment our Offer Collector supports only a limited number of services. Thus, we
have used several benchmarks generated by our software Offer Generator. They have
been scaled by the length of a plan and the number of offers. Plans of length 5 have
been found for the benchmarks T1, T2, and T3, of length 9 for T4, T5, and T6, and of
length 13 for the remaining examples. The number of offers equals 28 = 256 for the
benchmarks T1, T4, and T7; 29 = 512 for T2, T5, and T8; and 210 = 1024 for the
other cases. This gives a number of the potential solutions varying from 2565 = 240 for
T1 to 102413 = 2130 for T9. The tested examples involved from 13 to 43 constraints.
We have compared several planning algorithms taking into account the computation
time and the quality of the solutions found. The methods combining SMT with nature-
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inspired algorithms appear to be the most efficient. They are able to find solutions of
very high quality within a few seconds only, which makes them acceptable for the user.
The detailed results are given in Table 1 and summarised in Fig. 4.
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Fig. 4. A comparison of the average quality of solutions produced by the concrete planning meth-
ods (left) and average efficiency comparison of the concrete planning methods (right). By effi-
ciency we mean quality/time ∗ probability.

5 Conclusions

We have presented a preliminary version of our system TripICS, which can be used
for planning trips and travels around the world. Our motivation for developing this
system was twofold. Firstly, we wanted to show that web service composition can be
successfully used in practice for real-life applications, and secondly our aim is to offer
a new useful tool, which could be publicly used.
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Abstract. In this article we present a new algorithm for creating sim-
plicial Vietoris-Rips complexes that is easily parallelizable using compu-
tation models like MapReduce and Apache Spark. The algorithm does
not involve any computation in homology spaces.

Keywords: data analysis, topology, simplicial complex

1 Introduction

The article of Silva and Grist [2] showed that the algebraic topology was a
very practical tool. In this paper its authors analyse the coverage of an area
with a network of sensors. This network is interpreted as a simplicial complex.
Its homology type is then computed and exploited. If this complex is homotopy
equivalent with point, the coverage is complete. Therefore, the authors translated
a technical problem into a mathematical problem.

In the article [3] Grist searches for topology structures in big data sets. Again,
this results in building simplicial complexes and analysing them.

The abovementioned works inspire to ask the question how to build simplicial
complexes efficiently and how to analyse them. In this article w propose a novel
algorithm to build the simplicial complex. This algorithm has the unique prop-
erty that it can be implemented within massive parallel computational models
like MapReduce and Apache Spark.

2 Background

Hereafter we assume that the data set given is a finite set of points P :=
{x1, . . . , xn} ⊂ Rd. This data can come up as a result of some physical ex-
periments, psychological tests etc., and can generally be high-dimensional. We
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have no insight into how the data actually look like and how it is embedded, but
it would be enough to know their “shape” to say something about how it is are
arranged in the original space.

In recent papers of Carlsson and collaborators [1] presented ideas to explore
some properties of high-dimensional data sets. They use algebraic topology tools
to find certain characteristics of the data or its simpler representation. This
approach allows to discover objects and features that are immersed in high-
dimensional space.

We start presentation of basic facts from the notion of a simplex. Colloquially
speaking, simplex is a generalization of a segment, a triangle and a tetrahedron
to any dimension. More formally, suppose the k + 1 points p0, . . . , pk ∈ Rk are
affinely independent, which means p1− p0, . . . , pk − p0 are linearly independent.
Then, k-simplex determined by them is the set of points

σ :=

{
λ0p0 + · · ·+ λkpk | λi ≥ 0, 0 ≤ i ≤ k,

k∑
i=0

λi = 1

}
, (1)

i.e. k-simplex is a k-dimensional polytope which is the convex hull of its k + 1
vertices. We often write σ = [p0, . . . , pk] for short. The points p0, . . ., pk are called
vertices of the k-simplex. Each simplex is uniquely determined by its vertices.
Any subset of vertices constitutes simplex with dimension smaller that the whole
one, called a face of simplex.

We say two vertices v and w are neighbors if there is 1-simplex (edge) con-
necting them.

Definition 1. A simplicial complex K is a set of simplexes that satisfies the
following conditions:

1. Any face of a simplex from K is also in K.
2. The intersection of any two simplexes σ1, σ2 ∈ K is either ∅ or a face of

both σ1 and σ2.

Having data set P , we can use it to build a variety of complexes. We shall
now formulate two most frequent definitions.

Definition 2. For a discrete set of points P ⊂ Rd and a parameter ε > 0, we
define the Čech complex of radius ε as Č(P, ε) by

Č(P, ε) :=

{
[p1, p2, . . . , pk] | {p1, p2, . . . , pk} ⊂ P,

⋂
i

B(pi, ε/2) 6= ∅

}
, (2)

where B(p, ε) is the closed ball of radius ε centered at p.

The nerve theorem states that Čech complex Č(P, ε) has homotopy type of
the union of closed balls with radius ε/2 around data P This means that the
Čech complex gives faithful representation of thickened data (they are common
”shape”).

Vietoris-Rips complex is closely related to the Čech complex.
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Fig. 1. Example of a Čech complex.

Definition 3. For a given ε > 0, the Vietoris-Rips complex (later called Rips
complex) R(P, ε) is the largest simplicial complex that shares the same 1-skeleton
(graph) as the Čech complex Č(P, ε). More explicitly,

R(P, ε) := {σ := [p1, p2, . . . , pk] | {p1, p2, . . . , pk} ⊂ P, diam(σ) ≤ ε} , (3)

where diam(σ) is the diameter of simplex σ.

Fig. 2. Comparison of Čech (left) and Vietoris-Rips (right) complexes.

Lemma 1 (Vietoris-Rips). For every finite set of points P ⊂ Rd and r ≥ 0,

Č(P, ε) ⊂ R(P, ε) ⊂ Č(P, 2ε). (4)

Thus, if the Čech complex at the same time for ε and 2ε approximates the data
in a good way, then Vietoris-Rips complex do it as well. This estimate can be
further improved [2].

Remark 1. Čech complex is difficult to calculate, but it is quite small. However,
Vietoris-Rips complex is easy to calculate, but is usually very big. Both Čech
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and Vietoris-Rips complexes can produce simplicial complex of dimension greater
than the considered space. Therefore, there are considered many alternatives for
them: Delaunay Complex, Alpha Complex, (Lazy) Witness Complex, Mapper
Complex, Sparsified Rips complex, Graph Induced Complex (GIC).

For small ε > 0 we have disjoint set of balls, whereas for big ε the covering by
balls is simply connected (without holes), so we are totally losing the knowledge
about the data structure. Since (in general) we do not know which radius ε
to take, we consider them all and obtain in this way a filtration of simplicial
complexes, i.e.

Č(P, ε1) ⊂ Č(P, ε2) ⊂ . . . ⊂ Č(P, εn), (5)

for 0 < ε1 ≤ ε2 ≤ . . . ≤ εn. With the change of radius also changes the topology
of the data: some holes are created, and some disappear. Roughly speaking, those
holes that last longest represent the shape of data. It is usually represented in
the form of the so-called barcode [3].

Let us recall the following definition from topology.

Definition 4. Two topological spaces X and Y are called homotopy equivalent if
there exist continuous maps f : X → Y and g : Y → X, such that the composition
f ◦ g is homotopic (i.e. it can be deformed in a continuous way) to the identity
idY on Y , and g ◦ f is homotopic to idX .

3 Related Work

Data anaylsis is a process of modeling data in order to discover useful informa-
tion. Unfortunately, mining high-dimensional data is very challenging. Therefore,
a number of methods was created so as to make it easier for researchers. One of
the youngest but rapidly growing field now is topological data analysis (TDA).

TDA is an approach to analyse data sets using techniques from topology. This
method relies on calculation of some properties of the space/data, which main-
tain (are invariant) under certain transformations. Although most of topological
invariants are difficult to calculate, there is an algorithm which can calculate
homology groups and barcodes [4, 5]. These groups are often used in applica-
tions [3].

Topological methods due to their nature can be used to cope with many
problems where traditional methods fail. It has broad application in coverage
problem in sensor network [2, 3], detecting breast cancer [6], computer vision [7],
detection of periodicity in time series (behaviour classification) [8] etc.

Another issue addressed in this subject is the speed of algorithms. In paper [9]
Dłotko et al. presented distributed algorithm for homology computation over a
sensor network. Their technique involve reduction and coreduction of simplicial
complexes.

Regardless of the algebraic approach, there are created algorithms that do
not use calculations on homology groups to obtain some approximation of the
shape of data [10]. Algorithm proposed in the last paper can have problems with
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more complicated structures, like the sphere, but it is shown that it does well
with coverage in sensor networks.

Notice that apart from using Čech and Rips complexes there are other direc-
tions in computational topology, but we do not discuss them here [2].

4 A Method to Build Complex using MapReduce

In this Section we present an efficient method to build Vietoris-Rips complexes.
We make the following assumptions:

– R is a Euclidean space.
– A fixed number of dimensions n is given.
– M⊂ Rn is the set of input data points.
– We assume that each input data point has a unique identifier id(x). Those

identifiers are items of an linearly ordered set.
– For any i ∈ {1, 2, . . . , n} we define Πi : Rn → R to be the projection to the
i-th dimension.

– In Rn we assume the Euclidean distance. For any two x, y ∈ Rn let |x, y|
denote the Euclidean distance of x and y.

– Let us choose ε > 0. We are going to build the Vietoris-Rips complex R(M, ε)

The first step to build a Vietoris-Rips complex is to find all pair of points
x, y ∈M such that |x, y| < ε. If the setM is large, computing distances between
all pairs of points is too time consuming. If the number of dimensions n is equal to
1, we can assign all points to segments of the form 〈kε, (k+1)ε). Then, instead of
computing distances for all pairs, we consider only those pairs of points that fall
into the same segment or two neighbouring segments. As the result, each point
is paired only with points from three segments. This can significantly accelerate
the computation. Of course, in a one-dimensional space, a simpler method that
encompasses sorting and sequential scanning will be faster. However, this method
cannot be extended to more dimensions.

For a two-dimensional space we can apply a method similar to the former
one described above. Instead of segments, we have then squares with sides of
length ε. Eventually, each point will be paired for distance computation only
with points from nine other squares. The three-dimensional case is similar, but
we use cubes with side of length ε and each point is paired with points from 27
cubes.

Unfortunately, enormous growth of the number of dimensions prohibits direct
usage of this method. In case of a 100-dimentional space, the “segments” will be
100-dimensional hypercubes with ε-side. Each point will be paired for distance
computation with points from 3100 hypercubes. Obviously the näive method will
amount to be better for sure in this case.

However, we can apply the abovementioned three-dimensional method in
multi-dimensional spaces indirectly. If we choose three dimensions i, j, k, we can
consider projecting the whole space to them and further search for close pairs like
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in a three-dimensional space. Let us consider the projection Π = Πi×Πj×Πk :
Rn → R3. Obviously for each pair x, y ∈ Rn the following inequality holds:

|Π(x), Π(y)|3 ≤ |x, y|,

By | . . . |3 we denote the Euclidean distance in R3.
We will assign all points to ε-sided cubes according to their projections onto

the chosen dimensions. Then, it is enough to pair each point for distance compu-
tation only with points residing in the same cube or in 26 neighbouring cubes. If
two points are not assigned to the same cube or neighbouring cubes, the distance
of their projections onto the chosen dimensions is larger than ε. Therefore, so is
their distance in Rn and their pair does not have to be considered.

The efficiency of this method notably depends on the choice of the three pro-
jected dimension. Chosen dimensions may reduce the number of distance com-
putations required. Our first idea was to compare the projection onto each single
dimension with the uniform distribution using the algorithm based on Kullback–
Leibler divergence [11]. However, this approach required two scans of input data.
Moreover, it is hard to distinguish more dense and more sparse distributions.
The problem lies rather in sparseness (with respect to ε) that uniformity. As the
result, we invented the following quality measure of dimensions.

For a given dimension i and an integer t we define:

σ(i, t) = |{x ∈M; tε ≤ Πi(x) < (t+ 1)ε}|

The number σ(i, t) tells how many points will fall into the segment identified by
t if we project to the dimension i. Note that if a point x satisfies the condition
in the definition above, then t = bΠi(x)/εc. bac is the largest integer not greater
than a.

For a dimension i ∈ {1, 2, . . . , n} and an input data point x ∈ M we define
ti(x) to be the integer:

ti(x) = bΠi(x)/εc.

Observe that the computation of all non-zero values of σ is possible using
only a single scan of input data. Moreover, it is easily implementable in the
MapReduce computation model. The mapper emits 〈i, ti(x)〉 for each input data
point x ∈ M and for each dimension i. The reducer simply counts the number
of occurrences of pairs 〈i, t〉.

Non-dispersion measure of a dimension i is the number

∆i =
∑
t∈Z

σ(i, t)2

Now, for each dimension we compute its non-dispersion measure by means
of the MapReduce procedure presented above. Then we chose three dimensions
with smallest non-dispersions.

Assume i, j, k to be the three dimensions with smallest non-dispersion. The
algorithm to find all pairs of points closer that ε using these dimensions can be
easily parallelized using the MapReduce computation model.
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The mapper reads all input data points and for each point x emits 27 key-
value pairs:

〈〈t1, t2, t3〉, x〉

where t1, t2, t3 satisfy the following conditions:

t1 ∈ { ti(x)− 1, ti(x), ti(x) + 1 }
t2 ∈ { tj(x)− 1, tj(x), tj(x) + 1 }
t3 ∈ { tk(x)− 1, tk(x), tk(x) + 1 }

A single reducer collects all pairs that came with a given key 〈t1, t2, t3〉. If a
pair x, y satisfies the conditions id(x) < id(y), t1 = ti(x), t2 = tj(x), t3 = tk(x),
then the distance of points x, y is computed. The three dimension equalities
assure that x lies in the very ε-sided cube 〈t1, t2, t3〉. If |x, y| < ε, the pair 〈x, y〉
is added to the result.

The collection of all pairs 〈x, y〉 that satisfy |x, y| < ε is the most time-
consuming phase of the construction of the Vietoris-Rips complex. Those pairs
are single-dimensional simplexes. The second phase computes triplets 〈x, y, z〉
such that the three points are pairwise closer than ε and id(x) < id(y) < id(z).
Following phases consist in identifying longer and longer lists of points that
satisfy analogous conditions. It can be done as in the Apriori algorithm to find
frequent subsets, because if all points in a set are closer than ε that the same
must hold for all its subsets. If ε is not too big, these phases are not time-
consuming. However, it is much simpler to build higher-dimensional simplexes
using the following lemma.

Lemma 2 (Raising the dimension of simplexes). Let R be a Vietoris-Rips
complex. A simplex a := 〈x1, ..., xn, xn+1, xn+2〉 belongs to R if and only if all
the three following simplexes are also in R:

b := 〈x1, ..., xn, xn+1〉
c := 〈x1, ..., xn, xn+2〉
d := 〈xn+1, xn+2〉

Proof. The “only if” part is straightforward. If a ∈ R, then all its subsimplexes
obviously belong to R. Thus, so do b, c, d.

The proof of the “if” part is based on the following property of Vietoris-Rips
complexes. If a simplex a belongs to R, then all its one-dimensional subsimplexes
also belong to R. Assume a one-dimensional simplex e := 〈xj , xk〉 ⊂ a, where
j, k ∈ {1, . . . , n+ 2}. We will show that e ∈ R.

We have to consider three cases. Firstly, if j = n + 1 ∧ k = n + 2, then
e = d ∈ R. Secondly, if j < n + 1 ∧ k = n + 2, then e ⊂ c ∈ R, thus e ∈ R.
Thirdly, if k < n+ 2, then j < n+ 1, thus e ⊂ b ∈ R and also e ∈ R.

Since the choice of j and k is arbitrary, the “if” part has been proven. So has
been the whole lemma. ut

As the result of the first phase of the algorithm, we have a collection pairs
that contains all pairs 〈xi, xj〉 such that
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|xi, xj | < ε ∧ id j < idk

We recall that id i is the identifier of the point xi.
In the second phase of the algorithm, we build collections of simplexes of sub-

sequent dimensions n that belong to the Vietoris-Rips complex R. The algorithm
stops when for a given n we get the empty list of simplexes.

For a given n, we search for all b, c and d that satisfy the constraints of
Lemma 2. The symbols introduced in Lemma 2 will prove to be handy again.
Therefore, we perform the following steps:

1. We convert the collection of simplexes 〈x1, x2, . . . , xn+1〉 of the dimension n
to the collection of pairs 〈〈x1, x2, . . . , xn〉, xn+1〉.

2. We compute a natural self-join of this set of pairs using the first coordi-
nate. As the result we get the set of all triplets: 〈〈x1, x2, . . . , xn〉, xj , xk〉
(a as in Lemma 2) such that there are pairs 〈〈x1, x2, . . . , xn〉, xj〉 (b) and
〈〈x1, x2, . . . , xn〉, xk〉 (c) in the previous step.

3. We leave (select) only those triples that satisfy id j < idk.
4. We equi-join the remaining triplets with the set of all pairs using the last two

coordinates of the triplets. We do it to assure that the last two coordinates
of triplets (d) form a one-dimensional simplex belonging to the complex.

5. We flatten remaining triplets to get complexes of the dimension n+1 of the
form 〈x1, x2, . . . , xn, xj , xk〉.

Note, that this procedure contains only operations that are expressible in
relational algebra (or calculus). Therefore, the whole algorithm is formulated in
a highly abstract language that is known to be easy to optimise and execute in
parallel. We exploited this possibility and implemented it in the Apache Spark for
efficient execution on large computing infrastructures of commodity computers.
An example Python code that implements the whole algorithm is shown below.

komplex = []
komplex.append(points.map(lambda p: p[0]))
komplex.append(pairs)

# initial
base = pairs
pairsAsKey = pairs.map(lambda p: (p, 1))
noAnylizedObjects = pairs.count()

#iterated
while noAnylizedObjects > 0:
base = base.map(lambda a:(a[:-1], a[-1]))
base = base.join(base) \

.filter(lambda a: a[1][0] < a[1][1]) \

.map(lambda a: (a[1] , a[0])) \

.join(pairsAsKey) \
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.map(lambda a:rigthTupleSum(a[1][0], a[0]))
noAnylizedObjects = base.count()
if noAnylizedObjects > 0:
komplex.append(base)

5 Conclusions

In this article we have presented an efficient method to build Vietoris-Rips com-
plexes. Moreover, this method is easily parallelizable using the MapReduce com-
putation model or Apache Spark. Further research will focus on algorithms that
reduce constructed complexes. It will facilitate finding homology types of com-
plexes. As a result it will also allow assessing of the correctness of the selection
of the ε value.
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Abstract. We show how to extrapolate an optimal policy controlling a
model, which is itself too large to find the policy directly using probabilis-
tic model checking (PMC). In particular, we look for a global optimal
resolution of non–determinism in several small Markov Decision Pro-
cesses (MDP) using PMC. We then use the resolution to find a respec-
tive set of decision boundaries representing the optimal policies found.
Then, a hypothesis is formed on an extrapolation of these boundaries
to an equivalent boundary in a large MDP. The resulting hypothetical
extrapolated decision boundary is statistically approximately verified,
whether it indeed represents an optimal policy for the large MDP. The
verification either weakens or strengthens the hypothesis. The criterion
of the optimality of the policy can be expressed in any modal logic that
includes the probabilistic operator P∼p[·], and for which a PMC method
exists.

Keywords: probabilistic model checking, statistical model checking,
non–determinism, optimal policy, extrapolation.

1 Introduction

Probabilistic model checking (PMC) [4] refers to a range of techniques for a
formal analysis of a stochastic system, which is usually a state transition system
with transitions labelled by probability values.

A policy of a decision maker (an agent), controlling a Markov Decision Pro-
cess (MDP), resolves a non–deterministic choice, which exist in each state of an
MDP in the form of a number of probability distributions over states, of which
one is arbitrarily chosen (for details see Sec. 2). An optimal policy [12], in re-
spect to a given property, may in particular correspond to either the minimum
or maximum value of the property. In this paper we consider an MDP with
properties specified in any modal logic that includes the probabilistic operator
P∼p[·], for which exists a PMC method. A common example of such a logic,
for which efficient model checkers exist, is Probabilistic Computation Tree Logic
(PCTL) [3].
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Statistical probabilistic model checking (SPMC) [13, 8], including Monte
Carlo simulation and sampling, involves a generation of a large number of ran-
dom paths in a stochastic model, evaluating a given property on each path, and
finally statistically aggregating all these evaluations in order to approximate a
correct value of a property.

We address the issue of an estimation of an optimal policy in a model, which
is too large to have that policy found using PMC, and also too large to have that
policy estimated using SPMC, if an initial, sufficiently precise approximation ζ of
the policy is unknown. In order to obtain ζ, we first find a number of equivalent
optimal policies in several scaled-down versions of the large model. Then, we pose
a hypothesis on an extrapolation of these policies to the large model. Finally, we
strengthen or weaken the hypothesis using SPMC, which approximately verifies,
whether the extrapolated policy is optimal by checking whether the policy has
the largest fitness, when compared to a number of its close variants.

In particular, we begin with searching for a global optimal resolution of non–
determinism [7] in several small MDPs, that model smaller versions of the system
we are interested in. We then estimate equations of decision boundaries, each
representing one of the obtained optimal policies. A hypothesis is then formed
on extrapolating the equations to a large MDP. The resulting hypothetical ex-
trapolated decision boundary is finally approximately verified by estimating if
its fitness is locally maximal using a Monte Carlo DTMC simulator.

The paper is constructed as follows. In Sec. 2 we define the formalism used. In
Sec. 3 we propose a technique which extrapolates and verifies an optimal policy.
In Sec. 4 we present a case study. In the last section we conclude the paper.

2 Preliminaries

Let us define the formalism used throughout the paper. It is fairly standard and
follows [4], where the reader will find an in–depth description.

2.1 Discrete–Time Markov Chains

A discrete-time Markov chain (DTMC) consists of states that represent instan-
taneous snapshots of the system at a given time, and has transitions labelled by
(discrete) probability distributions over the target states.

Definition 1. A DTMC is a tuple D = (S, sι, T,AP, L), where S is a finite set
of states, sι is the initial state, T : S × S → [0, 1] is a transition probability
function such that

∑
s′∈S T (s, s′) = 1 for all s ∈ S, AP is a set of atomic

propositions, and L : S → 2AP is a valuation function which assigns to every
state s ∈ S a set L(s) of atomic propositions that are assumed to be true at that
state.

Observe that each transition represents the possibility to evolve from one
state to another. Moreover, for a state s ∈ S of D, the probability of moving to
a state s′ ∈ S in one discrete step is given by T (s, s′). Further, a path of D is
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an infinite sequence ω = s0, s1, s2, . . . of states such that T (si, si+1) > 0 for all
i ≥ 0. Each path of D provides one possible evolution of the Markov chain.

Properties of DTMCs can be written in Probabilistic Computation Tree Logic
(PCTL) [3], a probabilistic extension of the temporal logic CTL [1].

Definition 2 (Syntax). Let a ∈ AP be an atomic proposition, p ∈ [0, 1] a prob-
ability bound, k ∈ IN and ∼∈ {<,≤,≥, >}. The syntax of PCTL is defined
inductively as follows:

φ ::= true | a | ¬φ | φ ∧ φ | P∼p[ψ], ψ ::= Xφ | φ Uφ | φ U≤kφ

PCTL formulae are interpreted over the states of a DTMC or Markov decision
processes (see next section). We say that a state s ∈ S satisfies a PCTL formula
φ, denoted D, s |= φ, if φ is true at the state s. Intuitively, a state s satisfies the
basic state formula P∼p[ψ] if the probability of taking a path from s satisfying
path formula ψ meets the bound ∼ p. Further, the path formula Xφ (operator
neXt) is true, if φ is satisfied in the next state; the path formula φ1Uφ2 (operator
until) is true, if φ2 is eventually satisfied and φ1 is true until then; the path
formula φ1U

≤kφ2 (operator bounded until) is true, if φ2 is satisfied within k
discrete steps and φ1 is true until then.

In practice, it is common to write formulae of the following kind: P=?[ψ],
which asks “what is the probability of ψ to be true”. Also, the following useful
operators can be derived from the above PCTL syntax: Fφ ::= true Uφ (even-
tually φ becomes true) and Gφ ::= ¬F¬φ (φ is true globally), and a bounded
variants of these.

2.2 Markov decision processes

A Markov decision process (MDP), like DTMC, consists of states, representing
possible configurations of the system being modelled, and transitions between
states occur in discrete time-steps. However, at each state the system (decision
maker) may choose any action that is available in this state, and then non–
deterministically move into a new state, while providing the decision maker a
corresponding probability.

Definition 3. An MDP is a tuple M = (S, sι, Act, µ,AP, L), where:

– S, sι, AP and L : S → 2AP are defined as for DTMCs,
– Act is a finite set of actions,
– µ : S × Act → Dist(s) is the (partial) transition probability function, with
Dist(S) denoting the set of all discrete probability distributions over S.

Observe that for each state s ∈ S, the successor state is determined in two stages:
firstly, an available action a ∈ Act (i.e. one for which µ(s, a) is defined) is non–
deterministically selected; secondly, the successor is randomly chosen according
to the probability distribution µ(s, a).

To reason formally about the behaviour of MDPs, normally, the notation of
policies is used. A policy resolves all of the non–deterministic choices in an MDP.
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Moreover, under the control of a particular policy, the behaviour of an MDP is
fully probabilistic and, as is for DTMCs, one can define a probability space over
the possible paths through the model. Further, it is possible to reason about the
best– or worst–case system behaviour by quantifying over all possible policies:
for example, it is possible to compute the minimum or maximum probability of
a PCTL property. Finally, the notion of an optimal policy can be used with a
property value optimised by a model checker. For example, Prism [5] can find
an optimal policy with regard to the minimum or maximum possible probability
of a PCTL property [6].

Properties of MDPs can also be written in PCTL, yet with an implicit quan-
tification over policies. For example, the P=? operator used for DTMCs is re-
placed with two variants Pmin=? (the minimum probability) and Pmax=? (the
maximum probability).

3 Approximate extrapolation of policy

LetM = (S, sι, Act, µ,AP, L) be an MDP. We first define an MDP with classified
binary choices (MDPCBC) as follows.

Definition 4. An MDPCBC is a tuple X = (S, sι, Act, µ,AP, L), where:

– S, sι, AP and L : S → 2AP are defined as for MDPs,
– Act =

⋃α
i=1Acti is a finite set of actions that is divided into α disjoint classes

Acti according to their meaning as understood in the modelled phenomenon.
Moreover, each class Acti is divided into two disjoint sets of the same size:
Acti↓ and Acti↑.

– µ : S × Act → Dist(s) is the (partial) transition probability function, with
Dist(S) denoting the set of all discrete probability distributions over S, and
the following property: any non–deterministic binary choice q contains ex-
actly two actions aq↓ and aq↑ such that aq↓∈ Acti↓ and aq↑∈ Acti↑.

For example, if Act = Act1 ∪ Act2, then Act1 might represent choices of
either a black or a white ball and Act2 might represent a decisions if to continue
a loop of choosing the balls or, on the contrary, stop the process. Further, if a
non–deterministic binary choice represents a class of actions “a choice of either
a black or a white ball”, then Act1↓ would contain only choices of the black ball
and Act1↑ would contain only choices of the white ball.

Now we define the notation of a decision boundary.

Definition 5. Let X = (S, sι, Act, µ,AP, L) be an MDPCBC, and let the bi-
nary non–deterministic choices between actions belonging to Acti be available at
certain states Si ⊆ S. A decision boundary is a function Di : Si → { false, true}
such that if there is a non–deterministic choice between actions aq ↓ and aq ↑,
then the agent chooses aq↓ if Di(s) = false, and aq↑ otherwise.

Thus, a decision boundary determines a certain policy controlling an MDPCBC,
which then becomes a DTMC, further called a Markov chain with classified
binary choices (MCCBC).
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As seen, thanks to the division of Act into classes, we have a number of
class–specific decision boundaries, which individually may be easier to describe
mathematically. On the contrary, mixing actions with vastly different meanings
might produce a common decision boundary which is hard to analyse.

3.1 Method

Let there be a set X = {X1
small, . . . , X

J
small, Xlarge} of MDPCBCs, instantiated

from a common template, but with different values of the parameter N , equal
respectively to {N1

small, . . . , N
J
small, Nlarge}. The parameter does not influence on

the nature of the problem, but merely represents a scale of the problem. N can
be e.g. the number of philosophers in the Dining Philosophers Problem [2]. We
want to estimate an optimal policy of Xlarge. Yet it is impossible to find Xlarge

directly using PMC (e.g. implemented in Prism), due to extensive computational
complexity and memory requirements. Therefore, we will attempt to extrapolate
J optimal policies of J respective Xj

small, j = 1, . . . , J .

Let the decision boundary for class i in Xj
small be Dj

i (s), s ∈ Si, and

let us pose a hypothesis on how Dj
i (s) can be merged into a single function.

The hypothesis is represented by Di(s,N), which generalises all Dj
i (s) so that

Dj
i (s) = Di(s,N

j
small), j = 1, . . . , J . This allows for obtaining a hypotheti-

cal extrapolated decision boundary Di(s,Nlarge), controlling Xlarge. Finally, we
strengthen or refute the posed hypothesis, by locally verifying the fitness of
Di(s,Nlarge) using SPMC.

3.2 Arbitrariness

Let any state in S be represented by a tuple V = (x1, . . . , xd), a
so–called state vector, each of its elements represents some specific phe-
nomenon in a modelled system. For example V might have an interpretation
(temperature,precipitation). Let us build a real coordinate metric space S such
that any state s is mapped to a point Vs in S , having coordinates V . We do
that because we hope that points close in S may intuitively represent similar
situations in the modelled system, thus it is less likely that a decision bound-
ary goes between them. This hopefully simplifies both the shape and semantic
interpretation of Di(s,N).

Due to, amongst others, a finite ||S||, the extrapolation to Di(s,Nlarge) might
be imprecise. Consider the following. See that ||Vs|| = ||S|| is finite, and thus we
can find some ε > 0 which is equal to the closest distance between all possible
pairs (Vs1 , Vs2), s1, s2 ∈ S, s1 6= s2. Therefore, there is an infinite number of
decision boundaries representing a single policy. Let any decision boundary be
represented by a vector of parameters C(N) = (yN1 , . . . , y

N
β ), where β ∈ N+ is

a constant specific to a method of the representation. For any class i, we can
extrapolate Di(s,N) by a respective extrapolation of J vectors Ci(N

j
small) to

a single vector Ci(Nlarge), the latter determining Di(s,Nlarge). Yet, as C(N)
is arbitrary due to ε > 0, so is Ci(Nlarge). Moreover, as the extrapolation may
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augment the arbitrariness, the multiple possible values of Ci(Nlarge) may in turn
represent multiple Di(s,Nlarge).

Fig. 1. A schematic example of a trajectory of
C1(N) = (y0, y1) in a parameterised Euclidean
space R2. Schematically depicted minimum error E
of a decision maker translates to an optimal policy
of an MDPCBC instantiated with a given N .

y1

y0

E
N=100
N=101
N=102

N=300v

u

Consider the example in Fig. 1(a). C1(100), C1(101) and C1(102) determine
a common segment. We extrapolate that segment with a line in order to find
C1(300) = (u, v), which in turn determines hypothetical D1(s, 300). Yet, as MD-
PCBCs have a finite number of states, C1(300) can not be determined precisely:
minor arbitrariness in the placement of the segment scale up roughly affinely
with the distance to the segment. We thus see, that there is at least a single
reason for Di(s,Nlarge) to be a hit–and–miss when it comes to an estimation of
a strategy for Xlarge.

4 Case study

Let us study an example – an optimal policy of choosing a coin. There are two
coins, a fair one and an unbalanced one. They have the probabilities of the
outcome of heads equal to respectively 0.5 and 0.6. A decision maker flips a
coin N times, deciding before each flip, which of the two coins to choose (for
simplicity, N is even). What is the best policy of maximising the probability of
drawing N/2 heads within these flips? The criterion of optimality is thus

Popt = Pmax=?[F(f = N ∧ h =
N

2
)] (1)

Let N be the scaling parameter discussed in Sec. 3.
Let us first verify a small variant of the model, with N = Nsmall = 100, using

Prism’s PMC capabilities. Prism is able to compute the optimal policy of a
decision maker which has a full knowledge about the system, and the computed
policy is given as a transition matrix of a DTMC, which in the case of our model
is also an MCCBC. The policy is visualised in Fig. 2(a), where f and h are
parts of the vector state which are equal to, respectively, the number of tosses
so far and the number of heads drawn so far.

Let Act1↑ be a choice of the fair coin. The decision boundary, approximated
by visually interpreting Fig. 2(a), is

h & 0.55 (f − (9± 0.5)) (2)
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x

strategy given by (2)
choosing always the fair coin

(a) (b)

Fig. 2. (a) Visualisation of the optimal policy for N = Nsmall = 100. Gridded region
depicts unreachable states, white region designates, that a successful policy is no more
possible or a maximum number of tosses is reached, black and grey regions mean
respectively “chose the fair or the unbalanced coin”. White dashed line represents
h = f/2, black dashed line shows an example variation of the decision boundary for a
different fc. (b) Probability distributions of h for two different strategies at f = N =
Nsmall.

Fig. 2(b) depicts probability distributions of h after all Nsmall tosses. As seen,
(2) makes (1) almost twice as large if compared to a state–agnostic approach of
always choosing the fair coin.

4.1 A single small MDPCBC

Firstly, we will attempt to extrapolate from only (2), i.e. let J = 1. Assuming
limited computational resources for finding optimal policies of small models,
J = 1 enables us to use the largest possible N j

small.

Extrapolation. In order to extrapolate from a single point, we will form some
supporting hypotheses. It is easy to see that at the state (f = 0, h = 0) the
decision maker should choose the fair coin for any N . This is because he is more
afraid of an excessively large h, rather than of the number of heads drawn being
too small, as the single available unbalanced coin leans towards heads, and thus
it can be used to reduce the deficiency of h. The latter also says, that a high
deficiency of h leads to the choice of the unbalanced coin. Therefore, we know
that at some (f ≥ fc, h = 0), fc > 0, the unbalanced coin is chosen, and that
for any N , the fair coin is chosen for (0 ≤ f < fc, h = 0). We also know that at
(f = N − 1, h = N/2 − 1) the decision maker should maximise the probability
of drawing a head in order to reach (f = N,h = N/2) (the success is assured
only if a head will be drawn, an unbalanced coin is chosen), and that he would
minimise that probability for (f = N − 1, h = N/2) (the success is assured only
if a head will not be drawn, a fair coin is thus chosen). Therefore, we know that
for any N the decision boundary goes between these two states.
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Fig. 3. Estimation of Popt for N = Nlarge, 5 · 107 samples per MCCBC.

On the basis of (2) we can guess that the decision boundary is a segment. Let
us guess that the placement of the segment scales affinely with N in the sense
that fc ≈ N/G, where G is a constant. This hypothesis is trivially represented
by the following decision boundary:

h > h1(f) =

(
N

2
− 1/2

)
f − fc

N − 1− fc
=

(
N

2
− 1/2

)
f −N/G

N − 1−N/G

thus

Di(s,N) =

G <
N

N − 1

2h+ 1−N
2h− f

if h < f/2

true if h ≥ f/2
(3)

Verification. Using (2) we can estimate G = N1
small/fc ≈ 100/(9± 0.5) ∈”∼,

G =

〈10.5; 11.8〉. Checking statistically Popt in an MDPCBC controlled by (3) for
N = Nlarge = 5000 and G ≈ 11 ∈ G yields the diagram in Fig. 3. An MCCBC
with the highest Popt is found forG = G1 = 11, which agrees with the estimation,
and we may thus strengthen the hypothesis.

Local maxima are seen in the diagram. For example, we statistically checked
MCCBCs for a dense set of values of G in a set G10 such that ∀Gi∈G100.95 ≤
Gi ≤ 10.05, ||G10|| = 51, then we fitted a parabola as seen in the figure, to show
that a local gradient–descent optimiser might be trapped in a local maximum
around G ≈ 10, thus strengthening a respective false hypothesis.

We thus see, that an interval of G wider than the one spanned over G10

should be sampled by such an optimiser. This leads to a considerable numerical
complexity of the resulting SPMC, as we need to use as much as 5 · 107 samples
per a single estimation in order to get a 99% confidence level of ≈ 2.3 · 10−4,
estimated using Asymptotic Confidence Interval [10].

A less precise extrapolation might increase the said complexity even more.
For example,
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– a less precise initial estimation of G might result in a larger number of
samples to be gathered, in order to localise the maximum around G = 11;

– if we would merely assume, that the decision boundary is a segment, whose
both ends are unknown and with no known relation, and not that only fc
is unknown as we did so far, we would then need to search within at least
a two–dimensional optimisation space. For example one with the optimised
parameters (G,H) such that the linear boundary of D1(Nlarge) intersects a
pair of points (fc = Nlarge/G, 0), (Nlarge − 1, H).

Obviously, in general, an MDPCBC with N = Nlarge might become unver-
ifiable using both PMC and SPMC, if the extrapolation from PMC–checked
models were insufficiently precise or unknown at all.

4.2 Several small MDPCBCs

We will attempt to estimate D1(Nlarge) using several small MDPCBCs. We won’t
use the reasoning from Sec. 4.1, but instead, an optimiser will analyse a trajectory
of parameters representing different decision boundaries.

Extrapolation. We apply a Nelder–Mead Simplex gradient–descent opti-
miser [9] to a linear combination of f, h,N and 1, with the goal of minimising
the number of wrong choices in models with N = 80, 100 and 120, i.e. J = 3.
We obtain a hypothetical generalised decision boundary

550.876f − 1001.63h− 50.1596N − 15.0067 . 0

thus for N = Nlarge

h & h2(f) = 0.549980(f − 455.298), G ≈ G2 = 10.982 (4)

Testing (4) against the three MCCBC matrices returned by Prism, it turns out
that this boundary always allows for a right choice within the three MDPCBCs
in question. It may be a hint, that the said linear combination has been a right
choice.

Verification. Due a finite number of states in the MDPCBCs from which we
have extrapolated, we may expect imprecisions in (4) as discussed in Sec. 3,
especially that we extrapolate from N j

small ≈ 100 to Nlarge ≈ 5000, i.e. to a
model with a number of tosses about 50 times as large on average.

We know from the reasoning in Sec. 4.1, that N/2−1 ≤ h(N−1) < N/2. For
N = Nlarge, h2(Nlarge−1) ≈ 2498.95, and is thus too small by ≈ 0.05, a difference
which seems to be fairly precise for an extrapolation that distant. Yet, we will
correct that imprecision by placing the segment correctly at f = Nlarge− 1, and
then extracting from (4) merely the value of G2. This boils down to the reuse of
the diagram in Fig. 3. Given the low number of statistically verified MCCBCs
in the diagram and the considerable size of the 99% confidence interval, given in
Sec. 4.1, it can be stated that G2 ≈ G1. We may thus strengthen the hypothesis.
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5 Discussion

We are working on a tool for automating the presented extrapolation. As opposed
to the example in the case study, it would apply a number of extrapolating func-
tions beside a linear combination, in order to choose the best extrapolated policy.
For example, the tool could support an extrapolation of oscillating functions like
in [11], in order to deal with models of physical systems involving periodicity. For
example, the scaling parameter might represent a rotational speed of an element,
and the policy would minimise a standing wave in the supporting construction.
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Abstract. We describe a GPGPU–based Monte Carlo simulator integrated with
Prism. It supports Markov chains with discrete or continuous time and a subset
of properties expressible in PCTL, CSL and their variants extended with rewards.
The simulator allows an automated statistical verification of results obtained us-
ing Prism’s formal methods.
Keywords: GPGPU, Monte Carlo simulation, Prism, probabilistic model
checking, statistical model checking, probabilistic logics.

1 Introduction

We present a GPGPU–based simulator which extends the model checker Prism [9].
The simulator uses the Monte Carlo method for a statistical probabilistic model check-
ing [14, 10] (SPMC). SPMC involves a generation of a large number of random paths
(i.e. samples) in a probabilistic Markov chain, evaluating a given property on each path,
and finally finding an average of these evaluations, which approximate a correct value of
the property. Monte Carlo methods typically are able to precisely compute confidence
intervals (CI) around the approximated value.

The GPGPU simulator (further called SG) is integrated with Prism, which al-
lows to check a single model implementation using either one of Prism’s probabilistic
model checking (PMC) methods, or SG. SG supports the same models and properties as
the Prism’s CPU–based simulator (further denoted SC), yet the latter, lacking GPGPU
acceleration and on–the–fly compilation of the model, is considerably slower.

Beside the simulator itself, we present its simple application: an automated method
of verifying property values computed using Prism’s formal methods. Namely, the
user may request, that certain property classes be computed in two steps:

1. A PMC step. A property is computed using one of Prism ’s formal PMC methods;
2. An automated statistical verification (ASV) step. The obtained property value v

is statistically evaluated using SG; it is then checked if v fits into a number of
confidence intervals (CI) of various confidence levels.
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Because a significant imprecision in a PMC method is typically caused by some
mechanism for reducing computational complexity, the user might tend to disable such
a mechanism, rather than wait for a statistical verification. This is why it is crucial that
the verifying simulator be fast: it should effectively save user’s time, by providing data
in tight CI within a short time.

The paper is constructed as follows. Section 2 describes what is currently sup-
ported by SG. In Sec. 3 we provide a description of some implementation details of
SG. In Sec. 4 ASV is discussed Section 5 presents a case study. Finally, the last section
concludes the paper.

2 Supported models and properties

SG accepts a specific set of properties, for two finite probabilistic classes of Markov
chains: a discrete-time Markov chain (DTMC) and a continuous-time Markov chain
(CTMC). Unlike DTMC, where each transition corresponds to a discrete time-step, in a
CTMC transitions occur in continuous time given by a negative exponential distribution.
Both of the classes can be enriched with rewards structures, resulting respectively in
rDTMC and rCTMC. A reward structure allows to specify two distinct types of rewards:
state (instantaneous) and transition (cumulative) ones, assigned respectively to states
and transitions by means of a reward function. Formal definitions of all of the above
systems can be found e.g. in [8].

The temporal logics Probabilistic Computation Tree Logic (PCTL) [6] and Con-
tinuous Stochastic Logic (CSL) [1] can be used to specify properties for respectively
DTMCs and CTMCs. SG recognises only flat subsets of each logic. We will refer to
these subsets as respectively FlatPCTL and FlatCSL.

Definition 1 (Syntax of FlatPCTL). Let a ∈AP be an atomic proposition,∼∈ {<,≤
,≥,>}, p ∈ [0,1] a probability bound, and k is a non–negative integer or ∞. The syntax
of FlatPCTL is defined inductively as follows:

φ ::= P∼p[ψ], ψ ::= Xφ1 | G≤kφ1 | F≤kφ1 | φ1U
≤kφ1 | φ1R

≤kφ1,
φ1 ::= a | φ1∧φ1 | ¬φ1.

In the syntax above, we distinguish between state formulae φ ,φ1 and path formulae
ψ , which are evaluated over states and paths, respectively. A property of a model is
always expressed as a state formula. The path modalities (i.e., next state – X, bounded
globally – G, bounded eventually – F≤k, bounded until – U≤k, and bounded release –
R≤k), which are standard in temporal logics, can occur only within the scope of the
probabilistic operator P∼p[·].

Intuitively, a state s satisfies P∼p[ψ] if the probability of taking a path from s satis-
fying path formula ψ meets the bound ∼ p. Next, Xφ is true if φ is satisfied in the next
state; G≤kφ is true if φ holds for all time-steps that are less or equal to k; F≤kφ is true
if φ is satisfied within k time-steps; φ1U

≤kφ2 is true if φ2 is satisfied within k time-steps
and φ1 is true from now on until φ2 becomes true. φ1R

≤kφ2 is true if either φ1 is satisfied
within k time-steps and φ2 is true from now on up to the point where φ1 becomes true, or
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φ2 holds for all time-steps that are less or equal to k. The formal semantics over DTMC
can be found e.g. in [6, 8].
SG supports also an extension of FlatPCTL allowing specifications over reward

structures by means of the following state formulae: R∼r[C
≤k] | R∼r[I

=k] | R∼r[Fφ ] where
∼∈ {<,≤,≥,>}, r ∈ IR≥0, k ∈ IN, and φ is a FlatPCTL formula.

The formal semantics over rDTMC can be found in [8]. Here we only provide an
intuition. Namely, a state s of an rDTMC satisfies R∼r[C

≤k], if from state s the expected
reward cumulated after k time-steps satisfies ∼ r. Next, a state s of an rDTMC satisfies
R∼r[I

=k], if from state s the expected state reward at time-step k satisfies ∼ r. Finally,
a state s of an rDTMC satisfies R∼r[Fφ ], if from state s the expected reward cumulated
before a state satisfying φ is reached meets the bound ∼ r.

Definition 2 (Syntax of FlatCSL). Let a and p be as in Definition 1, and I be an
interval of IR≥0. The syntax of FlatCSL is defined inductively as follows:

φ ::= P∼ p[ψ], ψ ::= Xφ1 | GIφ1 | FIφ1 | φ1U
Iφ1 | φ1R

Iφ1, φ1 ::= a | φ1∧φ1 | ¬φ1.

Satisfying P∼p[ψ] and path modalities are the same for FlatCSL as for FlatPCTL,
except that the parameter of the modalities is an interval I of the non-negative reals,
rather than an integer upper bound. For example, the path formula φ1U

Iφ2 holds if φ2 is
satisfied at some time instant in the interval I and always earlier φ1 holds.
SG supports an extension of FlatCSL allowing specifications over reward structures

in a manner similar to FlatPCTL, the only difference are the time bounds: R∼r[C
≤t ] |

R∼r[I
=t ] | R∼r[Fφ ] where ∼∈ {<,≤,≥,>}, r, t ∈ IR≥0, and φ is a FlatCSL formula.

The extension of CTMC with rewards is analogous to that of DTMC, given above,
barring the mentioned differences in time bounds. The formal semantics over rCTMC
can be found in [8], see though that SGdoes not support therein mentioned steady state.

3 Implementation of SG

In a case of Markov models implemented in the Prism language, a generation of ran-
dom simulation paths is not computationally expensive. A single transition consists of
an evaluation of its guards, an enumeration of updates if viable, a random selection of
subsequent transitions and finally an estimation of properties. The syntax of guards and
updates allows simple arithmetical and logical operations and a few basic mathematical
functions, such as a power or a logarithm. Prism comes already with the mentioned
CPU–based simulator SC, well–suited to debugging tasks but slow, as it is sequential
and generates each path by reinterpreting a model specification.

Instead of such an on–the–fly reinterpretation, the tool Ymer [15] compiles expres-
sions to a form which is faster to evaluate repeatedly. Another tool APMC [7], in, turn
provides a translation of Prism models to C programs which are later compiled and
executed.

Another obstacle preventing the SC from achieving a reasonable performance is its
inherent sequentiality. A Monte Carlo simulation is considered to be embarrassingly
parallel – it samples the model by generating a large number of independent random

201



paths. Prism has approached this problem by providing the ability to perform dis-
tributed sampling, Ymer and APMC support distributed sampling as well. The latest
version of Ymer implement multi–threaded sampling as well [16].

The improvement in parallel and distributed sampling is limited by the number of
threads supported on multi–core CPU systems. A processor with a rich set of instruc-
tions and multiple cache levels is a perfect tool for complex and general problems but
using it for a simple simulation of a moderate Markov model would be a very expen-
sive over–engineering, both financial cost– and energy–wise. On the contrary, recent
advances in GPGPUs made them a very efficient replacement for such computations,
which benefit from massive parallelism. This simultaneous execution of hundreds and
thousands lightweight threads on a GPGPU comes at a price: well-known limitations
include a restriction of a group of threads to execute the same instruction at the same
time or a burdensome memory model with a high cost of non–regular memory access
patterns. We believe though, that those restrictions do not play a significant role in a
Monte Carlo simulation of Prism models. For that purpose we have chosen OpenCL
[13] as a framework and programming language for GPGPU simulation.

3.1 Architecture

Our decision to implement the simulator engine for Prism using OpenCL has been
driven by its capability of supporting many types of devices offered by different ven-
dors, the most common being graphic cards and multi–core CPU servers. We will fur-
ther use an OpenCL–specific terminology.

To simplify the implementation we have used OpenCL bindings for Java, the main
source language of Prism, provided through the JavaCL library [2].

Fig. 1 presents a general scheme of the simulator. Within Prism there is no sig-
nificant difference between starting a simulation in using SC or SG. In both cases a
model and a list of properties is required. Then, a just–in–time source-to-source trans-
lation of the model and properties produces a dedicated compute kernel (block Kernel
generator in Fig. 1) which is basically a program for a number of vector processors,
which use a single–instruction–multiple–data paradigm. The approach is very differ-
ent from the reinterpretation scheme implemented in SC, which stores the model and
properties in memory structures, and not as an automatically generated program. SG ex-
ecutes kernels implemented in OpenCL C language, a modified version of C99, which
has been adapted to OpenCL’s device abstraction and stripped from features usually not
allowed on a device, such as recursion or function pointers. Those simple programs can
be effectively compiled into native bytecode of the device (typically, a graphic card).
The syntax of Prism language makes the translation process rather straightforward
due to the similarity between its expressions and the OpenCL C language. Only mi-
nor and automatically applied changes allow to obtain an expression valid in the latter
language.

3.2 Method

A scheme of generating a single random path (sample) is presented in Algorithm 1.
Capitalised identifiers indicate constants which are injected into kernel source. Many
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Fig. 1. The OpenCL-based simulator engine in Prism.

details have been omitted in the case of continuous time models. For example, in CTMC
both times of entering and leaving state may be required in certain situations, such as a
bounded until or a property with cumulative reward. The fargument idx is an unique
identifier of kernel instance, offset specifies how many paths have been processed in
kernels previously computed on the device. The argument seed seeds the generator of
pseudorandom numbers. As the scheme is an equivalent of an OpenCL kernel, the two
last arguments are OpenCL–specific storage buffers in the device memory, where the
kernel is allowed to save results of property verification, and also the length of created
path used to display sampling statistics. The first loop (lines 5–7) resets the collected
statistical data about properties, the second loop (lines 8–27) generates the path until
any of the following: its maximum length is reached (line 8), a deadlock (line 14) or a
self–loop (line 18) occurs, or all properties are verified precisely enough (line 24). The
last loop (lines 29–31) copies the collected data into the global memory.

The implementation had to be specially adapted for GPGPU devices, given that
there can be a significant slow–down if the kernel diverges from the SIMD paradigm.
Another example of such change is choosing always the smallest, most space efficient
integer type for holding a state variable, which is possible as Prism models specify
ranges for each such variable. For efficiency, if a simulated model updates a variable
with a value exceeding these ranges, then the behaviour is undefined. A large speed–up
can be achieved by handling an update synchronised between Prism modules in one
step. If such update is performed on the same copy of state vector, it may induce a race
condition of the type Read-After-Write. SG detects such situations and creates addi-
tional copies of the affected variables, if necessary, instead of relying on the OpenCL
compiler, which might handle the issue less effectively. Creating only one instance of a
state vector is crucial for performance because it decreases significantly memory space
used by the kernel, as discussed later with memory complexity of the algorithm. The
simulation kernel is also capable of detecting when there is only one transition avail-
able, and it does not change the state. Such a behaviour indicates that there is only a
single self–loop in the current state, which is interpreted by SG as a stop condition. If
there is an unbounded property which has not been satisfied yet, its value is not going
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to change. If there is a property with a lower bound, which has not been reached yet, it
can be evaluated immediately and the process of simulating the current path ends.

Our pseudorandom number generator of choice is Random123 [12], which provides
a performance satisfying our needs. For more details on model conversion into a form
for GPGPU computation see [3].

Algorithm 1 A generic path generation algorithm for OpenCL kernel.
1: procedure KERNEL(idx, o f f set, seed, path lengths, property results)
2: prng← initialize prng(seed, idx, o f f set) . A distinct seed for each path
3: state vector← INITIAL STATE VECTOR
4: time← 0
5: for each property p ∈ PROPERTIES do
6: reset(results p)
7: end for
8: for i < MAX PATH LENGTH do
9: active updates← evaluate guards(state vector) . Single and synchronised

10: time update(time) . More complex for CTMC
11: for each property p ∈ PROPERTIES do
12: active properties←property p update(state vector, results p, time)
13: end for
14: if active updates = 0 then
15: break . Deadlock detected
16: end if
17: no change← update(prng, state vector, active updates)
18: if no change∧active updates = 1 then
19: for each property p ∈ PROPERTIES do
20: active properties←property p update(state vector, results p, time)
21: end for
22: break . Loop detected
23: end if
24: if ¬active properties then
25: break . Stop sampling
26: end if
27: end for
28: path lengths[idx + o f f set] = i . Save results in global memory
29: for each property ∈ property results do
30: property[idx + o f f set] = results p . Save results in global memory
31: end for
32: end procedure

A generated kernel is passed as a string of source code to a specific device compiler
(block OpenCL compiler in Fig. 1). This compilation does not add a significant
overhead on modern OpenCL platforms – we have found that it typically takes less
than one second for tested models. A kernel represented in device bytecode is sent to
simulator’s runtime (see again Fig. 1), where a range of work items is enqueued on the
device, as described in more details in the next section. Each one of them is responsible
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for producing exactly one random path through the model and its identifier idx, is paired
with an offset, in order to produce a unique key across many separate kernel enqueued
on the device. The key is necessary for correct accessing memory storage and unique
random seeds for each generated path.

4 Automatic statistical verification

The ASV step is optionally triggered at the user request, in one of the following ways:

– unconditionally;
– if a quantitative property is being computed, like the probability value;
– if a steady state is detected prematurely in an iterative PMC method.

The last criterion is discussed in more detail in the example in Sec. 5.
The ability to process an extensive number of samples in a very short time often

allows for a reliable and fast ASV of a property value v obtained using PMC. In the
ASV step, in order to save the user’s time, SG must finish within a predefined time
Tmax.

After the ASV step, the user is presented with a set of diagnostics, so that he can
estimate the correctness of v. Let the simulator estimate a value w of the same property.
Let RCI be the ratio of the width of CI at confidence level 90% to w. The following
independent diagnostics can be presented:

– Tmax too low to reach RCI < RCI
max; RCI

max has a default value of 1 · 10−2 and can be
customised;

– v within a CI of a confidence level x, outside a CI of a confidence level y, where
x ∈ L = {90%,95%,99%}, y ∈ L∨{< 90%}.

5 Case study

An instantaneous reward in a CTMC can be estimated by weighting the reward func-
tion over a probabilistic distribution of states at a time instant t. Prism computes the
distribution by uniformisation (Jensen’s method) [5] which discretises the CTMC with
respect to a constant rate. Then, probabilities are approximated by a finite summation
Z of Poisson–distributed steps of the derived DTMC. The number of these steps de-
pends on the precision required, and is computed using the Fox–Glynn method [4]. Yet,
in order to shorten computation time, when performing that summation, Prism also
tests, if a steady state has been reached, by finding a maximum difference, either rela-
tive or absolute, between elements in solution vectors from two successive steps. If the
difference is smaller than a constant threshold ε , the summation is terminated early.

Prism’s default criterion of the termination is to use a relative difference and
ε = 10−6. The criterion can be customised in order to set a compromise between preci-
sion and computational complexity.

To illustrate the ASV, we will discuss a model where the detection of a steady state
is premature if the default termination criterion is used. In effect, were the automatic
SV not enabled, the user would obtain incorrect results without a warning.
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Fig. 2. (a) Estimates of Exp(Cr), CIs are narrow enough to be hardly seen, thus their magnification
by 100 is also show. (b) elapsed CPU time and the number of samples per single property, Ti and
Ts are total times of, respectively, the formal method performing Z, and the statistical estimation
on SG, N is the number of samples chosen by SG in order to fit within Tmax.

We will use a modified Model 2 from [11]. It is a simple CTMC with multiple clients
and servers, in which some of the servers can occasionally be broken. To trigger the said
premature termination of Z, we modify the model by using constants rs = 1,rl = 500
(see [11] for details), i.e. the server is slower at initiating a connection with a client, but
faster at processing a request. We ask for an expected instantaneous reward value Cr,
equal to the number of clients requesting at a given time instant t.

Let the user choose the default termination criterion, and let he also request, that SV
be used for up to Tmax = 1.5 sec. after a PMC step such that a steady state detection has
terminated early Z (or any other formal iterative method which uses ε). Exp(Cr) against
t, found using both a formal PMC and SG, is depicted in Fig. 2(a). We see that the model
undergoes a fast change at t ≈ 100, during which the increase of requests becomes
rapidly slower. The constant Tmax allows for a fairly narrow CI at 99% confidence level
– its width never reaches 0.1. In the case of the discussed diagram RCI < 4 · 10−4 for
any t – such a narrow CI makes it probable that following the said change at t ≈ 100,
the PMC results become less and less precise. This would trig respective warnings, that
values from the results of the PMC step fall outside a CI of a high confidence level.

The relative temporal overhead of SV for the chosen Tmax is illustrated in Fig. 2(b).
It is largest for small t and makes Prism run for about 50% longer. For t & 200
Prism needs less than 10% of an additional CPU time to perform the SV step. The
figure also shows the number of samples which can be computed within Tmax; wee see
that the number decreases for larger t due to longer paths which need to be generated
by the simulator.

In order to obtain the CPU times in Fig. 2(b), we have used an AMD R9 Nano,
a modern mid-range GPU with 4096 stream processors. Let us compare that GPU to
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another OpenCL device, containing two Intel Xeon E5-2630 v3 CPUs with clock fre-
quency 2.40GHz, each of them providing 8 cores with HyperThreading, resulting in
32 threads for OpenCL. Fig. 3 compares the simulation time from Fig. 2(b) to that of
the CPU OpenCL device, both evaluating the same number of samples. In the case of
the latter device, we see times in the range of 8 and 12 seconds, i.e. it is several times
slower. This shows the advantage of streams processors in the case of a large number
of independent, non–memory intensive tasks.
SC has been excluded from the chart as it is not optimised for speed. At t = 2000,

where long paths make it especially advantageous to use the on–the–fly compilation,
it took SC over 130 minutes to evaluate the same reward property on the same CPU,
thousands of times slower comparing a respective simulation on a GPGPU.

6 Discussion

The SV limits itself now to diagnostics, but it could be straightforwardly extended to
influence on the PMC step. For example, if a property pi turns out to be computed
imprecisely in the PMC step, and the following property to compute pi+1 differs only
in the time instant t, the SV could automatically decrease ε for the computation of pi+1.

We expect to release an open-source version of the tool in the following months.
The further development would be focused on a parallelisation across multiple OpenCL
devices, with a dynamic and automatic load balancing.
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Abstract. A security property called process environment opacity is for-
malized and studied. Properties of process’s inputs (environments) are
expressed by predicate and it is required that an intruder cannot learn
their validity by observing process’s behavior. This basic idea can be for-
mulated in various ways. The resulting security properties are compared.

Keywords: security, opacity, process algebras, information flow

1 Introduction

Information flow based security properties (see [GM82]) assume an ab-
sence of any information flow between private and public systems ac-
tivities. This means, that systems are considered to be secure if from
observations of their public activities no information about private activ-
ities can be deduced. This approach has found many reformulations and
among them opacity (see [BKR04,BKMR06]) could be considered as the
most general one and many other security properties could be viewed as
its special cases (see, for example, [Gru07]). A predicate is opaque if for
any trace of a system for which it holds, there exists another trace for
which it does not hold and the both traces are indistinguishable for an
observer (which is expressed by an observation function). This means that
the observer (intruder) cannot be sure whether a trace for which the pred-
icate holds has been performed or not. In [Gru15] opacity is modified (the
resulting property is called process opacity) in such a way that instead of
process’s traces we focus on properties of reachable states. Hence we as-
sume an intruder who is not primarily interested whether some sequence
of actions performed by a given process has some given property but we
consider an intruder who wants to discover whether this process reaches
a state which satisfied some given (classified) predicate. It turns out that
in this way we could capture some new security flaws. Both opacity and
process opacity are based on fixed (static) security policy which is not
changed during system computation. In [Gru16] process opacity for dy-
namic security policies is formalized. All of these properties are defined in
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the framework of process algebras, but neither opacity, which represents
security of process’s traces nor process opacity, which represents security
of resulting states, can capture security of process’s inputs, similarly as
security of inputs is defined for programming languages.

The aim of this paper is to formalize security of process’s inputs. We
adopt the approach which appeared in [SS15] for programming languages
but we reformulate it for timed process algebras. Inputs will be modeled
by processes which we call process’s environments. The resulting security
property will be called process environment opacity. It assumes that for
every process’s environment for which a given predicate holds there exists
equivalent one, for which it does not hold and the process with these envi-
ronments leads to equivalent states. This means that an intruder cannot
learn validity of the predicate over process’s inputs. We will study this
security property as well as its variants. Moreover, we compare them with
other security properties known in the literature.

The paper is organized as follows. In Section 2 we describe the timed
process algebra TPA which will be used as a basic formalism. In Section
3 we present some notion on information flow security based on opacity
and in the next section process environment opacity is defined, studied
and compared to other security properties. Section 5 contains discussion
and plans for future work.

2 Timed Process Algebra

In this section we define Timed Process Algebra, TPA for short. TPA
is based on Milner’s CCS but the special time action t which expresses
elapsing of (discrete) time is added. The presented language is a slight
simplification of Timed Security Process Algebra introduced in [FGM00].
We omit an explicit idling operator ι used in tSPA and instead of this
we allow implicit idling of processes. Hence processes can perform either
”enforced idling” by performing t actions which are explicitly expressed
in their descriptions or ”voluntary idling” (i.e. for example, the process
a.Nil can perform t action since it is not contained the process spec-
ification). But in both cases internal communications have priority to
action t in the parallel composition. Moreover we do not divide actions
into private and public ones as it is in tSPA. TPA differs also from the
tCryptoSPA (see [GM04]). TPA does not use value passing and strictly
preserves time determinancy in case of choice operator + what is not the
case of tCryptoSPA.
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To define the language TPA, we first assume a set of atomic action
symbols A not containing symbols τ and t, and such that for every a ∈ A
there exists a ∈ A and a = a. We define Act = A ∪ {τ}, At = A ∪
{t}, Actt = Act ∪ {t}. We assume that a, b, . . . range over A, u, v, . . .
range over Act, and x, y . . . range over Actt. Assume the signature Σ =⋃
n∈{0,1,2}Σn, where

Σ0 = {Nil}
Σ1 = {x. | x ∈ A ∪ {t}} ∪ {[S] | S is a relabeling function}

∪{\M |M ⊆ A}
Σ2 = {|,+}

with the agreement to write unary action operators in prefix form, the
unary operators [S], \M in postfix form, and the rest of operators in infix
form. Relabeling functions, S : Actt → Actt are such that S(a) = S(ā)
for a ∈ A,S(τ) = τ and S(t) = t.

The set of TPA terms over the signature Σ is defined by the following
BNF notation:

P ::= X | op(P1, P2, . . . Pn) | µXP

where X ∈ V ar, V ar is a set of process variables, P, P1, . . . Pn are TPA
terms, µX− is the binding construct, op ∈ Σ.

The set of CCS terms consists of TPA terms without t action. We will
use an usual definition of opened and closed terms where µX is the only
binding operator. Closed terms which are t-guarded (each occurrence of
X is within some subterm t.A i.e. between any two t actions only finitely
many non timed actions can be performed) are called TPA processes.

We give a structural operational semantics of terms by means of la-
beled transition systems. The set of terms represents a set of states,
labels are actions from Actt. The transition relation → is a subset of
TPA × Actt × TPA. We write P

x→ P ′ instead of (P, x, P ′) ∈ → and
P 6 x→ if there is no P ′ such that P

x→ P ′. The meaning of the expression
P

x→ P ′ is that the term P can evolve to P ′ by performing action x, by
P

x→ we will denote that there exists a term P ′ such that P
x→ P ′. We

define the transition relation as the least relation satisfying the inference
rules for CCS plus the following inference rules:

Nil
t→ Nil

A1
u.P

t→ u.P
A2

P
t→ P ′, Q

t→ Q′, P | Q 6 τ→
P | Q t→ P ′ | Q′

Pa
P

t→ P ′, Q
t→ Q′

P +Q
t→ P ′ +Q′

S
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Here we mention the rules that are new with respect to CCS. Axioms
A1, A2 allow arbitrary idling. Concurrent processes can idle only if there
is no possibility of an internal communication (Pa). A run of time is
deterministic (S) i.e. performing of t action does not lead to the choice
between summands of +. In the definition of the labeled transition system
we have used negative premises (see Pa). In general this may lead to
problems, for example with consistency of the defined system. We avoid
these dangers by making derivations of τ independent of derivations of t.
For an explanation and details see [Gro90].

For s = x1.x2. . . . .xn, xi ∈ Actt we write P
s→ instead of P

x1→x2→ . . .
xn→

and we say that s is a trace of P . The set of all traces of P will be
denoted by Tr(P ). By ε we will denote the empty sequence of actions,
by Succ(P ) we will denote the set of all successors of P i.e. Succ(P ) =
{P ′|P s→ P ′, s ∈ Actt∗}. If set Succ(P ) is finite we say that P is finite
state process. We define modified transitions

x⇒M which ”hide” actions
from M . Formally, we will write P

x⇒M P ′ for M ⊆ Actt iff P
s1→ x→ s2→ P ′

for s1, s2 ∈ M? and P
s⇒M instead of P

x1⇒M
x2⇒M . . .

xn⇒M . We will write

P
x⇒M if there exists P ′ such that P

x⇒M P ′. We will write P
x̂⇒M P ′

instead of P
ε⇒M P ′ if x ∈ M . Note that

x⇒M is defined for arbitrary
action but in definitions of security properties we will use it for actions
(or sequence of actions) not belonging to M . We can the extend the
definition of ⇒M for sequences of actions similarly to

s→. By Sort(P )
we will denote the set of actions from A which can be performed by P .
The set of weak timed traces of process P is defined as Trw(P ) = {s ∈
(A∪{t})?|∃P ′.P s⇒{τ} P ′}. Two process P and Q are weakly timed trace
equivalent (P 'w Q) iff Trw(P ) = Trw(Q). We conclude this section with
definitions M-bisimulation and weak timed trace equivalence.

Definition 1. Let (TPA, Actt,→) be a labelled transition system (LTS).
A relation < ⊆ TPA×TPA is called a M-bisimulation if it is symmetric
and it satisfies the following condition: if (P,Q) ∈ < and P

x→ P ′, x ∈
Actt then there exists a process Q′ such that Q

x̂⇒M Q′ and (P ′, Q′) ∈ <.
Two processes P,Q are M-bisimilar, abbreviated P ≈M Q, if there exists
a M-bisimulation relating P and Q.

3 Information flow and opacity

In this section we will present motivations for new security concepts which
will be introduced in the next section. First we define an absence-of-
information-flow property called Strong Nondeterministic Non-Interference
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(SNNI, for short, see [FGM00]). Suppose that all actions are divided into
two groups, namely public (low level) actions L and private (high level)
actions H. It is assumed that L ∪H = A. Process P has SNNI property
(we will write P ∈ SNNI) if P \H behaves like P for which all high level
actions are hidden (by action τ) for an observer. To express this hiding
we introduce hiding operator P/M,M ⊆ A, for which it holds if P

a→ P ′

then P/M
a→ P ′/M whenever a 6∈ M ∪ M̄ and P/M

τ→ P ′/M whenever
a ∈ M ∪ M̄ . Formally, we say that P has SNNI property, and we write
P ∈ SNNI iff P \H 'w P/H. SNNI property assumes an intruder who
tries to learn whether a private action was performed by a given process
while (s)he can observe only public ones. If this cannot be done then the
process has SNNI property. A generalization of this concept is given by
opacity (this concept was exploited in [BKR04], [BKMR06] and [Gru07]
in a framework of Petri Nets, transition systems and process algebras,
respectively. Actions are not divided into public and private ones at the
system description level, as it is done for example in [GM04], but a more
general concept of observations and predicates is exploited. A predicate is
opaque if for any trace of a system for which it holds, there exists another
trace for which it does not hold and the both traces are indistinguishable
for an observer (which is expressed by an observation function). This
means that the observer (intruder) cannot say whether a trace for which
the predicate holds has been performed or not.

First we assume an observation function i.e. a function O : Actt? →
Θ?, where Θ is a set of elements called observables (note that we have
no other requirements on O except that it has to be total, i.e. defined
for every sequence of actions). Now suppose that we have some security
property. This might be an execution of one or more classified actions,
an execution of actions in a particular classified order which should be
kept hidden, etc. Suppose that this property is expressed by a predi-
cate φ over sequences. We would like to know whether an observer can
deduce the validity of the property φ just by observing sequences of ac-
tions from Actt? performed by system of interest. The observer cannot
deduce the validity of φ if there are two sequences w,w′ ∈ Actt? such that
φ(w),¬φ(w′) and the sequences cannot be distinguished by the observer
i.e. obs(w) = obs(w′). We formalize this concept by the notion of opacity.

Definition 2 (Opacity). Given process P , a predicate φ over Actt? is
opaque w.r.t. the observation function O if for every sequence w, w ∈
Tr(P ) such that φ(w) holds and O(w) 6= ε, there exists a sequence w′, w′ ∈
Tr(P ) such that ¬φ(w′) holds and O(w) = O(w′). The set of processes
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for which the predicate φ is opaque with respect to O will be denoted by
Op(φ,O).

P
w

=⇒

O(w) = O(w′) and φ(w),¬φ(w′)

P
w′

=⇒

Fig. 1. Opacity

Now let us assume that an intruder tries to discover, instead of a
property over process’s traces, whether a given process can reach a state
with some given property expressed by a (total) predicate. This might
be process deadlock, capability to execute only traces s with time length
less then n, capability to perform at the same time actions form a given
set, incapacity to idle (to perform t action ) etc. Again we do not put any
restriction on such predicates but we only assume that they are consistent
with some suitable behavioral equivalence. The formal definition follows.

Definition 3. We say that the predicate φ over processes is consistent
with respect to relation ∼= if whenever P ∼= P ′ then φ(P )⇔ φ(P ′).

As consistency relation ∼= we could take bisimulation (≈∅), weak
bisimulation (≈{τ}) or any other suitable equivalence. A special class of

such predicates are such ones (denoted as φQ∼=) which are defined by a

given process Q and equivalence relation ∼= i.e. φQ∼=(P ) holds iff P ∼= Q.
We suppose that the intruder can observe only some activities per-

formed by the process. Hence we suppose that there is a set of public
actions which can be observed and a set of hidden (not necessarily pri-
vate) actions. To model observations we exploit the relation

s⇒M . The
formal definition of process opacity (see [Gru15]) is the following.

Definition 4 (Process Opacity). Given process P , a predicate φ over
processes is process opaque w.r.t. the set M if whenever P

s⇒M P ′ for
s ∈ (Actt\M)∗ and φ(P ′) holds then there exists P ′′ such that P

s⇒M P ′′

and ¬φ(P ′′) holds. The set of processes for which the predicate φ is process
opaque w.r.t. to the M will be denoted by POp(φ,M).

Note that if P ∼= P ′ then P ∈ PPOp(φ,M) ⇔ P ′ ∈ POp(φ,M)
whenever φ is consistent with respect to ∼= and ∼= is such that it a subset
of the trace equivalence (defined as 'w but instead of

s⇒{τ} we use
s⇒∅).
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P
s

=⇒M φ(P ′)

P
s

=⇒M ¬φ(P ′′)

Fig. 2. Process opacity

Properties opacity and process opacity are depicted in Fig. 1 and 2,
respectively. In the former case, a set of actions performed by a process
is of interest, say classified, in the later case, it is a property of reachable
states which is protected by process opacity.

4 Process environment opacity

Now we will formulate security properties which protect inputs of a given
process. We start with property called process environment opacity which
is a modification of the the property formulated for programming lan-
guages which appeared in [SS15]. Process’s inputs will be modeled also
by processes, called environments, running in parallel with the process.
Moreover, we force (by restriction operator) the process to communicate
exclusively with its environment by means of channels contained in given
set M . Formally, we assume a set of environments E , i.e. processes which
represent possible input environments for a given process. We extend def-
inition of predicates over environments to sets of environments K,K ⊆ E
in the following way. φ(K) holds iff φ(E) holds for every E ∈ K. More-
over, we assume two equivalence relations over processes, ∼=1,∼=2, which
express capability of an intruder to distinguish among processes.

Definition 5 (Process Environment Opacity). Given process P and
set of environments E, a predicate φ over processes is environment opaque
w.r.t. the set M and ∼=1,∼=2 if whenever (P |E) \M s⇒ R for s ∈ (Actt \
M)+ and φ(E) holds then there exists E′ such that (P |E′) \M s⇒ R′,
E ∼=1 E′, ¬φ(E′) holds and R ∼=2 R′. The set of processes for which
the predicate φ is environment opaque w.r.t. to the M and ∼=1,∼=2 will be
denoted by PEOp(φ, E ,M,∼=1,∼=2).

Note that process environment opacity says nothing about security
of inputs if φ(E) or ¬φ(E) holds. As regards choice of relations ∼=1,∼=2

it depends on capability of possible intruders. For example, it could be
bisimulation, trace equivalence or just the relation equal to TPA×TPA.
Schematically, process environment opacity is depicted in Fig. 3.
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(P |E) \M s
=⇒ R, and φ(E) E

∼=2 ∼=1

(P |E′) \M s
=⇒ R′ and ¬φ(E′) E′

Fig. 3. Process environment opacity

4.1 Properties of process environment opacity

In this subsection we will formulate some properties of process environ-
ment opacity.

Proposition 1. Let φ1 ⇒ φ2. Then

PEOp(φ2, E ,M,∼=1,∼=2) ⊆ PEOp(φ1, E ,M,∼=1,∼=2).

Proof. Let P ∈ PEOp(φ2, E ,M,∼=1,∼=2) and (P |E) \ M s⇒ R for s ∈
(Actt \M)+ and φ1(P ′) holds. Then also φ2(P ′) holds since φ1 ⇒ φ2.
We know that there exists E′ such that (P |E′) \M s⇒ R′, E ∼=1 E′ and
¬φ2(E′) holds and R ∼=2 R′. Since ¬φ2 ⇒ ¬φ1 we have that also ¬φ1(E′)
holds and hence P ∈ PEOp(φ1, E ,M,∼=1,∼=2). ut

Proposition 2. Let E1 ⊆ E2 and ¬φ(E2 \ E1). Then

PEOp(φ, E1,M,∼=1,∼=2) ⊆ PEOp(φ, E2,M,∼=1,∼=2).

Proof. Sketch. Let P ∈ PEOp(φ, E1,M,∼=1,∼=2) and (P |E) \ M s⇒ R
for s ∈ (Actt \M)+ and φ(E) holds for E ∈ E1. Since ¬φ(E2 \ E1) all
environments for which φ holds are from E1. We know that there exists
E′ ∈ E1, E ∼=1 E′, such that (P |E′) \M s⇒ R′ and ¬φ(E′) holds and
R ∼=2 R′. Since E1⊆E2 we have that also P∈PEOp(φ, E2,M,∼=1,∼=2). ut

Proposition 3. Let ∼=1⊆∼=1′. Then

PEOp(φ, E ,M,∼=1,∼=2) ⊆ PEOp(φ, E ,M,∼=1′ ,∼=2).

Proof. Let P ∈ PEOp(φ, E ,M,∼=1,∼=2) and (P |E) \ M s⇒ R for s ∈
(Actt \M)+ and φ(E) holds for E ∈ E . We now that there exists E′

E′ ∈ E such that (P |E′) \ M s⇒ R′, E ∼=1 E′ and ¬φ(E′) holds and
R ∼=2 R′. Since ∼=1⊆∼=1′ we have that also E ∼=1′ E′ and hence we have
also P ∈ PEOp(φ, E ,M,∼=1′ ,∼=2). ut

Proposition 4. Let ∼=2⊆∼=2′. Then

PEOp(φ, E ,M,∼=1,∼=2) ⊆ PEOp(φ, E ,M,∼=1,∼=2′).
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Proof. Let P ∈ PEOp(φ, E ,M,∼=1,∼=2) and (P |E) \ M s⇒ R for s ∈
(Actt \M)+ and φ(E) holds for E ∈ E . We now that there exists E′

E′ ∈ E such that (P |E′) \ M s⇒ R′, E ∼=1 E′ and ¬φ(E′) holds and
R ∼=2 R′. Since ∼=2⊆∼=2′ we have that also R ∼=2′ R′ and hence we have
also P ∈ PEOp(φ, E ,M,∼=1,∼=2′). ut

As regards compositionality properties of process environment opac-
ity, only a few of them hold. In general, process environment opacity is not
compositional even for the prefix operator. Let P ∈ PEOp(φ, E ,M,∼=1

,∼=2) for φ such that φ(A) holds iff A
x̄→ and x ∈M . Clearly, (x.P |A′)\M

cannot perform any action for A′ such that ¬φ(A′), i.e.
x.P 6∈ PEOp(φ, E ,M,∼=1,∼=2). A bit more sophisticated argument leads
to the same result also for x 6∈M . On the other side, process environment
opacity is compositional with respect to non-deterministic choice as it is
stated by the following Proposition.

Proposition 5. Let P,Q ∈ PEOp(φ, E ,M,∼=1,∼=2). Then

P +Q ∈ PEOp(φ, E ,M,∼=1,∼=2).

Proof. Let (P+Q|E)\M s⇒M R for s ∈ (Actt\M)+ and φ(E) holds. Then
without loss of generality we can assume that (P |E) \M s⇒M R. Since
P ∈ PEOp(φ, E ,M,∼=1,∼=2) there exists E′ such that (P |E′)\M s⇒M R′,
E ∼=1 E′ and ¬φ(E′) holds andR ∼=2 R′. Hence also (P+Q|E′)\M s⇒M R′

what implies P +Q ∈ PEOp(φ, E ,M,∼=1,∼=2).
ut

As regards the rest of TPA operators, the situation is similar as for
the prefix operator.

4.2 Process environment opacity and Non-Deducibility

In this subsection we will compare process environment opacity with Non-
Deducibility on Composition (NDC for short, see in [FGM03]) which is a
widely studied security property. It is based on the idea of checking the
system against all high level potential interactions, representing every
possible high level process. System is NDC if for every high level user A,
the low level view of the behaviour of P is not modified (in terms of trace
equivalence) by the presence of A. The idea of NDC can be formulated
as follows.

Definition 6. (NDC) P ∈ NDC iff for every A,Sort(A) ⊆ H ∪ {τ, t}

(P |A) \H 'w P \H.

217



Now we will formulate relationship between NDC and PEOp(φ, E , H,∼=1

,∼=2) properties. Note that this relationship is similar to the one which
appeared in [SS15] for programming languages.

Proposition 6. P ∈ NDC iff P ∈ PEOp(φ, E , H,∼=1,∼=2) for E = {E ∈
TPA|Sort(A) ⊆ H}, ∼=2= TPA× TPA and for every φ such that every
kernel of ∼=1 contains with every process E from E for which φ(E) holds
also process E′ for which ¬φ(E′) holds.

Proof. Sketch. Let P ∈ NDC that means that (P |E) \H 'w (P |E′) \H
for every two E,E′ such that Sort(E) ⊆ H,Sort(E′) ⊆ H. But by the
assumption we know that for every φ such that for every E for which
φ(E) holds there exists E′ for which ¬φ(E′) holds and E ∼=1 E′, and this
implies that P ∈ PEOp(φ, E , H,∼=1,∼=2).

Now suppose that P 6∈ NDC i.e. there exist E,E′ such that (P |E) \
H 6'w (P |E′) \H. Without loss of generality we can assume that (P |E) \
H

s⇒ but (P |E′)\H 6 s⇒. Hence we can choose predicate φ such that φ(E)
holds and only environment for which φ does not hold is equal to E′.
Hence P 6∈ PEOp(φ, E , H,∼=1,∼=2). ut

4.3 Variants of process environment opacity

In this subsection we will formulate several variants of process environ-
ment opacity. We will start with its persistent variant.

Definition 7 (Persistent Process Environment Opacity). Given
process P and set of environments E, a predicate φ over processes is envi-
ronment persistently opaque w.r.t. the set M and ∼=1,∼=2 if whenever for
every P ′, P ′ ∈ Succ(P ) we have P ′ ∈ PEOp(φ, E ,M,∼=1,∼=2).

The set of processes for which the predicate φ is persistent environment
opaque w.r.t. to the M and ∼=1,∼=2 will be denoted by PPEOp(φ, E ,M,∼=1

,∼=2).

The relationship between process environment opacity and its persis-
tent variant is formulated in by the following Proposition.

Proposition 7. PPEOp(φ, E ,M,∼=1,∼=2) ⊆ PEOp(φ, E ,M,∼=1,∼=2)

Proof. The proof follows directly from Definitions 5 and 7. In general, we
cannot guarantee that this inclusion is proper. ut

Process environment opacity expresses security of inputs for which
given predicate holds but does not say anything about those ones for
which it does not hold, i.e. says nothing about security of ¬φ. So we
define a stronger variant of process environment opacity.
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Definition 8 (Strong Process Environment Opacity). Given pro-
cess P and set of environments E, a predicate φ over processes is strongly
environment persistently opaque w.r.t. the set M and ∼=1,∼=2 if whenever
P ∈ PEOp(φ, E ,M,∼=1,∼=2) and P ∈ PEOp(¬φ, E ,M,∼=1,∼=2).

The set of processes for which the predicate φ is strongly environment
opaque w.r.t. to the M and ∼=1,∼=2 will be denoted by SPEOp(φ, E ,M,∼=1

,∼=2).

Proposition 8. SPEOp(φ, E ,M,∼=1,∼=2) ⊆ PEOp(φ, E ,M,∼=1,∼=2)

Proof. Again the proof follows directly from Definitions 5 and 8. and we
cannot guarantee that the inclusion is proper as well. ut

The most of properties stated for process environment opacity can be
formulated also for its strong variant, some with a slight modification.

Till now we have not expected that environments are fully ”consumed”
by processes. For cases when an intruder can see only results of complete
computations we have to modify definition of process environment opac-
ity. Suppose that all process in E are finite and moreover, the last action
performed before reaching (sub)state Nil is a new auxiliary action

√
.

That means that for every environment E every occurrence of Nil is
preceded by

√
i.e. every Nil is always a subterm of a term

√
.Nil. For

example, E = a.b.c.
√
.Nil + b.a.

√
.Nil is such a process. We indicate

corresponding environments by E√.

Definition 9 (Termination Process Environment Opacity). Given
process P and set of environments E√, a predicate φ over processes is

environment opaque w.r.t. the set M and ∼=1,∼=2 if whenever (P |E)\M s.
√
⇒

R for s ∈ (Actt \ M)+ and φ(E) holds then there exists E′ such that

(P |E′) \ M s.
√
⇒ R′, E ∼=1 E′ and ¬φ(E′) holds and R ∼=2 R′. The set

of processes for which the predicate φ is termination environment opaque
w.r.t. to the M and ∼=1,∼=2 will be denoted by TPEOp(φ, E√,M,∼=1,∼=2).

As regards decidability of proposed security properties, in general they
are undecidable. To obtain properties which are decidable, we need re-
strictions on predicates which should be decidable, limitation to finite set
of environments and/or restrictions on equivalences ∼=1,∼=2.

5 Discussion and further work

We have presented the new security concept called process environment
opacity and we have formalized it in the timed process algebra framework.
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It expresses different aspects of processes behaviour as opacity or process
opacity. Instead of sequences of actions or resulting processes, it focuses on
process’s inputs and their properties. We have presented some properties
of the resulting security property as well as its variants. Since we worked
with timed process algebras we can model security with respect to limited
time length of an attack, with a limited number of attempts to perform
an attack and so on. Besides investigation of decidable variants of the
proposed properties we also plan to study variants of process environment
opacity which assume intruders which are not only observers but can
actively interact with the systems to be attacked.
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Abstract. Two important issues have to be dealt with when implement-
ing the hierarchical structure [1] of the learning algorithm of an Artificial
Neural Network (ANN). The first one concerns the selection of the gen-
eral coordination principle. Three different principles are described. They
vary with regard to the degree of freedom for first-level tasks. The sec-
ond issue concerns the coordinator structure or coordination algorithm.
The ANN learning process can be examined as a two-level optimization
problem. Importantly all problems and sub-problems are unstructured
minimization tasks . The article concentrates on the issue of the coor-
dinator structure. Using the interaction prediction principle as the most
suitable principle for two-level ANN structures, different coordinator tar-
get functions are defined. Using classification task examples, the main
dynamic characteristics of the learning process quality are shown and
analyzed.

Keywords: Artificial Neural Network (ANN), hierarchy, decomposition, coor-
dination, coordination principle, coordinator structure

1 Computational task complexity

Large-scale multidimensional classification, interpolation and extrapolation are
complex tasks that can require long calculation times. For these tasks one can
make use of the ANN learning process using input and output data vectors with a
defined network architecture. There is no theoretical solution to the architecture
selection process, including the definition of the number of hidden layers and
neuron distribution between layers. From a calculation point of view, the ANN
learning process approaches a local or a global minimum asymptotically and is
very time-consuming. A multi-layered ANN with one input layer, a set of hidden
layers and an output layer can be sectioned off [1]. Every layer has its own input
and output vectors. For a standard two-layer network both the hidden layer and
the output layer can be described as sub-networks. These sub-networks form
the first-level of the hierarchical structure. So the network consists of two sub-
networks, and the local target function for each of them is defined Φ = (Φ1, Φ2).
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Similarly to the ANN structure decomposition, learning algorithm using error
backpropagation can also be decomposed. It can be decomposed into:

– The first-level task, searching for the minimum of the local target functions
Φ = (Φ1, Φ2) ,

– The second-level task, coordinating the first-level tasks.

Unfortunately, the first level optimization tasks in such learning algorithm are
non-linear. In practice, only standard procedures exist to solve these optimiza-
tion problems . But in a two-level learning algorithm structure, the coordinator
is not responsible for solving the global task. In [2], the most popular inter-
action prediction principle was implemented. According to this principle, the
coordinator plays an active role in the current ANN learning process. The main
interaction prediction principle is shown in Fig. 1. With each iteration, the coor-

Fig. 1. Interaction Prediction Principle

dinator and all of the first-level sub-tasks interchange information. The first-level
sub-tasks are optimal searching tasks. Usually, they look for the minimum of the
Mean Squared Error (MSE). The coordination algorithm structure is primary
related to the interaction prediction principle and two signals are used: primary
discerning Uγ = (Uγ1 , U

γ
2 ) and the feedback signal ascending ε = (ε1, ε2). The

primary signals are known as coordination signals and are sent from the co-
ordinator to all of the first-level sub-tasks. Thereby the coordinator assists in
optimizing the first-level sub-tasks. The forecast coordination signals may not be
precisely correct and the sub-tasks calculate their own value of the coordination
signals. These signals are sent up into the coordinator. The coordinator then uses
its own gradient method to calculate the new value of the coordination signals
(improving upon its own previous estimate). The process can be continued until
the coordinator and all the first-level sub-tasks have solved their own tasks.

1.1 Coordination aspects

Coordination as an operation process is related to three types of decision prob-
lems [3]. Finding a solution for:
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– The global task as the primary task for the entire ANN structure,
– Local tasks as the decomposition’s result of the global target function,
– Coordinator task that should be synthesized or find a solution procedure.

In effect , three different specific problems have to be solved:

1. Coordinator Synthesis. Decompose the global target function Φ into two sub-
tasks with their own local target functions Φ1, Φ2; the upper-level coordinator
task should be defined in such a way that all the sub-tasks are coordinated.

2. Modification Problem. In a two-level ANN learning algorithm; both the first-
level tasks and the coordinator task are defined. Unfortunately, the ANN
is not coordinated by the coordinator tasks. Before this problem can be
dealt with, one should modify the first-level tasks in such a way that the
coordinator coordinates the modified local target functions Φ = (Φ1, Φ2).
This can be formalized using the following predicate formula:

(∃γ)(∃W )[P(W,Φ)andP(U, Ψ(Uγ , ε))] (1)

Where: The predicate P(W,Φ) is true, if Φ is a problem (task) and W is
one of its solution. Ψ(U, ε)- coordinator target function. The first-level tasks
are coordinated with the coordination task when the coordination task has
a solution, all the first-level sub-tasks also have the solution for same coor-
dination input Uγ .

3. Decomposition. Given only the global target task Φ for ANN - decompose
this task Φ into the two sub-tasks Φ1, Φ2 and find a coordinator structure
and a coordination procedure. This is formalized as:

(∃γ)(∃W )[P[W = (W1,W2), (Φ1(U), Φ2(U)andP(W,Ψ(X,Z,W ))]] (2)

Where: X - input file, Z - learning file, W = (W1,W2) - ANN’s weight
coefficients.

The first-level tasks are coordinated with a given global target task when the
global task has a solution and as do some of the first-level tasks. The coordinator
has to influence the first-level tasks in such a way that the resulting action
guarantees the solution of the global target task.

1.2 Decomposition and coordination

Using Fig. 1, one can define the set of target functions:

– The global target function:

Φ(W1,W2, Y, Z) =
1

2
·
N2∑
k=1

(yk − zk)2 (3)

Where: Y [1 : N2] - the ANN output value, Z[1 : N2] - the the vector of
teaching data, N2 - the number of output neurons.

223



– The local target function Φ1

Φ1(W1, X, Uγ) =
1

2

N1∑
i=1

f(

N0∑
j=0

W1ij · xj)− uγi )2 (4)

Where: Uγ [1 : N1] - the coordination matrix as an input variable, N1 -
the number of hidden neurons, N0 - the number of input neurons, f(∗) - a
sigmoid function.

– The local target function Φ2.

Φ2(W2, Z, Uγ) =
1

2

N2∑
k=1

f(

N1∑
i=0

W2ki · uγi )− zk)2 (5)

Where: Uγ [1 : N1] - the coordination matrix as an input variable, N2 - the
number of output neurons, f(∗) - a sigmoid function

Using (4), one can calculate the feedback signal ε1i and the new value of matrix
W1.

ε1i = f(
N0∑
j=0

W1ij ẋj) (6)

∂Φ1

∂W1ij
= (v1i − uγi ) · f ′ · xj (7)

W1ij(n+ 1) = W1ij(n)− α1 · ∂Φ1

∂W1ij
(8)

For the second sub-network using (5), one can calculate the new value of ε2i and
the new value of matrix W2ki.

∂Φ2

∂W1ki
= (v2k − zk) · f ′ · uγk (9)

W2ki(n+ 1) = W2ki(n)− α2 · ∂Φ2

∂W1ki
(10)

∂Φ2

∂uγi
=

N1∑
k=1

(v2k − zk) · f ′ ·W2ki (11)

ε2i(n+ 1) = uγi (n)− α3 · ∂Φ2

∂uγi
(12)

Where: α1, α2, α3 - learning coefficients, uγi = u1γi = u2γi - coordination signals,
ε1i, ε2i - feedback signals.

To summarize the first-level includes two sub-networks and two optimization
tasks. The first sub-network calculates the new coefficient matrix W1ik(n +
1) and the feedback signal ε1i value by taking the parameter u1γi from the
coordinator and using the optimization procedure. The feedback signal is sent
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into the coordinator. For the second sub-network, the coordination signal u2γi
sets the optimization procedure in motion and calculates the new coefficient
matrix W2ki(n + 1) and the feedback signal ε2i value. The feedback signal is
also sent into the coordinator. After that, the coordinator procedure has to
calculate the new coordinator signal u1γi (n+ 1) and u2γi (n+ 1). Thus, design of
the coordinator structure is the main problem in a two-level learning algorithm.

2 Coordinator structure

In a two-level learning algorithm, the coordinator plays the main role. There-
fore, the choice of the coordinator principle is paramount. The principle should
specify strategies for the coordinator and determines the structure of the coor-
dinator. Three different approaches to how the interaction could be performed
were introduced [3].For an ANN learning algorithm, the Interaction Prediction
Principle is the most suitable. According to it, the coordinator predicts the in-
terface inputs. Success in coordinating all the first-level tasks depends on the
accuracy of the prediction of the interface inputs or the effect of the prediction
inputs. Therefore, to obtain responses from the first-level tasks, the coordinator
could measure:

1. The interface inputs value. This principle will be known as the Interface
Interaction Balance.

2. The target function value. This principle will be known as the Performance
Prediction Principle.

2.1 Interface Interaction Balance

The coordination input may involve a prediction of the interface between the first
and the second sub-networks. For the first sub-network, the coordinator signal
Uγ1 is sent into the target function Φ1 as a teacher data parameter. For the second
sub-network, the coordinator signal Uγ2 is treated as an input variable. Thanks
to it, both tasks are fully specified and algorithms can find the minimum value
of their target functions Φ1, Φ2 . The Interface Interaction Balance idea is shown
in Fig. 2. The coordinator target function Ψ could be a linear or a nonlinear

Fig. 2. Coordination algorithm structure for Interface Prediction Principle
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function.
Ψ(Uγ , εγ) = Ψ(Uγ , Uγ − Y ) (13)

Equation (13) uses the linear relation between two feedback signals ε1, ε2 and
the prediction interface value Uγ . Where: Uγ- prediction interface value Y - real
interface value

Ψ =
1

2

N1∑
i=1

(uγi − ε1
γ
i )2 +

1

2

N1∑
i=1

(uγi − ε2
γ
i )2 (14)

Where: Uγ = [uγ1 , u
γ
2 ...u

γ
N1

]
Using formula (14), the first derivative is calculated

∂Ψ

∂uγi
= (uγi − ε1

γ
i ) + (uγi − ε2

γ
i ) (15)

uγi (n+ 1) = uγi (n)− λ1 · ∂Ψ
∂uγi

(16)

Where: λ1 - learning coefficient,
The coordinator and the first-level sub-networks work in an iterative scheme.
When the coordinator signal Uγ(n) is applied and the first-level optimization
tasks find their own solution, a new coordination signal can be calculated (16).
Using the Interface Interaction Balance, the two vectors signals are measured:
the predicted interface input Uγ and the real interface value Y1, Y2 (Fig.2). In
a real situation this requirement could be difficult to implement.It is usually
possible to measure the first-level tasks and to send into the coordinator the
target function (performance) Φ1, Φ2 value and their derivatives.

2.2 Linear Performance Balance Principle

The target functions values and their derivatives are of a more generalized
form.The coordination scheme that uses this idea is shown in Fig. 3. The coor-

Fig. 3. Coordination algorithm structure for Performance Prediction Principle

dinator can receive both the target function value and the derivative value from
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the first-level sub-systems . The coordinator function can be defined as a linear
or a nonlinear function of the two parameters Φ1, Φ2

Ψ = Ψ(Φ1, Φ2) (17)

Then the local target functions can be defined by :

Φ1(Y 1,W1, Uγ) =
1

2

N1∑
i=1

(y1i − uγi )2 (18)

Φ2(Y 2,W2, Z) =
1

2

N2∑
k=1

(y2k − zk)2 (19)

In this subsection, we examine the coordinator function (17) as linear relation:

Ψ = Φ1 + Φ2 (20)

Using (18) and (19) the first partial derivatives are calculated:

∂Φ1

∂uγi
= (y1i − uγi ) (21)

∂Φ2

∂uγi
=

N2∑
k=1

(y2k − zk) · f ′ ·W2ki (22)

Using the same gradient algorithm for the coordinator as above, the new coor-
dination signal Uγ(n+ 1) is calculated using the formula

uγi (n+ 1) = uγi (n)− λ1 · ∂Ψ
∂uγi

(23)

The global target function Ψ is a nonlinear function that should take into account
the sigmoid activation functions for both the first and the second sub-network.
Because of this, one can say that the coordination function described by formula
(20) is simplistic and does not consider the non - linearity of the coordinator
structure.

2.3 Nonlinear Performance Balance Principle

In the article, non - linearity will be demonstrated by two coordinator target
functions

Ψm = Φ1 + Φ2 + c · Φ1 · Φ2 (24)

Ψp = Φ1 + Φ2 + c · (Φ12 + Φ22) (25)

Where:
Ψm - indicates non-linear multiplication part,
Ψp - indicates non-linear sum of power part.
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parameter ”c” describes the impact of the non-linear part on the coordinator
algorithm.

The structure of target functions Φ1, Φ2 are the same as in formula (18)
and (19), respectively. The final formulas for derivatives have more complicated
structures

∂Ψm
∂uγi

=
∂Φ1

∂uγi
+
∂Φ2

∂uγi
+ c ·

[
∂Φ1

∂uγi
· Φ2 +

∂Φ2

∂uγi
· Φ1

]
(26)

∂Ψp
∂uγi

=
∂Φ1

∂uγi
+
∂Φ2

∂uγi
+ 2 · c ·

[
∂Φ1

∂uγi
· Φ1 +

∂Φ2

∂uγi
· Φ2

]
(27)

In practice, calculation developers are obliged to find the optimal ”c” value.
This parameter will have a significant impact on the quality and stability of the
coordinator learning process.

3 Classification task example

The main dynamic characteristics of the learning process can be shown using the
following example. Emphasis is put on the characteristics of the first-level local
target functions, Φ1, Φ2, and the second level, coordinator target function Ψ .
Optimal ANN learning characteristics depend on two connected tasks. Firstly,
a network structure that includes a number of hidden layers needs to be cre-
ated.Secondly, neurons need to be distributed between layers. A single hidden
layer is chosen in this example. The structure of the ANN is simple and can
be described as ANN (N0 − N1 − N2). In literature, one can only find sug-
gestions regarding optimal numbers of neurons using the Vapnik - Cervonenkis
dimension [4][5]. However, the hidden layer structure could also be determined
using Kolmogorov’s theorem [4][6]. For an ANN with one hidden layer, a sigmoid
activation function can be chosen for classification tasks and N0 input neurons,

V Cdim = N0 + 1 (28)

Therefore, we can use this measure to define the number of neurons in the hidden
layers

N1 = V Cdim (29)

For a continuous function with N0 input vector dimension and N2 output vector,
the number of neurons according to Kolmogorov’s theorem can be calculated as

N1 = 2 ·N0 + 1 (30)

In practice, the number of neurons in the hidden layer will be chosen according
to the formula

N0 + 1 ≤ N1 ≤ 2 ·N0 + 1 (31)

Sigmoid activation functions are implemented in both the hidden and output
layers. For the classification task using 6 - dimension input vectors N0 = 6 and
N2 = 1, the number of hidden neurons is calculated according to formula

7 ≤ N1 ≤ 13 (32)
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3.1 Example for Interface Interaction Balance

The quality of the leaning process depends on the key learning parameters for
the first-level as well as the coordinator level. Fig. 4 shows the dynamic charac-
teristics of the learning process.

Fig. 4. The first sub-networks learning error. λ1 = 0.5

Fig. 5. The coordinator learning error. λ = 0.2

The main learning parameters, α1 = 0.3, α2 = 0.3, guarantee that every
sub-task can find its own minimum target function value. The coordinator has
its own algorithm described by equation (23). If parameter λ1 is too large, the
learning process is not stable, especially at the end of the iterative process.

The first sub-network includes 6 input neurons and 13 output neurons. Matrix
W1 includes 7*13 = 91 neurons, but matrix W2 only 14*1=14 neurons. At
each stage the first sub-network calculates a lower target function Φ1 as the
second sub-network. In the middle and the final part of the iterative process, the
characteristics are the same. This means that the sub-networks achieved only
small corrections to their matrix coefficients and the standard gradient algorithm
is not efficient (Fig.6).
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Fig. 6. Learning error with regards to the iteration number. The learning parameter
λ1 = 0.2

3.2 Linear Performance Balance Principle

As stated above, the performance prediction principle is more general that inter-
face prediction. The coordinator gets information not from all of the elements of
the output vectors, Y1, Y2, as in the previous algorithm, but only some general
information, such as the function value Φ1, Φ2 and their derivatives.

Fig. 7. Dynamic characteristics of the hidden interface value

In Fig. 6, the quality of the learning process is shown . Error functions de-
crease their value quite fast and the oscillation does not exist. On Fig.7. dynamic
characteristics of interface value u1, u5, u11 are shown. Part of them change their
value dynamically.

3.3 Nonlinear Performance Balance Principle

The sub-network transfer function is nonlinear. The coordinator structure should
consider this and use a more complicated target function structure. According
to formulas (24)(26), the function Ψ includes a nonlinear part: the multiplication
or sum of the second power target functions. In Fig. 8 the quality of the learning
process is shown. A flex point for all of the sub-networks characterizes this
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learning process. After that, the learning process achieves the minimum value in
an asymptotic way. Learning process quality is different for λ1− 0.2. It is stable
and smooth (Fig.9). The coordinator algorithm requires two parameters: the
learning coefficient λ1 and the parameter c. The learning process quality depends
on the ”c”-value. Fig. 10 shows this characteristic, including the iteration number
for the flex point and the total iteration number.

Fig. 8. The iteration number for nonlinear coordination function. λ1 = 0.3

Fig. 9. The iteration number for nonlinear coordination function. λ1 = 0.2

4 Conclusion

In this article, only a single principle was examined. The interaction balance
principle can be realized by measuring two different feedback signals: the sub-
network output signals Y1, Y2 or the sub-network performance value Φ1, Φ2. In
the first case, the learning process is very flexible for the coordinator learning
parameter λ. For λ = 0.3, the last learning process stage includes oscillation,
which delays the process of convergence. For λ = 0.2 the characteristics are bet-
ter. Learning processes are not simple and depend not only on an ANN structure
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Fig. 10. Optimal parameters for Nonlinear Performance Balance Principle

but on the input data structure as well. To measure sub-network performance
the coordinator can receive more general information. This has a positive impact
on all the dynamic characteristics (Fig.6). In particular the oscillation seen in
the middle of the learning process are smaller. From the coordinator point of
view, every sub-network can be seen as a black box with the input signal Uγ and
output Y1 or Y2. Response functions have to be nonlinear because the global tar-
get function is also nonlinear. The coordinator, when using a stable coordinator
algorithm with constant learning parameters is not responsible for finding the
optimal interaction vector Uγ during the entire learning process (from beginning
to end). This has a negative impact on the quality and speed of convergence.
Using the hierarchical principle, an additional level can be added: the adaptation
level. The adaptation level, using its own identification algorithm, can predict
learning parameters as λ and c. This theme should be studied in future. Finally,
the nonlinear coordinator algorithm was examined. In that case all algorithms
are very flexible with regarded to parameter c”, which decides about the impact
of the nonlinear part of the coordinator algorithm for convergence. With a small
value, learning time is very long, but for a large value, oscillations are seen. The
characteristic of n = f(c), where: n- iteration number is shown in Fig. 10.

References

1. Placzek Stanislaw. A two-level on-line learning algorithm of Artificial Neural Net-
work with forward connections IJARAI, vol.3, no. 12, 2014

2. Placzek Stanislaw. Decomposition and the principle of interaction prediction in hi-
erarchical structure of learning algorithm of ANN Poznan University of Technology,
Academic Journal. Electrical Engineering, no 84, Poznan 2015

3. Mesarovic M.D., Macka D., Takahara Y. Theory of hierarchical multilevel systems,
Academic Press, New York and London 1970

4. Haykin S. Neural network, a comprehensive foundation. Macmillan College Pub-
lishing Company, New York 1994.

5. Vapnik V. Statistical Learning Theory Wiley, New York 1998
6. Osowski S. Sieci neuronowe w ujeciu algorytmicznym WNT Warszawa 1996

232



On the model checking
of sequential reactive systems

D.G. Kozlova1 V.A. Zakharov2

1 Faculty of Computational Mathematics and Cybernetics,
Lomonosov Moscow State University, Moscow, RU-119899, Russia,

2 Faculty of Computer Science,
National Research University Higher School of Economics,

Moscow, Russia
(Corresponding author: zakh@cs.msu.su)

Abstract. By sequential reactive system we mean a program which op-
erates in the interaction with the environment permanently receiving
data (requests) from it. At receiving a piece of data a program performs
a sequence of actions (response) and displays the current result. Such
programs usually arise at implementation of computer drivers, on-line al-
gorithms, control procedures. Basic actions performed by these programs
may be regarded as generating elements of a certain semigroup. This con-
sideration opens the way to model sequential reactive systems by finite
state transducers that operate over semigroups. This model of computa-
tion can be used for synthesis, optimization, verification and testing of
sequential reactive systems. In this paper we make an attempt to orig-
inate a framework for developing verification techniques for sequential
reactive systems by taking advantage of finite state transducers as a for-
mal model. To this end we introduce a LTL-based formal language which
may be suitable for specification of the behaviour of sequential reactive
systems and adopt a well known LTL-based model checking techniques
for verification of finite state transducers against these specifications.

1 Introduction

Finite state transducers extend the finite state automata to model functions and
relations on strings or lists. They are used in many fields as diverse as com-
putational linguistics [14] and model-based testing [1, 22]. In software engineer-
ing transducers provide a suitable formal model for various on-line algorithms
and device drivers for manipulating with strings, transforming images, filtering
dataflows, inserting fingerprints, sorting data, etc.

An ordinary model of finite state transducers over words can be further
extended to encompass a more wide class of sequential reactive programs. These
programs operate in the interaction with the environment permanently receiving
data (requests) from it. At receiving a piece of data such program performs a
sequence of actions. When certain control points are achieved a program outputs
the current results of computation as a response. What matters is that different
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sequences of actions may yield the same result. Therefore, the basic actions of a
program may be viewed as generating elements of some appropriate semigroup,
and the result of computation may be regarded as the composition of actions
performed by the program.

Let us consider some examples. Imagine that a radio-controlled robot moves
on the earth surface. It can make one step moves in any of 4 directionsN,E, S,W .
When such robot receives a control signal syg in a state q it must choose and
carry out a sequence of steps (say, N,N,W, S), and enter to the next state q′.
At some distinguished state qfin robot reports its current location. Movements
of the robot may be regarded as basic actions, and the most simple model of
computation which is suitable for analyzing a behaviour of this robot is non-
deterministic finite state transducer operating on free Abelian group of rank 2.
Next, consider a network switch which receives as input packet flows alternat-
ing with control instructions. Following to its flow table a switch sends modified
copies of every packet into one or another output port. A flow table is updated at
receiving a control instruction. Modifications and forwardings of a data packet
may be regarded as basic actions. When a switch forwards two packets from
different packet flows to different ports, the corresponding actions can be per-
formed in an arbitrary order. Therefore, such a switch can be modeled by a finite
state transducer operating on a partially commutative semigroup. Semigroups
of this kind are also known as traces; they are thoroughly studied in [9].

When designing sequential reactive systems software engineers want to be
confident of their correct behaviour. For example, in the case of radio-controlled
robot it may be required that it never appears in the north-west sector of the
surface, obligatory passes via certain locations, and can be always returned to
the starting point at receiving a particular sequences of control messages. When
a network switch is concerned, its computations should comply with the require-
ments of forwarding policies (see, e.g. [6, 7]) such as the absence of forwarding
loops, non-interference of certain packet flows, etc. To analyze the behaviour of
sequential reactive systems one may use the concept of finite state transducer
over finitely generated semigroups as a formal model of such systems and develop
various verification techniques (equivalence checking, model checking, deductive
verification, etc.) for these class of transducers.

Equivalence checking problem for finite state transducers has been studied
in much details in many papers. Its study for classical transducers that oper-
ate on words began in the early 60s. First, it was shown that the equivalence
checking problem is undecidable for non-deterministic transducers [11] even over
1-letter input alphabet [12]. But the undecidability displays itself only in the case
of unbounded transduction when an input word may have arbitrary many im-
ages. At the next stage bound-valued transducers were studied. The equivalence
checking problem was shown also to be decidable for deterministic [4], functional
(single-valued) transducers [3, 18], and k-valued transducers [8, 23]. In a series
of papers [16, 17, 19] techniques for checking bounded valuedness, k-valuedness
and equivalence of finite state transducers over words were developed. Recently
in [25] equivalence checking problem was shown to be decidable for finite state
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transducers that operate over finitely generated semigroups embeddable in de-
cidable groups.

There are also papers where equivalence checking problem for transducers
is studied in the framework of program verification. The authors of [20] pro-
posed models of communication protocols as finite state transducers operating
on bit strings. They set up the verification problem as equivalence checking be-
tween the protocol transducer and the specification transducer. The authors of
[22] extend finite state transducers with symbolic alphabets which are repre-
sented as parametric theories. They showed that a number of classical problems
for extended transducers, including equivalence checking problem, are decidable
modulo underlying theories. In [1] a model of streaming transducers was pro-
posed for programs that access and modify sequences of data items in a single
pass. It was shown that a number of verification problems such as equivalence
checking, assertion checking, and checking correctness with respect to pre/post
conditions, are decidable for this transducer model.

Unlike equivalence checking, model checking of (or related with) transduc-
ers is less well studied. Transducers found a usage in regular model checking
of parameterized distributed systems. In some formal models of these systems
configurations are modeled as words over finite alphabet. In such a situation a
transition relation on these configurations is a binary relation on finite words
which can be adequately specified by finite state transducers (see [5, 24]). In this
line of research transducers play the role of verification instrument, but not an
object of verification. As for verification of transducers, to the extend of our
knowledge no special purpose study of model checking problem for finite state
transducers has been conducted so far. In the opinion of the authors of this paper,
this is due the following reason. Both the influence of the environment upon a re-
active system and its response is defined in terms of a set of basic predicates. The
letters of input and output alphabets of a transducer are regarded as valuations
(tuples of truth values) of these predicates, and transducers are viewed as special
presentation of finite labeled transition system (Kripke structure) (see [2]). From
this viewpoint model checking problem for finite state transducers conforms well
to standard model checking scheme for finite structures, and, therefore, are not
worthy of any particular treatment.

However, these arguments become invalid when a response of a reactive sys-
tem at every step of its computation is regarded as a composition of actions
produced by the system so far. In this case the predicates which specify the
basic properties of reactive systems behaviour are defined on finite sequences of
actions, i.e. every such predicate is a language over an alphabet of output actions.
More complex dynamic properties can be expressed by LTL formulae. It should
be remarked that these formulae must express not only the properties of out-
put sequences of actions but relationships between input sequences of requests
from the environment (signal flows) and output sequences of responding actions
(compound actions). This can be achieved through the introduction of behaviour
patterns of the environment as the sets of signal flows and by parametrization
of temporal operators with these patterns.
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In this paper we make an attempt to introduce a LTL-based formal language
for specification of the behaviour of sequential reactive systems and to adapt
a well known LTL-based model checking techniques [13, 21] for verification of
finite state transducers. The paper is organized as follows. In the next section
a concept of finite state transducer over semigroup (see [25]) as a formal model
of sequential reactive systems is defined. In section 3 we introduce LP-LTL —
a parameterized version of Linear Temporal Logics — as a formal language for
specifying behaviour of sequential reactive systems and set up model checking
problem for finite state transducers. In section 4 we present a LP-LTL model
checking algorithm for the case when both basic properties of reactive systems
and behaviour patterns of the environment are defined by finite state automata.
Finally, we briefly discuss some possible directions for further research.

2 Transducers as models of reactive systems

Let C and A be two finite sets. The elements of C are called signals; they may be
viewed as abstractions of messages (control instructions, instrument or sensor
readings, pieces of data, etc.) received by a reactive system from its environment.
Finite sequences of signals (words over alphabet C) are called signal flows. As
usual, the set of all signal flows is denoted by C∗. We write uv for concatenation
of signal flows u and v, and ε for the empty signal flow.

The elements of A are called basic actions; they are the abstractions of
operations (data processings, movements, etc.) performed by a reactive system
in response to received signals. Finite sequences of basic actions (words over
alphabet A) are called compound actions.

Actions are interpreted over semigroups. Consider a semigroup (S, e, ◦) gen-
erated by the set A, where S is a set of semigroup elements, e is the neutral
element, and circ is a composition operation. The elements of S may be re-
garded as data states. Every basic action a, a ∈ A, when been applied to a data
state s, s ∈ S, yields the result s ◦ a. Every compound action h = a1a2 . . . ak is
interpreted as the composition [h] = a1 ◦ a2 ◦ · · · ◦ ak.

A trajectory on a semigroup (S, e, ◦) is a pair tr = (s0, α) such that s0 ∈ S
and α is an infinite sequence

α = (c1, s1), (c2, s2), . . . , (ci, si), . . . ,

where ci ∈ C, si ∈ S for every i, i ≥ 0. This sequence represents a possible
behaviour of a reactive system as it becomes visible to an outside observer:
starting from the data state s0 the system every time at receiving a next signal
ci performs some compound action hi and displays its effect si = si−1◦hi. Given
a trajectory tr = (s0, α) and an integer i, i ≥ 0, denote by tr|i the trajectory
(si, α|i), where α|i = (ci+1, si+1), (ci+2, si+2), . . .

A finite state transducer over a set of signals C and a set of basic actions A is a
system π = (C,A, Q,Q0, T ), where Q is a finite set of control states, Q0, Q0 ⊆ Q,
is a set of initial states, and T, T ⊆ Q×C×Q×A∗ is a transition relation. Every
quadruple (q, c, q′, h) in T is called a transition: when a transducer is in a control
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state q and receives a signal c it passes its control to a state q′ and performs

a compound action h. Such transitions are usually depicted as q
c,h−→ q′. It is

assumed that T is a total relation: for every control state q and a signal c the

set T includes at least one transition of the kind q
c,h−→ q′. A run of π is any

sequence of transitions

run = q0
c1,h1−→ q1

c2,h2−→ q2
c3,h3−→ · · · (1)

which begins from some initial state q0. We write run|i for the suffix of the
sequence run which begins from the state qi, i ≥ 0. The size |π| of a transducer
π is the number |Q| of its state.

Finite state transducers can serve as formal models of sequential reactive
systems. At each step of its computation it receives a signal c from the envi-

ronment and performs a transition q
c,h−→ q′ by passing its control to a state

q′ and executing an action h. Usually behaviour of transducers is defined as
transduction relation between input and output words. But it can be rather
well defined in terms of trajectories as follows. Suppose that basic actions of a
transducer π = (C,A, Q,Q0, T ) are interpreted over a semigroup (S, e, ◦). Then
every run (1) of π generates a trajectory tr(run) = (e, α), where the sequence
α = (c1, s1), (c2, s2), . . . , (ci, si), . . . , is such that s1 = e ◦ h1, and si = si−1 ◦ hi
holds for every i, i ≥ 2. The set of all trajectories generated by the runs of π is
denoted by Tr(π, S). This set completely characterizes a behaviour of sequential
reactive system modeled by a transducer π over a semigroup of actions (S, e, ◦).

3 Specification language

Specification languages are intended to describe formally desirable (or erroneous)
behaviour of computing systems. Since the behaviour of a sequential reactive
system is presented as a set of trajectories, the expressions of an appropriate
specification language should be interpreted over trajectories. Every trajectory
displays how the data states from the set S changes as a reactive system receives
signals and performs responding actions with the passage of time. Therefore, it
is advantageous to take some variant of temporal logics as a framework of such
a specification language.

The formulae of temporal logics are built of basic predicates by means of
Boolean connectives and temporal operators. Basic predicates are defined on
data states. In our model of sequential reactive systems data states are inter-
preted as elements of a semigroup (S, e, ◦). Thus, basic predicates can be re-
garded as certain subsets of S. They can be formally specified alternatively in
different ways.

1. By means of parameterized algebraic equations in a semigroup: a data state s
satisfies a basic predicate Eq(p,X) iff s is such a value of a parameter p that
an equation Eq(p,X) has a solution in a semigroup (S, e, ◦). For example, an
equation p ◦X = e specifies a set of data states s from which a computation
of a reactive system can be restarted.
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2. By any means for defining formal languages over a set of basic actions A
— formal grammars, language equations, automata of various types, etc.: a
data state s satisfies a predicate L, where L is a language over A, iff s = [h]
for some compound action h such that h ∈ L. For example, a finite state
automaton A distinguishes a set of data states s such that s = [h] for some
compound action h accepted by A.

A sequential reactive system modifies data states in response to incoming
signals. These signals come to an input of a system in conformity with a cer-
tain scenario (pattern) of environment’s behaviour. An environment behaviour
pattern characterizes a set of possible signal flows that may affect a reactive
system. Therefore, a specification of its behaviour must include some references
to signal flows. This can be achieved by using formal descriptions of environment
behaviour patterns as parameters of temporal operators. Since a signal flow is
but a word over a set of signals C, such descriptions can be provided by any
means used for defining formal languages — grammars, equations, automata.

These contemplations bring us to the following concept of formal specification
language LP-LTL for sequential reactive systems. Given a set of signals C, a set
of basic actions A, and a semigroup (S, e, ◦) generated by basic actions, we say
that any set of finite words (language) over the alphabet C is an environment
behaviour pattern (or, simply, a pattern), and any subset S′, S′ ⊆ S, is a basic
predicate.

Select a family of patterns L and a family P of basic predicates. Then a set
of LP-LTL formulae is the minimal set Form of expressions which satisfy the
following rules:

1) every basic predicate P, P ∈ P is a LP-LTL formula;

2) if ϕ,ψ are LP-LTL formulae then ¬ϕ, ϕ ∧ ψ and ϕ ∨ ψ belong to Form;

3) if ϕ ∈ Form and c ∈ C then Xcϕ, Ycϕ belong to Form;

4) if ϕ ∈ Form and L ∈ L then FLϕ, GLϕ belong to Form as well.

This definition is constructive, since L and P may be thought of as the set of
names interpreted over patterns and basic predicates. The size |ϕ| of a formula
ϕ is the number of Boolean connectives and temporal operators occurred in ϕ.

The semantics of the specification language is defined in terms of satisfiability
relation |= of LP-LTL formulae on trajectories. Let tr = (s0, α) be a trajectory,
where α = (c1, s1), (c2, s2), . . . , (ci, si), . . . , and ϕ be a LP-LTL formula. Then

1) if P ∈ P then tr |= P ⇐⇒ s0 ∈ P ;

2) tr |= ¬ϕ ⇐⇒ it is not true that tr |= ϕ;

3) tr |= ϕ ∧ ψ ⇐⇒ tr |= ϕ and tr |= ψ;

4) tr |= ϕ ∨ ψ ⇐⇒ tr |= ϕ or tr |= ψ;

5) tr |= Xcϕ ⇐⇒ c = c1 and tr|1 |= ϕ;

6) tr |= Ycϕ ⇐⇒ c 6= c1 or tr|1 |= ϕ;

7) tr |= FLϕ ⇐⇒ ∃ i ≥ 0 : c1c2 . . . ci ∈ L and tr|i |= ϕ;

8) tr |= GLϕ ⇐⇒ ∀ i ≥ 0 : c1c2 . . . ci ∈ L implies tr|i |= ϕ.
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Clearly, some other parameterized temporal operators that are used in LTL
like U (until), W (weak until), R (release) can be introduced in the same way.
Moreover, some new temporal operators that are specific for LP-LTL may be
introduced. For example, to express some properties of trajectories one may need
a weak eventuality operator F̂L which has the following semantics:

tr |= F̂Lϕ ⇐⇒ either ∀ i ≥ 0 : c1c2 . . . ci /∈ L, or tr |= FLϕ.
It is easy to ascertain that parameterized temporal operators introduced

above satisfy duality and fixed-point (expansion) properties.

Proposition 1. Let ϕ be an arbitrary LP-LTL formula, c ∈ C, L ⊆ C∗, and tr
be an arbitrary trajectory. Then

1) tr |= ¬Xcϕ ⇐⇒ tr |= Yc¬ϕ,
2) tr |= ¬Ycϕ ⇐⇒ tr |= Xc¬ϕ,
3) tr |= ¬FLϕ ⇐⇒ tr |= GL¬ϕ,
4) tr |= ¬GLϕ ⇐⇒ tr |= FL¬ϕ.

For every pattern L and a signal c denote by Pref1(L) the set {c : ∃w ∈ C∗ :
cw ∈ L} of 1-letter prefixes of signal flows in L, and by Suffc(L) the pattern
{w : cw ∈ L} which consists of maximal proper suffixes of those signal flows in L
that begin with the signal c. We say that a family of patterns L is suffix-closed iff
for every signal c and every pattern L,L ∈ C, the pattern Suffc(L) also belongs
to L.

Proposition 2. Suppose that a family of patterns L is suffix-closed, and let ϕ
be a LP-LTL formula, and tr be a trajectory. Then

1) if ε ∈ L then tr |= FLϕ ⇐⇒ tr |= ϕ ∨
∨

c∈Pref1(L)
XcFSuffc(L)ϕ,

2) if ε /∈ L then tr |= FLϕ ⇐⇒ tr |=
∨

c∈Pref1(L)
XcFSuffc(L)ϕ,

3) if ε ∈ L then tr |= GLϕ ⇐⇒ tr |= ϕ ∧
∧

c∈Pref1(L)
YcFSuffc(L)ϕ,

4) if ε /∈ L then tr |= GLϕ ⇐⇒ tr |=
∧

c∈Pref1(L)
YcFSuffc(L)ϕ.

As in the case of ordinary LTL these properties are important for building
model checking and satisfiability checking procedures for LP-LTL formulae.

4 Model checking sequential reactive systems against
LP-LTL specifications

Assume that sequential reactive systems are modeled by finite state transducers
that operate over a set of signals C and the set of basic actions A interpreted in
a semigroup (S, e, ◦). Let L and P be families of patterns and basic predicates.
Then model checking (MC) problem for sequential reactive systems against LP-
LTL specifications is that of checking, given a finite state transducer π and a
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LP-LTL formula ϕ, whether tr |= ϕ holds for every trajectory tr in Tr(π, S)
(or, in symbols, Tr(π, S) |= ϕ).

It is evident that decidability and complexity of MC problem for sequen-
tial reactive systems against LP-LTL specifications essentially depend on 1) a
semigroup (S, e, ◦) used for interpretation of basic actions, 2) a family of basic
predicates P on the set of data states S, and 3) a family of behaviour patterns
of the environment L used for parametrization of temporal operators. In some
cases this problem has an effective solution.

We studied the most simple case of MC problem when 1) basic actions are
interpreted over free monoid (S, e, ◦), where S is the set of compound actions
A∗, e = ε, and ◦ is concatenation operation on compound actions, 2) a family
P of basic predicates is the collection of all regular sets of compound actions,
3) a family L of behaviour patterns of the environment is the collection of all
regular sets of signal flows. LP-LTL formulae of this type will be called Reg-
LTL formulae. The main advantage of Reg-LTL is that the most simple model
of computation — deterministic finite state automata — can be involved to
define basic predicates and patterns occurred in these formulae.

By (non-initialized) deterministic finite state automaton we mean a quadru-
ple K = (Σ,Z,Zacc, Φ), where Σ is a finite input alphabet, Z is a finite set of
states, Zacc, Zacc ⊆ Z, is a subset of accepting states, and Φ : Z × Σ → Z is a
total transition function. A transition function can be extended to the set Σ∗

in the usual fashion: Φ(z, ε) = z, and Φ(z, bw) = Φ(Φ(z, b), w) for every state
z, a letter b in Σ and a word w,w ∈ Σ∗. By initialized automaton we mean a
pair (K, z0), where z0 is a state of an automaton K. An initialized automaton
(K, z0) accepts a word w if Φ(z0, w) ∈ Zacc; thus, it specifies a regular language
L(K, z0) = {w : Φ(z0, w) ∈ Zacc} of all accepted words.

When finite state automata are used for specification of regular basic predi-
cates they have the set of basic actions A as an input language; automata of this
kind will be called A-automata. When finite state automata are employed for
specification of regular patterns of the environment they have the set of signals
C as an input alphabet; automata of this sort will be called C-automata. Thus,
every atomic formula of Reg-LTL is an initializedA-automaton (A, z0), and tem-
poral operators used in Reg-LTL are those of the form Xc, Yc, F(B,z0), G(B,z0),
where c is a signal, and (B, z0) is an initialized C-automaton. In what follows we
will use letters Z, Zacc and Φ as generic names of a set states, a subset of accept-
ing states and a transition functions in automata that specify basic predicates
and patterns of the environment.

The rules of Reg-LTL semantics can be re-defined in terms of finite state au-
tomata. Suppose, for example, that a run of a transducer begins with a transition

q
c,h−→ q′. Then tr(run) |= Xc(A, z0) ⇐⇒ h ∈ (A, z0) ⇐⇒ Φ(z0, h) ∈ Zacc.

This effect also shows itself for other formulae. Given a A-automaton (A, z0)
and a compound action h, we say that the A-automaton (A,Φ(z0, h)) is h-shift
of basic predicate (A, z0). In more general case, a h-shift of a Reg-LTL formula
ϕ is a formula shift(ϕ, h) which is obtained from ϕ by replacing every basic
predicate (A, z0) occurred in ϕ with its h-shift (A,Φ(z0, h)). Consider a run (1)
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of a transducer π. Then

tr(run) |= F(B,z0)ϕ ⇐⇒ ∃ i ≥ 0 : Φ(z0, c1c2 . . . ci) ∈ Zacc and
tr(run|i) |= shift(ϕ, h1h2 . . . hi);

tr(run) |= G(B,z0)ϕ ⇐⇒ ∀ i ≥ 0 : Φ(z0, c1c2 . . . ci) ∈ Zacc implies
tr(run|i) |= shift(ϕ, h1h2 . . . hi);

These relationships are essential in the designing of Reg-LTL model checking
algorithm in Theorem 1.

For the sake of brevity we will skip references to a semigroup (S, e, ◦) in our
notation till the end of the section. It is assumed that this semigroup is a free
monoid of finite words over A and MC problem Tr(π) |= ϕ is studied for finite
state transducers against LP-LTL specifications.

The main result of this section is

Theorem 1. Let π = (C,A, Q,Q0, T ) be a finite state transducer operating on a
free monoid of words, and ϕ be a Reg-LTL formula. Suppose that every regular
component (a basic predicate or a pattern of the environment) of ϕ is specified
by a deterministic finite state automata which has N states at the most. Then
there exists a generalized Büchi automaton M [π, ϕ] such that

– M [π, ϕ] has |π|2O(|ϕ|N |ϕ|) states at the most;

– M [π, ϕ] can be constructed effectively by π and ϕ in time polynomial of the
size of M [π, ϕ];

– M [π, ϕ] accepts empty ω-language iff Tr(π) |= ϕ.

Proof. (Sketch) Our algorithm for the translation of a pair (π, ϕ) to a Büchi
automaton M [π, ϕ] follows the well-known scheme for translation of LTL formu-
lae to Büchi automata which was introduced in [21]. We only emphasize those
aspects of this translation which are specific for Reg-LTL.

1. Consider the formula ψ = ¬ϕ and present it in negation normal form via
duality laws (see Proposition 1). It should be noted that if a basic predicate is
specified by an automaton (A, z0) then ¬(A, z0) ≡ (Ā, z0), where Ā is a comple-
mentation of A. Thus, we eliminate all negations in ψ.

2. Define the closure cl(ψ) of ψ as the minimal set of Reg-LTL formulae which
complies with the following rules:

• ψ ∈ cl(ψ),

• (A, z0) ∈ cl(ψ) ⇒ ∀ z ∈ Z : (A, z) ∈ cl(ψ)

• f ∨ g ∈ cl(ψ) ⇒ f, g ∈ cl(ψ),

• f ∧ g ∈ cl(ψ) ⇒ f, g ∈ cl(ψ),

• Xcf ∈ cl(ψ) ⇒ shift(f, h) ∈ cl(ψ) for every h ∈ A∗,
• Ycf ∈ cl(ψ) ⇒ shift(f, h) ∈ cl(ψ) for every h ∈ A∗,
• F(B,z0)f ∈ cl(ψ) ⇒ f ∈ cl(ψ) and ∀ c ∈ C : XcF(B,Φ(z0,c))f ∈ cl(ψ),

• G(B,z0)f ∈ cl(ψ) ⇒ f ∈ cl(ψ) and ∀ c ∈ C : YcG(B,Φ(z0,c))f ∈ cl(ψ).
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As it can be seen from the definition of cl(ψ) this set may contain O(|ϕ|N |ϕ|) at
the most.

3. Build the collection CS(ψ) of all subsets of cl(ψ) which are both locally
consistent and saturated. A subset K of cl(ψ) is called locally consistent if it
satisfies the following requirements:

– if (A, z0) ∈ K then z0 ∈ Zacc;
– if Xc1f ∈ K and Xc2f ∈ K then c1 = c2,

and it is called saturated if it fulfills the rules listed below:

– if f ∨ g ∈ K then f ∈ K or g ∈ K;
– if f ∧ g ∈ K then f ∈ K and g ∈ K;
– if F(B,z0)f ∈ K then either XcF(B,Φ(z0,c)) ∈ K for some signal c, or f ∈ K

in the case of z0 ∈ Facc;
– if G(B,z0)f ∈ K then YcG(B,Φ(z0,c)) ∈ K for every signal c, and, moreover, f

is also in K in the case of z0 ∈ Facc.

4. Build a generalized Büchi automaton M [π, ϕ] = (Q×CS(ψ), Init,∆,F) over
the input alphabet C × A∗, where

• Q× CS(ψ) is the set of states of the automaton,
• Init = {(q0,K) : ψ ∈ K} is the set of initial states,
• ∆ = ∆1 ∪∆2 ∪∆3 is a transition relation which is defined as follows:

• (q,K)
c,h−→ (q′,K ′) ∈ ∆2 iff 1) q

c,h−→ q′ ∈ T , 2) a set K contains at least
one formulae Xcϕ, and 3) {shift(ϕ, h) : Xcϕ ∈ K or Ycϕ ∈ K} ⊆ K ′;
• (q,K)

c,h−→ (q′,K ′) ∈ ∆1 iff 1) q
c,h−→ q′ ∈ T , 2) a set K does not contain

any X-formulae, and 3) {shift(ϕ, h) : Xcϕ ∈ K} ⊆ K ′;
• (q,K)

c,h−→ (q′,K) ∈ ∆3 iff 1) q
c,h−→ q′ ∈ T , and 2) a set K does not

contain neither X-formulae, nor Y -formulae.

• F = {Fϕ : ϕ is a F -formula in cl(ψ)} is a family of acceptance conditions,
where for every ϕ = F(B,z)f the acceptance condition Fϕ is a set of all such
pairs (q,K) that satisfy a requirement:
F(B,z′)shift(f, h) ∈ K ⇒ shift(f, h) ∈ K.

5. Following the same line of reasoning as in [21] one could show that M [π, ϕ]
has an accepting computation iff the set Tr(π) includes a trace tr such that
tr |= ψ. Thus, M [π, ϕ] is empty iff Tr(π) |= ϕ.

Since emptiness of generalized Büchi automata can be checked in polynomial
time we arrived at

Corollary 1. Regular models checking of sequential reactive systems can be per-
formed effectively in time polynomial of the size of a model (finite state trans-
ducer) and double exponential of the size of a specification (Reg-LTL formula).
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5 Conclusion

The main contribution of this paper is twofold:

1. we introduce a new framework for formal verification of sequential reactive
systems; it includes a concept of finite state transducer over semigroups as
a formal model of sequential reactive systems, and a formal language for
specifying behaviour of transducers.

2. we set up a model checking problem for finite state transducers operat-
ing over semigroups and show that conventional model checking techniques
is applicable to this problem (at least in the case of transducers over free
monoids).

There are questions and problems that still remain open for further research.
What is an expressive power of LP-LTL? We surmise that some LP-LTL-
specific operators could be introduced to make this language more convenient
in practice. We believe also that other temporal logics (say, CTL) could be also
adapted appropriately for specification of sequential reactive systems behaviour.
Model checking algorithm presented in Theorem 1 needs further improvement.
To this end complexity issues of LP-LTL need to be studied. We are sure that
a more advanced on-the-fly approach used in LTL model checking [10] could be
applied to efficient verification of transducers against LP-LTL. In this paper
we presented in some details a solution to verification problem for finite state
transducers over free semigroups. But we believe that this result can be extended
further to comprise the cases of partially commutative semigroups (traces [9]),
free groups and free Abelian groups.
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Abstract. By using the idea of Henzinger et al. for computing
the similarity relation, we give an efficient algorithm, with complex-
ity O((m + n)n), for computing the largest bisimulation-based auto-
comparison and the directed similarity relation of a labeled graph for
the setting without counting successors, where m is the number of edges
and n is the number of vertices. Moreover, we provide the first algorithm
with a polynomial time complexity, O((m + n)2n2), for computing such
relations but for the setting with counting successors (like the case with
graded modalities in modal logics and qualified number restrictions in
description logics).

1 Introduction

In a transition system, bisimilarity between states is an equivalence relation
defined inductively as follows: x and x′ are bisimilar if they have the same label,
each transition from x to a state y can be simulated by a transition from x′ to
a state y′ that is bisimilar to y, and vice versa (i.e., each transition from x′ to
a state y′ can be simulated by a transition from x to a state y that is bisimilar
to y′) [5]. In modal logic, a Kripke model can be treated as a transition system,
and the characterization of bisimilarity is as follows: two states are bisimilar
iff they cannot be distinguished by any formula. The “only if” implication is
called the invariance and does not require additional conditions, while the whole
assertion is called the Hennessy-Milner property and holds for modally saturated
models (including finitely-branching models) [10, 5, 1].

Simulation between states in a transition system is a pre-order defined in-
ductively as follows: x′ simulates x if they have the same label and, for each
transition from x to a state y, there exists a transition from x′ to a state y′ that
simulates y. Notice the lack of the backward direction. Similarity is an equiva-
lence relation defined as follows: x and x′ are similar if x simulates x′ and vice
versa. In modal logic, the characterization of simulation is as follows: x′ simu-
lates x iff x′ satisfies all existential formulas (in negation normal form) satisfied
by x (see, e.g., [1]). The “only if” implication is a kind of preservation and does
not require additional conditions, while the whole assertion can also be called
the Hennessy-Milner property and holds for modally saturated models.

Now, consider the pre-order . between states in a transition system defined
inductively as follows, x . x′ if: the label of x is a subset of the label of x′;
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for each transition from x to a state y, there exists a transition from x′ to
a state y′ such that y . y′; and conversely, for each transition from x′ to a
state y′, there exists a transition from x to a state y such that y . y′. In the
context of description logic, such a relation is called the largest bisimulation-
based auto-comparison of the considered interpretation [4, 3]. The relation ',
defined by x ' x′ iff x . x′ and x′ . x, is an equivalence relation that can be
called the directed similarity relation.1 The characterization of . is as follows:
x . x′ iff x′ satisfies all semi-positive formulas satisfied by x. This was proved
for modally saturated interpretations in some description logics [4, 3]. The “only
if” implication was proved earlier for some modal logics [8].

The above mentioned notions and their characterizations can be formulated
appropriately for different kinds of transition systems and different variants or
extensions of modal logic. For example, when transitions are labeled, the transi-
tions used in each of the mentioned conditions should have the same label. This
corresponds to the case of multimodal logics and description logics. Extensions
of the basic description logic ALC may allow additional concept constructors,
which may require more conditions for bisimulation or bisimulation-based com-
parison [3]. Some of such constructors are qualified number restrictions, which
correspond to graded modalities in graded modal logics. In this work, the case
with these constructors is called the setting with counting successors, and in
this case, we use the symbol .c instead of . (the latter is used for the setting
without counting successors).

In this work, we consider bisimulation-based comparison and directed similar-
ity, formulated for (finite) labeled graphs, and the objective is to provide efficient
algorithms for computing the largest bisimulation-based auto-comparison (and
hence also the directed similarity relation) of a labeled graph for two settings,
with or without counting successors.

The related work is as follows. The Paige-Tarjan algorithms for com-
puting bisimilarity [9] are currently the most efficient ones, with complexity
O((m+ n)n), where m is the number of transitions and n the number of states.
They were originally formulated for graphs w.r.t. both the settings with or with-
out counting successors, but can be reformulated or extended for other contexts
(like transition systems, Kripke models, or interpretations in description logics).
It exploits the idea of Hopcroft’s automaton minimization algorithm [7], but
makes a generalization to deal with nondeterministic finite automata instead
of deterministic ones. The currently most efficient algorithms, with complex-
ity O((m + n)n), for computing the similarity relation were first provided by
Bloom and Paige [2] and by Henzinger et al. [6]. The former was formulated for
transition systems and the latter was formulated for graphs. They are both de-
voted to the setting without counting successors. Divroodi [3] provided a simple
algorithm for computing the largest bisimulation-based auto-comparison of an
interpretation in a number of description logics.2 It is not efficient, having a high

1 The term “bisimulation-based comparison” of [4, 3] is a synonym of the term “di-
rected simulation” of [8], and the term “directed similarity” is named in this spirit.

2 It is like Algorithm 1 given on page 5 for the setting without counting successors.
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polynomial time complexity for the case without counting successors, and an ex-
ponential time complexity for the case with counting successors (i.e., qualified
number restrictions).

In this work, by using the idea of Henzinger et al. [6] for computing the
similarity relation, we give an efficient algorithm, with complexity O((m+n)n),
for computing the largest bisimulation-based auto-comparison and the directed
similarity relation of a labeled graph for the setting without counting successors.
Moreover, we provide the first algorithm with a polynomial time complexity,
O((m + n)2n2), for computing such relations but for the setting with counting
successors.

The rest of this paper is structured as follows. Section 2 formally introduces
some notions. In Sections 3 and 4, we present our algorithms for the settings
with or without counting successors, respectively, justify their correctness and
analyze their complexity. Section 5 concludes this work.

2 Bisimulation-Based Comparisons

A (finite) labeled graph is a tuple G = 〈V,E,A,L〉, where V is a finite set of
vertices, E ⊆ V 2 is a set of edges, A is a finite set of labels, and L is a function
that maps each vertex to a subset of A.

From now on, let G = 〈V,E,A,L〉 be a given labeled graph.
For a binary relation R, we write R(x, y) to denote 〈x, y〉 ∈ R. For x ∈ V ,

we denote post(x) = {y ∈ V | E(x, y)} and pre(x) = {y ∈ V | E(y, x)}.
A relation Z ⊆ V 2 is called a bisimulation-based auto-comparison of G

without counting successors if it satisfies the following conditions for every
x, y, x′, y′ ∈ V :

Z(x, x′)⇒ L(x) ⊆ L(x′) (1)

Z(x, x′) ∧ y ∈ post(x)⇒ ∃y′ ∈ post(x′) Z(y, y′) (2)

Z(x, x′) ∧ y′ ∈ post(x′)⇒ ∃y ∈ post(x) Z(y, y′). (3)

A relation Z ⊆ V 2 is called a bisimulation-based auto-comparison of G with
counting successors if it satisfies (1) and, for every x, x′ ∈ V ,

if Z(x, x′) holds, then there exists a bijection
h : post(x)→ post(x′) such that h ⊆ Z.

(4)

We write x . x′ (resp. x .c x
′) to denote that there exists a bisimulation-

based auto-comparison Z of G without (resp. with) counting successors such that
Z(x, x′) holds. Observe that both . and .c are pre-orders, and .c is stronger
than . (i.e., the former is a subset of the latter). It can be shown that the relation
. (resp. .c) is the largest (w.r.t. ⊆) bisimulation-based auto-comparison of G
without (resp. with) counting successors.

We write x ' x′ to denote that x . x′ and x′ . x. Similarly, we write
x 'c x

′ to denote that x .c x
′ and x′ .c x. We call ' (resp. 'c) the directed

similarity relation of G without (resp. with) counting successors. Both ' and 'c

are equivalence relations.
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3 The Case without Counting Successors

In this section, we present three algorithms for computing the largest
bisimulation-based auto-comparison of a given labeled graph G = 〈V,E,A,L〉
in the setting without counting successors. The first two algorithms, Schematic-
Comparison and RefinedComparison, are used to help to understand the last
one, EfficientComparison. The idea of the EfficientComparison algorithm and
the explanation via two simpler algorithms follow from the ones by Henzinger
et al. for computing simulations [6].

All the three mentioned algorithms compute the sets leq(v) and geq(v) for
v ∈ V , where leq(v) = {u ∈ V | u . v} and geq(v) = {u ∈ V | v . u} with .
being the relation defined in Section 2. For the explanations given in the current
section, however, by . we denote the following relation, which depends on and
changes together with leq :

{〈u, v〉 ∈ V 2 | u ∈ leq(v)}. (5)

The SchematicComparison algorithm (on page 5) initializes the sets leq(v)
and geq(v), for v ∈ V , to satisfy the condition (1) with Z replaced by ..
Then, while the condition (2) (resp. (3)) with Z replaced by . and x, y, x′

(resp. x′, y′, x) replaced by u, v, w is not satisfied, it updates the mappings leq
and geq appropriately in order to delete the pair 〈u,w〉 (resp. 〈w, u〉) from ..
It is easy to see that at the end the relation . specified by (5) is the largest
bisimulation-based auto-comparison of G without counting successors. That is,
the SchematicComparison algorithm is correct.

The RefinedComparison algorithm (on page 5) refines the SchematicCompa-
rison algorithm by using two additional mappings prevGeq and prevLeq , which
approximate the mappings geq and leq , respectively. The mappings geq and
leq are refined by reducing the sets geq(v) and leq(v), for v ∈ V , in each
iteration of the “repeat” loop. The set prevGeq(v) (resp. prevLeq(v)) stores
the value of geq(v) (resp. leq(v)) at some earlier iteration and is a superset
of geq(v) (resp. leq(v)). The refinement is done by making updates only for
w ∈ pre(prevGeq(v)) \ pre(geq(v)) (resp. w ∈ pre(prevLeq(v)) \ pre(leq(v))) in-
stead of for w ∈ pre(geq(v)) (resp. pre(leq(v))) as in the SchematicComparison
algorithm. It is straightforward to check that the conditions I1, I2, I3 listed in the
RefinedComparison algorithm are invariants of the “repeat” loop. When the al-
gorithm terminates, we have geq(v) = prevGeq(v) and leq(v) = prevLeq(v) for all
v ∈ V , and hence the relation . specified by (5) satisfies the conditions (1)–(3)
and is a bisimulation-based auto-comparison of G without counting successors.
It is the largest one because the deletions of elements from the sets geq(v) and
leq(v), for v ∈ V , are appropriate and done only when needed. Therefore, the
RefinedComparison algorithm is correct.

The EfficientComparison algorithm (on page 6) modifies the Refined-
Comparison algorithm in that instead of maintaining the sets prevGeq(v) and
prevLeq(v), for v ∈ V , it maintains the sets

removeGeq(v) = pre(prevGeq(v)) \ pre(geq(v)), (6)
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Algorithm 1: SchematicComparison

input : a labeled graph G = 〈V,E,A,L〉.
output : for each v ∈ V , the sets geq(v) and leq(v).

1 foreach v ∈ V do
2 geq(v) := {u ∈ V | L(v) ⊆ L(u)};
3 leq(v) := {u ∈ V | L(u) ⊆ L(v)};
4 repeat

// assert: I0: ∀u,w ∈ V w ∈ geq(u)↔ u ∈ leq(w)
5 if there are u, v, w ∈ V such that v ∈ post(u), w ∈ geq(u) and

post(w) ∩ geq(v) = ∅ then
6 geq(u) := geq(u) \ {w}, leq(w) := leq(w) \ {u};
7 if there are u, v, w ∈ V such that v ∈ post(u), w ∈ leq(u) and

post(w) ∩ leq(v) = ∅ then
8 leq(u) := leq(u) \ {w}, geq(w) := geq(w) \ {u};

9 until no change occurred during the last iteration;

Algorithm 2: RefinedComparison

1 foreach v ∈ V do
2 prevGeq(v) := V , prevLeq(v) := V ;
3 if post(v) = ∅ then
4 geq(v) := {u ∈ V | L(v) ⊆ L(u) and post(u) = ∅};
5 leq(v) := {u ∈ V | L(u) ⊆ L(v) and post(u) = ∅};
6 else
7 geq(v) := {u ∈ V | L(v) ⊆ L(u) and post(u) 6= ∅};
8 leq(v) := {u ∈ V | L(u) ⊆ L(v) and post(u) 6= ∅};

9 repeat
// assert:
// I1: ∀v ∈ V geq(v) ⊆ prevGeq(v) ∧ leq(v) ⊆ prevLeq(v)
// I2: ∀u, v, w ∈ V v ∈ post(u) ∧ w ∈ geq(u)→ post(w) ∩ prevGeq(v) 6= ∅
// I3: ∀u, v, w ∈ V v ∈ post(u) ∧ w ∈ leq(u)→ post(w) ∩ prevLeq(v) 6= ∅

10 if there exists v ∈ V such that geq(v) 6= prevGeq(v) then
11 foreach u ∈ pre(v) and w ∈ pre(prevGeq(v)) \ pre(geq(v)) do
12 if w ∈ geq(u) then
13 geq(u) := geq(u) \ {w}, leq(w) := leq(w) \ {u};

14 prevGeq(v) := geq(v);

15 if there exists v ∈ V such that leq(v) 6= prevLeq(v) then
16 foreach u ∈ pre(v) and w ∈ pre(prevLeq(v)) \ pre(leq(v)) do
17 if w ∈ leq(u) then
18 leq(u) := leq(u) \ {w}, geq(w) := geq(w) \ {u};

19 prevLeq(v) := leq(v);

20 until no change occurred during the last iteration;
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Algorithm 3: EfficientComparison

1 foreach v ∈ V do
// prevGeq(v) := V , prevLeq(v) := V

2 if post(v) = ∅ then
3 geq(v) := {u ∈ V | L(v) ⊆ L(u) and post(u) = ∅};
4 leq(v) := {u ∈ V | L(u) ⊆ L(v) and post(u) = ∅};
5 else
6 geq(v) := {u ∈ V | L(v) ⊆ L(u) and post(u) 6= ∅};
7 leq(v) := {u ∈ V | L(u) ⊆ L(v) and post(u) 6= ∅};
8 removeGeq(v) := pre(V ) \ pre(geq(v));
9 removeLeq(v) := pre(V ) \ pre(leq(v));

10 repeat
// assert:
// I4: ∀v ∈ V removeGeq(v) = pre(prevGeq(v)) \ pre(geq(v))
// I5: ∀v ∈ V removeLeq(v) = pre(prevLeq(v)) \ pre(leq(v))

11 if there exists v ∈ V such that removeGeq(v) 6= ∅ then
12 foreach u ∈ pre(v) and w ∈ removeGeq(v) do
13 if w ∈ geq(u) then
14 geq(u) := geq(u) \ {w}, leq(w) := leq(w) \ {u};
15 foreach w′ ∈ pre(w) do
16 if post(w′) ∩ geq(u) = ∅ then
17 removeGeq(u) := removeGeq(u) ∪ {w′};

18 foreach u′ ∈ pre(u) do
19 if post(u′) ∩ leq(w) = ∅ then
20 removeLeq(w) := removeLeq(w) ∪ {u′};

// prevGeq(v) := geq(v)
21 removeGeq(v) := ∅;
22 if there exists v ∈ V such that removeLeq(v) 6= ∅ then
23 foreach u ∈ pre(v) and w ∈ removeLeq(v) do
24 if w ∈ leq(u) then
25 leq(u) := leq(u) \ {w}, geq(w) := geq(w) \ {u};
26 foreach w′ ∈ pre(w) do
27 if post(w′) ∩ leq(u) = ∅ then
28 removeLeq(u) := removeLeq(u) ∪ {w′};

29 foreach u′ ∈ pre(u) do
30 if post(u′) ∩ geq(w) = ∅ then
31 removeGeq(w) := removeGeq(w) ∪ {u′};

// prevLeq(v) := leq(v)
32 removeLeq(v) := ∅;

33 until no change occurred during the last iteration;
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removeLeq(v) = pre(prevLeq(v)) \ pre(leq(v)). (7)

It can be checked that the equivalences (6) and (7) are invariants of the “repeat”
loop if the sets prevGeq(v) and prevLeq(v) are computed as in the RefinedCom-
parison algorithm by uncommenting the corresponding lines. Thus, the Efficient-
Comparison algorithm reflects the RefinedComparison algorithm and is correct.

We use the same idea and technique of [6] for analyzing the complexity of
the EfficientComparison algorithm. Let n = |V |, m = |E| and assume that
|A| is a constant. We also assume that the algorithm is modified by using and
maintaining two arrays countPostGeq[1..n, 1..n] and countPostLeq[1..n, 1..n]
of natural numbers such that countPostGeq[w′, u] = |post(w′) ∩ geq(u)| and
countPostLeq[w′, u] = |post(w′) ∩ leq(u)| for all vertices w′ and u from V .
These arrays are initialized in time O((m + n)n). Whenever a vertex w is
removed from geq(u) (resp. leq(u)), the counters countPostGeq[w′, u] (resp.
countPostLeq[w′, u]) are decremented for all predecessors w′ of w. The costs
of these decrements is absorbed in the cost of the “if” statements at the lines 16,
19, 27, 30 of the algorithm. Using the arrays countPostGeq and countPostLeq,
the test post(w′) ∩ geq(u) = ∅ at the line 16 and the similar ones at the lines
19, 27, 30 of those “if” statements can be executed in constant time (e.g., by
checking if countPostGeq[w′, u] = 0 for the case of the line 16).

The initialization of geq(v) and leq(v) for all v ∈ V requires time O(n2).
The initialization of removeGeq(v) and removeLeq(v) for all v ∈ V requires time
O((m + n)n). Given two vertices v and w, if the test w ∈ removeGeq(v) at the
line 12 is positive in iteration i of the “repeat” loop, then that test is negative
in all the iterations j > i. This is due to the invariant I4 and that

– in all the iterations, w ∈ removeGeq(v) implies that w /∈ pre(geq(v)),
– the value of prevGeq(v) in all the iterations j > i is a subset of the value of

geq(v) in the iteration i.

It follows that the test w ∈ geq(u) at the line 13 is executed ΣvΣw|pre(v)| =
O((m+n)n) times. This test is positive at most once for every w and u, because
after a positive test w is removed from geq(u) and never put back. Thus, the
body of the “if” statement at the line 13 contributes time ΣwΣu(1 + |pre(w)|+
|pre(u)|) = O((m + n)n). This implies that the “if” statement at the line 11
contributes time O((m+ n)n). Similarly, the “if” statement at the line 22 con-
tributes time O((m + n)n). Summing up, the (modified) EfficientComparison
algorithm runs in time O((m+ n)n). We arrive at:

Theorem 3.1. Given a labeled graph G with n vertices and m edges, the largest
bisimulation-based auto-comparison of G and the directed similarity relation of G
in the setting without counting successors can be computed in time O((m+n)n).

4 The Case with Counting Successors

In this section, we present the ComparisonWithCountingSuccessors algorithm
(on page 8) for computing the largest bisimulation-based auto-comparison of
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a given labeled graph G = 〈V,E,A,L〉 in the setting with counting successors.
It uses the following data structures:

– leq ⊆ V 2,
– remove ⊆ V 2,
– f : V 3 → V is a partial mapping,
– g : V 3 → V is a partial mapping.

Algorithm 4: ComparisonWithCountingSuccessors

input : a labeled graph G = 〈V,E,A,L〉.
output : the relation leq .

1 set leq , remove to empty sets and f , g to empty mappings;
2 foreach u, u′ ∈ V do
3 if L(u) ⊆ L(u′) and |post(u)| = |post(u′)| then
4 leq := leq ∪ {〈u, u′〉}, W := post(u′);
5 foreach v ∈ post(u) do
6 extract v′ from W , f(u, v, u′) := v′, g(u′, v′, u) := v;

7 else remove := remove ∪ {〈u, u′〉};
8 while remove 6= ∅ do
9 extract (v, v′) from remove;

10 foreach u ∈ pre(v) and u′ ∈ pre(v′) such that f(u, v, u′) = v′ do
11 undefine f(u, v, u′) and g(u′, v′, u);
12 set g′ to the empty mapping;
13 S := {v}, T ′ := ∅;
14 repeat
15 S′ := {w′ ∈ post(u′) | ∃w ∈ S 〈w,w′〉 ∈ leq} \ T ′;
16 foreach w′ ∈ S′ do
17 set g′(w′) to an element w of S such that 〈w,w′〉 ∈ leq ;

18 S := {g(u′, w′, u) | w′ ∈ S′ and w′ 6= v′}, T ′ := T ′ ∪ S′;

19 until S′ = ∅ or v′ ∈ S′;
20 if S′ = ∅ then
21 delete the pair 〈u, u′〉 from leq ;
22 undefine f(u,w, u′) and g(u′, w′, u) for any w,w′;
23 remove := remove ∪ {〈u, u′〉};
24 break;

25 w′ := v′;
26 repeat
27 w := g′(w′), w′′ := f(u,w, u′);
28 f(u,w, u′) := w′, g(u′, w′, u) := w, w′ := w′′;

29 until w = v;

The variable leq will keep the relation to be computed .c. As an invariant,
leq is a superset of .c. A pair 〈u, u′〉 is deleted from leq and inserted into the set
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remove only when we already know that u 6.c u
′. At the beginning (in the steps

1–7), the relation leq is initialized to {〈u, u′〉 ∈ V 2 | L(u) ⊆ L(u′) ∧ |post(u)| =
|post(u′)|} and the relation remove is initialized to V 2 \ leq . Then, during the
(main) “while” loop, we refine the relation leq by extracting and processing each
pair 〈v, v′〉 from the relation remove. As invariants of that main loop, for all
u,w, u′, w′ ∈ V ,

leq ∩ remove = ∅, (8)

f(u,w, u′) = w′ ⇒ 〈u,w〉 ∈ E ∧ 〈u, u′〉 ∈ leq ∧
〈u′, w′〉 ∈ E ∧ 〈w,w′〉 ∈ leq ∪ remove,

(9)

g(u′, w′, u) = w ⇔ f(u,w, u′) = w′, (10)

if leq(u, u′) holds, then the function λw ∈ post(u).f(u,w, u′) is
well-defined and is a bijection between post(u) and post(u′) and
{〈w,w′〉 | w ∈ post(u), w′ = f(u,w, u′)} ⊆ leq ∪ remove.

(11)

Processing a pair 〈v, v′〉 extracted from the set remove is done as follows.
For each u ∈ pre(v) and u′ ∈ pre(v′) such that f(u, v, u′) = v′, we want to
repair the values of the data structures so that the above invariants still hold.
We first undefine f(u, v, u′) and g(u′, v′, u) (at the line 11). Figure 1 illustrates
the “repeat” loop at the lines 14–19 and its initialization at the line 13: after
the initialization, S = {v} and T ′ = ∅; after the first iteration, S′ = S′

1, S = S1

and T ′ = S′
1; after the second iteration, S′ = S′

2, S = S2 and T ′ = S′
1 ∪ S′

2;
observe that |S1| = |S′

1| and |S2| = |S′
2|. Since S′ is disjoint with the value of T ′

in the previous iteration and T ′ is monotonically extended by S′, the loop will
terminate with S′ = ∅ or v′ ∈ S′.

Fig. 1. An illustration for the steps 14–19 of Algorithm 4.
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In the case S′ = ∅, for T = {v} ∪ {w ∈ post(u) | ∃w′ ∈ T ′ f(u,w, u′) = w},
we have that |T | = |T ′|+ 1 and T ′ = {w′ ∈ post(u′) | ∃w ∈ T 〈w,w′〉 ∈ leq} (to
see this, one can use Figure 1 to help the imagination), and as a consequence,
u 6.c u′, because otherwise the condition (4) with Z replaced by .c cannot
hold (recall that leq is a superset of .c). So, in the case S′ = ∅, we delete the
pair 〈u, u′〉 from the relation leq , add it to the relation remove, and modify the
mappings f and g appropriately.

In the case v′ ∈ S′, the mappings f and g are repaired at the steps 25–29,
using the mapping g′ initialized at the step 12 and updated at the step 17.
This is illustrated in Figure 2, where the dotted arrows from post(u) to post(u′)
represent some pairs 〈w, f(u,w, u′)〉 such that f(u,w, u′) ∈ T ′ w.r.t. the old (i.e.,
previous) value of f , and the normal arrows from post(u′) to post(u) represent
some pairs 〈w′, g′(w′)〉 such that w′ ∈ T ′. The repair relies on updating f so
that those dotted arrows are replaced by the inverse of those normal arrows,
and updating g to satisfy the invariant (10).

Fig. 2. An illustration for the steps 25–29 of Algorithm 4.

Technically, it can be checked that the conditions (8)–(11) are invariants of
the (main) “while” loop. When the loop terminates, we have that remove = ∅,
and the invariants (9) and (11) guarantee that leq satisfies the condition (4) with
Z replaced by leq . As the condition (1) with Z replaced by leq holds due to the
initialization of leq , it follows that the resulting relation leq is a bisimulation-
based auto-comparison of the given labeled graph G in the setting with counting
successors. As each pair 〈u, u′〉 deleted from leq during the computation satisfies
u 6.c u

′, we conclude that the resulting relation leq is the largest bisimulation-
based auto-comparison of G with counting successors.
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Let n = |V |, m = |E| and assume that |A| is a constant. Our complexity
analysis for the ComparisonWithCountingSuccessors algorithm is straightfor-
ward. The steps 1–7 for initialization run in time O((m + n)n). The body of
the “foreach” loop at the line 10 runs no more than (m+ n)2 times totally. The
“repeat” loop at the lines 14–19 runs in time O(n2). The steps 25–29 run in time
O(n). Summing up, the algorithm runs in time O((m+ n)2n2). We arrive at:

Theorem 4.1. Given a labeled graph G with n vertices and m edges, the largest
bisimulation-based auto-comparison of G and the directed similarity relation of
G in the setting with counting successors can be computed in time O((m+n)2n2).

5 Conclusions

By using the idea of Henzinger et al. [6] for computing the similarity relation,
we have given an efficient algorithm, with complexity O((m+n)n), for comput-
ing the largest bisimulation-based auto-comparison and the directed similarity
relation of a labeled graph for the setting without counting successors. More-
over, we have provided the first algorithm with a polynomial time complexity,
O((m + n)2n2), for computing such relations but for the setting with counting
successors. One can adapt this latter algorithm to obtain the first algorithm
with a polynomial time complexity for computing the similarity relation in the
setting with counting successors. Our algorithms can also be reformulated and
extended for interpretations in various modal and description logics (instead of
labeled graphs).
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Abstract. In the paper, we show a formal model for a dialogue game in which
players can perform actions representing locutions like claim, question, concede
as well as locutions which have a greater emotional charge like scold or nod. We
define a protocol for dialogues in which participants have emotional skills and
then give an interpreted system for them. Finally, we propose an extension of
CTL logic with commitment, emotion and goal modalities. All of this is a formal
basis, which we use to perform semantic verification of properties of dialogue
systems with emotional reasoning.

1 Introduction

As members of society we have the need of collective work and protocols are an im-
portant part of our social skills. They help to facilitate structured conversations and are
commonly used in everyday situations (sometimes unconsciously). Protocols should
support dialogue, to help achieve the goal of the conversation. The first group of our
interest are children who are known to have different cognitive abilities in comparison
to adults. Usually, they are hard to convince and such a discourse is quite specific. For
many people, it is hard to tell at first sight, from which argument we would benefit the
most, and which one we should definitely avoid.

The aim of such an argumentation is a change in the emotional state of the inter-
locutor. The emotional state of our understanding consists of many factors, e.g. a sense
of security, self-agency, self-satisfaction, self-confidence and so on. Some argument at
the same time can increase one’s sense of self-agency, but decrease one’s sense of se-
curity (“if you find a job, you could move out, but you would have to rent your own
flat”). We aim in designing an application which would be a support for people who
have to convince somebody, but the more important factor is the emotional well-being
of the interlocutor. We see such an application as a trainer of good practices in argumen-
tation. We could consider possible reactions of potential interlocutor (e.g. a rebellious
teenager, an expatriate) to specific arguments and monitor changes in the simplified
representation of the emotional state. That is the reason we work on argumentative di-
alogue protocol, which is supposed to take into account change an emotional state of
interlocutor in order to obtain the desired result (e.g. some kind of decision).
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Usually, the aim of argumentation is figuring the agreement, the conviction of some-
one for their own reasons or even reaching a compromise [14, 32]. Persuasion dialogues
are dialogues aimed at resolving conflicts of opinion between at least two participants.
There are many types of such dialogues, e.g. conflict resolution dialogue begins with
a conflict of opinion and ends when one of the participants convinces the other one.
By the contrast, the argumentation under our consideration does not necessarily have to
convince a child to do something, but it should help him become aware of his feelings.
Certainly, we do not want to claim that there is an obvious argumentation that will con-
vince everybody, but there are some argumentation strategies and mechanisms, which
are quite known and considered as convincing ones.

Formal dialogue systems, which are growing field in the research on the process
of communication, can be used as a schema for such dialogues, both between artificial
agents or between the man and the machine. In our case, we need an argumentative
dialogue model designed for human-computer communication, which applies the men-
tioned specific types of dialogues. There are other approaches which are focused rather
on the agent to agent communication [4].

In this paper, we present a continuation of our work on the mathematical model of
dialogue inspired by dialogue games [16]. We would like to use this model as a seman-
tic structure in verification of properties of dialogue protocols and enable automated
analysis of dialogues. The model we base our current research on is founded on the
tradition of argumentative dialogue games by Prakken and others [25].

There are many approaches that assume very strict rules of communications. Our
model, focusing on machine-man communication, is also based on such strict rules. On
one hand, it makes it a little trivial, but on the other hand we can extract and focus on
most important features of the dialogues. We can perceive dialogue games [7, 14, 26,
31, 33] as examples of such strict dialogues. In dialogue games, a dialogue is treated as
some kind of a game played between two parties. Rules of such a game define policies
for the communication between parties in order to meet some assumptions, for exam-
ple in Hamblin system [12, 17] we have rules preventing argumentative mistakes, in
Lorenzen system [18, 20] we have rules enabling validation of formulas [15, 34].

Each dialogue game should have three basic categories of rules. Locution rules de-
fine a set of actions (speech acts, locutions) the player is allowed to perform during the
game. These actions express communication intentions of players. For example, rules
of the dialogue game can assume that player can claim something, argue, justify, ask for
justification, concede something etc. The second category of rules is responsible for the
definition of possible answers for specific moves. For example, after one interlocutor
claims something, the other one can concede it by performing concede or he can ask for
justification by performing why. These rules are called structural rules. The third group
of rules defines effects of actions. Due to performing some action (e.g. confirming or
rejecting) a set of public declarations (commitments) of the interlocutor is changed.
The result of an action is a change in the commitments set of the player, i.e. addition
of some new statement to this set. These rules are called effect rules. We are specifying
above rules which determine available moves for each player at every moment of the
dialogue.
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Even though every protocol must meet some general requirements, each one can be
quite unique and we are interested in verifying characteristic properties of the dialogue
defined by the specific protocol. In order to do that, we would like to use model check-
ing method applied in verification of multi-agent systems (MAS). Main solutions in
this matter combine bounded model checking (BMC) with symbolic verification using
translations to either ordered binary decision diagrams (BDDs) [13] or propositional
logic (SAT) [24]. Verified properties are expressed in logics which are combinations of
the epistemic logic with branching [27] or linear time temporal logic [30]. Such logics
can be interpreted either over interleaved interpreted systems (IIS) [19] or interpreted
systems themselves [11]. To interpret the properties of dialogue games we chose IIS, in
which only one action at a time is performed in a global transition.

The work presents a sketch of a formal system, which is a base for designing model
checking techniques for verification dialogue games. We are concerned with argumen-
tative dialogues, in which players can perform actions affecting commitments as well
as their emotions. As a result, they change the emotional state, mood and attitude of the
players. The proposed model will be used to show what mechanisms occur in human
argumentative dialogues. In particular, we focus on argumentations where rational argu-
ments are less effective (or not as effective) as the arguments referring to the emotions.
On this basis, we will build a tool for learning managing emotions. Since emotions
play a major role in persuading children, this tool can be used for personal development
training for teachers or parents, which are often confused about children’s feelings.

The study of emotions is part of various disciplines like Psychology, Economics,
Cognitive Neuroscience, and, in recent years, also Artificial Intelligence and Computer
Science. These studies aim to establish systems for emotional interaction. Nowadays,
more and more artificial agents integrate emotional skills to achieve expressiveness,
adaptability, and credibility. Such multiagent systems find application in the improve-
ment of human-machine interaction, testing, refining and developing an emotional hy-
pothesis or even the improvement of artificial intelligence techniques, once it optimizes
decision-making mechanisms [28, 23].

2 Interpreted system

We start out by defining a mathematical model for argumentation dialogue games. This
model uses the concept of interpreted systems and Kripke structures. In this model for-
mulas of a modal logic adequate to express properties that allow prediction of players’
behavior are interpreted. The obtained Kripke structure will be used to perform auto-
matic verification of dialogue protocols via model checking techniques.

First, we assume that the set of players of a dialogue game consists of two players:
White (W ) and Black (B), Pl = {W,B}. To each player p∈ Pl, we assign a set of actions
Actp and a set of possible local states Lp.

Every action from Actp can influence participant’s commitments. We assume that
the set Actp contains also the special empty (null) action ε . Every action (except null ac-
tion) is synonymous with locution expressed by the specific player. Results of locutions
are determined by evolution function and are specified afterwards.
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Player’s local state lp ∈ Lp consists of the player’s commitments, emotions, and
goals, lp = (Cp,Ep,GOp). Player’s commitments and goals are elements of a fixed topic
language, which allows expressing the content of locutions. Thus, Cp and GOp are sets
of such expressions. These sets may be subject to change after a player’s action. More
specifically, the player can add or delete the selected expression. Emotions which we
consider are fear, disgust, joy, sadness, and anger. Their strength (intensity) is repre-
sented by natural numbers from the set {1,2, . . . ,10}. Thus, Ep is a 5-tuple consisting
of five values, which may also change after a certain action. It is worth highlighting
here that a change in the intensity of the emotions is dependent on the type of locution
and, perhaps even more, on its content.

Next, Act denotes the Cartesian product of the players’ actions, i.e. Act = ActW ×
ActB. The global action a ∈ Act is a pair of actions a = (aW ,aB), where aW ∈ ActW ,
aB ∈ ActB and at least one of these actions is the empty action. This means that players
cannot speak at the same time. Moreover, a player cannot reply to his own moves. Thus,
the empty action is performed alternately by players W and B.

Also, we need to order performed global actions and indicate which actions cor-
respond with which ones and therefore we define double-numbered global actions set
Num2Act = N×N× Act. During the dialogue, we assign to each performed global
action two numbers: the first one (ascending) indicates order (starting from the value
1). The second one points out to which earlier action this action is referring (0 at the
beginning of the dialogue means that we are not referring to any move).

Furthermore, we define numbered global actions set Num1Act = N× Act. Each
element of this set is a pair (n,a) consisting of an action a ∈ Act and the identifier of
the action it refers to, n ∈ N. If we want to find out whether we can use some global
action one more time, we should check if the possible move containing the same global
action refers to the different earlier move. We define function Denum : Num2Act →
Num1Act, which maps double-numbered global action to the numbered global action.
We understand dialogue d as a sequence of moves and in particular, we denote d1..n =
d1, ...,dn, where di ∈ Num2Act, di = (i, j,a), j ∈ N, j < i, a ∈ Act.

A global state g is a triple consisting of dialogue history and players’ local states
corresponding to a snapshot of the system at a given time point g = (d(g), lW (g), lB(g)),
g ∈ G where G is the set of global states. Given a global state g, we denote by d(g) a
sequence of moves executed on a way to state g and by lp(g) - the local state of player
p in g.

An interpreted system for a dialogue game is a tuple IS = (I,{Lp,Actp}p∈Pl) where
I ⊆ G is the set of initial global states.

Let α,β ,φ,ψ1, ..,ψn,γ1, ..,γn ∈ Form(PV ), i.e., be formulas defined over the set
PV , which is a set of atomic propositions under which a content of speech acts is spec-
ified. Locutions used in players’ actions are the same for both players: ActW = ActB =
{ε, claim φ, concede φ, why φ, scold φ , nod φ , φ since {ψ1, . . . ,ψn}, retract φ,
question φ }.

In argumentation dialogues, a player can claim some facts, concede with the oppo-
nent or change his mind performing action retract. To challenge the opponent’s state-
ment, he may ask why, or ask whether the opponent commits to something, i.e., perform
action question. For defense he can use the action since. It is the kind of reasoning and
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argumentation. Actions scold and nod express reprimand and approval, respectively.
Note that all of these locutions refer to commitments, i.e., public announcements. We
are not talking here about beliefs or knowledge, which may differ from the commit-
ments.

Now we define legal answer function FLA : Num2Act → 2Num1Act , which maps a
double-numbered action to the set of possible numbered actions. This function is sym-
metrical for both players and determines for every action a set of legal actions which
can be performed next.

– FLA(i, j,(ε,ε)) = /0,
– FLA(i, j,(claim φ,ε))= {(i,act) : act ∈{(ε,why φ), (ε,concede φ), (ε,claim ¬φ),

(ε,node ψ), (ε,scold ψ) }, for some ψ ∈ Form(PV ),
– FLA(i, j,(why φ ,ε)) = {(i,act) : act ∈ {(ε,φ since {ψ1, . . . ,ψn}),(ε,retract φ)},
– FLA(i, j,(φ since {ψ1, . . . ,ψn},ε)) = {(i,act) : act ∈ {(ε, why α), (ε,concede β ),
(ε,¬φ since {γ1, . . . ,γn}), (ε,node ψ), (ε,scold ψ) }, where α ∈ {ψ1, . . . ,ψn},
β ∈ {φ,ψ1, . . . ,ψn}, and ψ ∈ Form(PV ),

– FLA(i, j,(concede φ,ε)) = {(i,act) : act ∈ {(ε,ε), (ε,claim α), (ε ,node α),
(ε,scold α), (ε,α since {ψ1, . . . ,ψn}) }, for some α,ψ1, . . . ,ψn ∈ Form(PV ),

– FLA(i, j,(retract φ,ε)) = {(i,act) : act ∈ {(ε,ε), (ε,claim α), (ε,node α),
(ε,scold α), (ε,α since {ψ1, . . . ,ψn})}, for some α,ψ1, . . . ,ψn ∈ Form(PV ),

– FLA(i, j,(question φ ,ε)) = {(i,act) : act ∈ {(ε,retract φ), (ε,claim φ),
(ε,claim ¬φ)},

– FLA(i, j,(scold φ,ε))= {(i,act) : act ∈ {(ε,why φ), (ε ,concede φ), (ε,claim ¬φ),
(ε,node ψ), (ε,scold ψ) }, for some ψ ∈ Form(PV ),

– FLA(i, j,(nod φ ,ε)) = {(i,act) : act ∈ {(ε ,ε), (ε,claim α), (ε,node α),
(ε,scold α), (ε,α since {ψ1, . . . ,ψn}) }, for some α,ψ1, . . . ,ψn ∈ Form(PV ).

The actions executed by players are selected according to a protocol function
Pr : G → 2Num2Act , which maps a global state g to the set of possible double-numbered
global actions. The function Pr satisfies the following rules.

(R1) For ι ∈ I Pr(ι) =
{(1,0,(claim φ , ε)), (1,0,(question φ ,ε)), (1,0,(φ since {ψ1, . . . ,ψn},ε))}.

(R2) Pr((d1..k−1,(k, l,(ε,ε)), lW (g), lB(g)))= {(k+1, numact) : numact ∈ FLA(k, l,(ε,ε)).
(R3) Pr((d1..k−1,(k, l,(a,ε)), lW (g), lB(g)))= {(k+1,numact) : numact ∈FLA(k, l,(a,ε))},

for a ∈ {ε, claim φ,scold φ, why φ , φ since {ψ1, . . . ,ψn}}.
(R4) Pr((d1..k−1,(k, l,(a,ε)), lW (g), lB(g))) = {(k+1,numact) : numact ∈

((
∪

i<=k FLA(di)∩{(n,(ε,α)) : n < k,α ∈ ActB}) \{Denum(di) : i = 1, ..,k})},
for a ∈ {concede φ, nod φ, question φ}.
After opponent’s locutions concede, nod or question the player can use one from
possible answers for all previous opponent’s moves, excluding these ones which he
has already used.

(R5) Pr((d1..k−1,(k, l,(retract φ ,ε)), lW (g), lB(g))) = {(k+1,numact) : numact ∈
((
∪

i<=k FLA(di) ∩ {(n,(ε,α)) : n < k,α ∈ ActB})\{Denum(di) : i = 1, ..,k})} ∪
{(k+1,x,(ε,why β )) : ∃x<k dx = (x,y,(β since φ,ε))} for some φ,β ∈ Form(PV ).
After opponent’s locution retract φ the player can use one from possible answers
for all previous opponent’s moves, excluding these ones which he has already used
but also he can ask for the reason for β if φ was previously used to justify β .
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These rules for player B are analogous.
The protocol is a crucial element of the model since it gives strict rules which de-

termine the behaviour of players. In other words, it formally describes who, when and
which action can perform. Rules (R1) and (R2) refer to the beginning and end of the
dialogue, respectively. Rule (R3) states that after locutions claim, scold, why, and since,
only actions determined by the legal answer function can be used. According to rules
(R4) and (R5), actions concede, nod and retract end one of the threads of dialogue.
Therefore, the next action can start a new thread or return to one of the unfinished. Ac-
tions nod and scold act similarly to actions concede and claim, but what distinguishes
these actions is their emotional charge.

To show how locutions and their contents affect players’ emotions and goals we
define two functions. The first one determines the change of intensity of emotions:
EMOTp : Actw × Emotionp → Emotionp where p ∈ Pl and Emotionp is a set of all
possible 5-tuples for emotions, i.e., Emotionp = {(n1, . . . ,n5) : ni ∈ {1, . . . ,10} ∧ i ∈
{1, . . . ,5}}. The second one determines the change of goals: GOALp : Actw ×Goalp →
Goalp where p ∈ Pl and Goalp is a set of possible goals represented by expressions
from the topic language, i.e. Goalp ⊂ Form(PV ).

Finally, we define global (partial) evolution function t : G×Num2Act → G, which
determines results of actions. This function is symmetrical for both players. Let d(g) =
d(g)1,...,m, then:

– t(g,(m+1, j,(claim φ,ε))) = g′ iff φ /∈CW (g)∧CW (g′) =CW (g)∪{φ}
∧ EW (g′) = EMOTW (claim φ ,EW (g))∧GOW (g′) = GOALW (claim φ,GOW (g))∧
d(g′) = (d(g)1,...,m,(m+1, j,(claim φ ,ε))),

– t(g,(m+1, j,(concede φ ,ε)))= g′ iff φ ∈CB(g)∧CW (g′)=CW (g)∪{φ}∧ EW (g′)
= EMOTW (concede φ ,EW (g))∧GOW (g′) = GOALW (concede φ ,GOW (g))∧
d(g′) = (d(g)1,...,m,(m+1, j,(concede φ ,ε))),

– t(g,(m+1, j,(why φ ,ε))) = g′ iff CW (g′) =CW (g)
∧ EW (g′) = EMOTW (why φ,EW (g))∧GOW (g′) = GOALW (why φ ,GOW (g))∧
d(g′) = (d(g)1,...,m,(m+1, j,(why φ,ε))),

– t(g,(m+1, j,(φ since {ψ1, . . . ,ψn},ε))) = g′ iff CW (g′) =CW (g) ∪ {φ,ψ1, ..,ψn}
∧ EW (g′) = EMOTW (φ since {ψ1, . . . ,ψn},EW (g))∧GOW (g′) =
GOALW (φ since {ψ1, . . . ,ψn},GOW (g))∧
d(g′) = (d(g)1,...,m,(m+1, j,(φ since {ψ1, . . . ,ψn},ε))),

– t(g,(m+1, j,(retract φ,ε))) = g′ iff CW (g′) =CW (g)\{φ}
∧ EW (g′) =EMOTW (retract φ,EW (g))∧GOW (g′) =GOALW (retract φ,GOW (g))
∧ d(g′) = (d(g)1,...,m,(m+1, j,(retract φ,ε))),

– t(g,(m+1, j,(question φ ,ε))) = g′ iff CW (g′) =CW (g)
∧ EW (g′)=EMOTW (question φ,EW (g))∧GOW (g′)=GOALW (question φ,GOW (g))
∧ d(g′) = (d(g)1,...,m,(m+1, j,(question φ ,ε))),

– t(g,(m+1, j,(scold φ,ε))) = g′ iff φ /∈CW (g)∧CW (g′) =CW (g)∪{φ}
∧ EW (g′) = EMOTW (scold φ,EW (g))∧GOW (g′) = GOALW (scold φ ,GOW (g))∧
d(g′) = (d(g)1,...,m,(m+1, j,(claim φ ,ε))),

– t(g,(m+1, j,(nod φ ,ε))) = g′ iff φ ∈CB(g)∧CW (g′) =CW (g)∪{φ}
∧ EW (g′) = EMOTW (nod φ ,EW (g))∧GOW (g′) = GOALW (nod φ,GOW (g))∧
d(g′) = (d(g)1,...,m,(m+1, j,(concede φ ,ε))),
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Global evolution function defines results of actions. In particular, actions claim,
concede, scold, nod and since add an expression to the commitments set while action
retract deletes it. Actions why and question do not modify this set.

3 Kripke model and model checking

The mathematical model for argumentative dialogue games provides a basis for ap-
plying the methods of model checking to verify the correctness of dialogue protocols
relative to the properties that the protocols should satisfy. Model checking [2, 8, 9, 22]
is an automatic verifying technique for concurrent systems such as digital systems,
distributed systems, real-time systems, multi-agent systems, communication protocols,
cryptographic protocols, concurrent programs, dialogue systems, and many others.

The prerequisite inputs to model checking are a model of the system under consid-
eration and a formal characterisation of the property to be checked. Therefore, we as-
sociate with the given interpreted system a Kripke structure, that is the basis for the ap-
plication of model checking. A Kripke structure is defined as a tuple M = (G,Act,T, I)
consisting of a set of global states G, a set of actions Act (in our approach Num2Act), a
set of initial states I ⊆ G, a transition relation T ⊆ G×Act ×G such that T is left-total.
Relation T is defined as follows (g,a,g′) ∈ T iff g′ ∈ t(g,a). By T ∗ we will denote the
reflexive and transitive closure of T .

To formulate properties of dialogue protocols suitable propositional temporal log-
ics are applied. The most commonly used, in general, are linear temporal logic (LTL),
computation temporal logic (CTL), a full branching time logic (CTL∗), the universal
and existential fragments of these logics, and other logics which are their modifications
and extensions. One of the most important practical problems in the model checking is
the exponential growth of the number of states of the Kripke structure. That is why in
future work we intend to focus on symbolic model checking of dialogue protocols. Sym-
bolic model checking avoids building a state graph; instead, sets and relations are repre-
sented by Boolean formulae. One of the possible methods of symbolic model checking
is bounded model checking (BMC) [5, 6, 1, 3, 29]. It uses a reduction of the problem
of truth of a temporal formula in a Kripke structure to the problem of satisfiability. In
SAT-based BMC the aforementioned reduction is achieved by a translation of the transi-
tion relation and a translation of a given property to formulae of classical propositional
calculus, whereas in SMT-based BMC to quantifier-free first order formulae.

The standard BMC algorithm, starting with k = 0, creates for a given Kripke struc-
ture M and a given formula φ , a formula [M,φ]k. Then the formula [M,φ]k is forwarded
to either a SAT-solver or a SMT-solver. Note, that in the case of SAT-base BMC the
propositional formula is converted to a satisfiability equivalent propositional formula in
conjunctive normal form before forwarding it to a SAT-solver. If the tested formula is
unsatisfiable, then k is increased (usually by 1) and the process is repeated. The BMC
algorithm terminates if either the formula [M,φ ]k turns out to be satisfiable for some k,
or k becomes greater than a certain, M-dependent, threshold (e.g. the number of states
of M). Exceeding this threshold means that the formula φ is not true in the Kripke struc-
ture M. On the other hand, satisfiability of [M,φ]k, for some k means that the formula
φ is true in M.
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4 Computation Tree Logic of Commitment and Action with Past

Interpreted systems are traditionally used to give a semantics to an epistemic language
enriched with temporal connectives based on linear time [11]. Here we use CTL by
Emerson and Clarke [10] as our basic temporal language and add commitment, emotion,
goal, dynamic and past components to it. We call the resulting logic Computation Tree
Logic of Commitment and Action with Past.

Definition 1 (Syntax). Let Pl = {W,B} be a set of players. The set of formulas is de-
fined inductively as follows:

• true is a formula,
• if φ ∈ Form(PV ) and p ∈ Pl then COMp(φ) and Gp(φ) are formulas,
• Ep(e) is a formula for p ∈ Pl and e ∈ {fear, disgust, joy, sadness, anger},
• if α and β are formulas, then so are ¬α , α ∧β and α ∨β ,
• if ā ∈ ActW and α is a formula, then so are AX(W,ā)α and AY(W,ā)α ,
• if ā ∈ ActB and α is a formula, then so are AX(ā,B)α and AY(ā,B)α ,
• if α and β are formulas, then so are AXα , AGα and A(αUβ ),
• if α is a formula, then so are AYα and AHα .

The remaining basic modalities are defined by derivation: EFα def
= ¬AG¬α , EPα def

=

¬AH¬α , EZα def
= ¬AZ¬α , EZ(W,ā)α

def
= ¬AZ(W,ā)¬α , EZ(ā,B)α

def
= ¬AZ(ā,B)¬α , for

Z ∈ {X,Y}, Moreover, α ⇒ β def
= ¬α ∨β , α ⇔ β def

= (α ⇒ β )∧(β ⇒ α), and f alse
def
=

¬ true.
The formula true is used for technical reasons and helps to express that some action

is possible to execute, i.e., an action can lead to a state in which true holds. Of course,
true is satisfied in every state.

Formula COMp(φ) describes the actual set of commitments of player p, more pre-
cisely, it expresses that φ is in this set. We should emphasize that φ is not a formula of
the language defined herein, but a part of a separate structure in which it is possible to
express the spoken sentences. In dialogue system, all actions are aimed at influencing
the players’ commitments. Therefore, the modality COM is very important and often
used in the protocol specification. Modalities Ep and Gp allow for expressing properties
concerning emotions and goals of player p.

The temporal modalities X,G stand for “at the next step”, and “forever in the fu-
ture”, respectively. Y,H are their past counterparts “at the previous step”, and “forever
in the past”. The modality A is the universal quantifier - “for all”. Thus, AX means “for
all next states” while AG means “for all states on all paths”.

We also introduce modality AX(W,ā). It encodes an additional fact calling the action
that led to the next state. Since we are talking about the implementation of a specific
action, we must also indicate its executor. Hence, the subscript (W, ā), expressing that
the performer is a player White, is added. A similar modality is defined for Black:
AX(ā,B). As a result, the formula AX(ā,B)α intuitively expresses that “at all next states
reached after execution of action ā by Black, α is true”.

The operator U stands for Until; the formula αUβ , expresses the fact that β even-
tually occurs and that α holds continuously until then.
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As customary, the negation ¬A can be replaced by the existential quantifier E using
the de Morgan’s laws. So, ¬AXα is equivalent with EX¬α - there exists a next state at
which α holds. The interpretation of the other existential formulas is similar.

First, in order to give the semantics for the above formulas, we need to give a formal
definition of a computation. A computation in a Kripke structure M = (G,Act,T, I) is
a possibly infinite sequence of states π = (g0,g1, . . .) such that there exists an action
am for which (gm,am,gm+1) ∈ T for each m ∈ N, i.e., gm+1 is the result of applying the
transition relation T to the global state gm, and the action am.

Below we abstract from the transition relation, the actions, and the protocols, and
simply use T , but it should be clear that this is uniquely determined by the inter-
preted system under consideration. In interpreted systems terminology, a computation
is a part of a run. A k-computation is a computation of length k. For a computation
π = (g0,g1, . . .), let π(k) = gk, and πk = (g0, . . . ,gk), for each k ∈ N. By Π(g) we de-
note the set of all the infinite computations starting at g in M, whereas by Πk(g) the set
of all the k-computations starting at g.

Definition 2 (Semantics – Interpretation). Let M be a model (Kripke structure), g∈G
be a state, π be a computation, and α ,β be formulas. M,g |= α denotes that α is true
at the state g in the model M. M is omitted, if it is implicitly understood. The relation |=
is defined inductively as follows:

g |= true for all g ∈ G,
g |=COMp(φ) iff φ ∈Cp(g),
g |= Ep(e) iff ni > 5 in Ep(g) = (n1, ..,n5), where e is fear, disgust, joy,

sadness, anger and i = 1,2,3,4,5, respectively,
g |= Gp(φ) iff φ ∈ GOp(g),
g |= ¬α iff g ̸|= α ,
g |= α ∧β iff g |= α and g |= β ,
g |= AX(W,ā)α iff ∀a = (i, j,(ā,ε)) ∈ Num2Act and ∀g′ ∈ G ( if (g, ā,g′) ∈ T,

then g′ |= α),
g |= AX(ā,B)α iff ∀a = (i, j,(ε, ā)) ∈ Num2Act and ∀g′ ∈ G ( if (g, ā,g′) ∈ T,

then g′ |= α),
g |= AXα iff ∀g′ ∈ G ∀a ∈ Num2Act ( if (g,a,g′) ∈ T, then g′ |= α),
g |= AGα iff ∀π ∈ Π(g) (∀m≥0 π(m) |= α),
g |= A(αUβ ) iff ∀π ∈ Π(g) (∃m≥0 [π(m) |= β and ∀ j<m π( j) |= α]),
g |= AY(W,ā)α iff ∀a = (i, j,(ā,ε)) ∈ Num2Act and ∀g′ ∈ G ( if (g′,a,g) ∈ T,

then g′ |= α),
g |= AY(ā,B)α iff ∀a = (i, j,(ε, ā)) ∈ Num2Act and ∀g′ ∈ G ( if (g′,a,g) ∈ T,

then g′ |= α),
g |= AYα iff ∀g′ ∈ G ∀a ∈ Num2Act ( if (g′,a,g) ∈ T, then g′ |= α),
g |= AHα iff ∀g′ ∈ G ( if (g′,g) ∈ T ∗, g′ |= α).

The description of the semantics is finished by giving the definition of the validity
in the model.

Definition 3. (Validity) A formula φ is valid in M (denoted M |= φ) iff M, ι |= φ , i.e.,
φ is true at the initial state of the model M.
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5 Properties of dialogue protocols

The formal language introduced in the previous section is used for giving the specifica-
tion for dialogue protocols as well as for describing properties of these protocols. The
properties can be divided into several classes [21]. Some of them are studied below.

Safety. Safety property usually expresses that something bad does not happen. How-
ever, it can also express that something good is always true. The best illustration here is
the specification of locutions used in dialogues:

AG(AX(W,claim α) COMW α).

This formula states that after locution claim α , the formula α is in the set of commit-
ments of the performer.

The next formula expresses a similar property, i.e., before the execution of the lo-
cution retract α , the formula α must be in the commitments set of the player:

AG(AY(W,retract α) COMW α).

Nontermination. One of the most important safety properties is nontermination. It
expresses that every legal dialogue, i.e., dialogue in accordance with rules of a dialogue
game does not have a termination state:

AG(EXtrue).

This formula states that in every state of every computation there is an action which
can be performed and after execution of this action a formula true is satisfied. As a
consequence, every dialogue is infinite.

Guarantee. One of the guarantee properties, i.e., properties that ensure that some
event eventually happens, is termination. In dialogue systems, we often assume that
the end of a dialogue means the fulfillment of a certain condition. This condition may
express that one of the players, e.g. W , is happy:

E(true U EW ( joy)).

If any dialogue should end with the termination condition and this condition means that
White does not feel fear, then we can express this fact as follows:

A(true U ¬EW ( f ear)).

The formula claims that every computation contains a state at which the required con-
dition holds.

Response. The response property expresses the fact that a property β is a guaranteed
response to a condition α . An example of this is the formula

AG(COMp(α)⇒ E(true U ¬COMp(α)))

which states that if a player is committed to α , then during the dialogue he can change it.
This property is very important since it states that it is possible to reject some commit-
ment and at the same time it means the ability to change some opinion, what is crucial
for argumentative dialogues. It makes no sense to provide and analyze arguments if the
change of players’ commitments is not possible at all.
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6 Conclusion

The aim of our research is to design and implement a framework to provide a com-
munication between a user and a machine which allows to better understand emotions
that appear during human dialogues. We plan to create a tool that will support the per-
sonal development in this matter, i.e., the acquisition of skills of identifying and naming
emotions. This is particularly important for training teachers, educators, psychologists,
and parents. This process can take place between a human, which plays a role of a stu-
dent, and a software agent, which plays a role of a teacher. The challenge is to design a
suitable interface for such communication. However, the implementation should be pre-
ceded by constructing a mathematical model and proposing a new dialogue protocol.
In our work, we also propose formal language for protocol specification and expressing
its properties. On this basis, we plan to design and implement a multimedia tool for
educational purposes. Psychological aspects of the project are consulted with a group
of psychologists. Our research does not deal with linguistic analysis, but we want to ex-
plore dialogues with the fixed base so that the user can learn to recognize these places
and elements of dialogue which relate to emotions.
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work S/W/1/2014 and funded by Ministry of Science and Higher Education.
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The question, how true concurrency differs  from interleaving,  has been studied
intensively,  beginning with the works of Mazurkiewicz [Maz],  Milner [Mil],  Pratt
[Pra] and many others.  The Mazurkiewicz trace theory requests for specifying the
dependency  relation,  which  makes  such  difference  explicit.  If  in  some  state  the
sequences  ab and  ba are executable, then if  a and b are independent, then both the
sequences describe the same behavior. Moreover, we can say about a concurrent step
allowing the execution of a and b in parallel. However, if a and b are dependent, then
such two sequences describe two different sequential processes. 

Pratt  in  [Pra]  makes  an  interesting  geometrical  interpretation  of  concurrency,
letting it be considered as the creation of a new dimension. If we imagine the progress
of executing a and b as segments: a on OX axis and b on OY axis, both originating in
O, then executing ab in a sequential way means that we first go along the segment a,
next come to the corner of a rectangle, from which we traverse the segment b. On the
other hand, when a and b are concurrent, we can imagine the space of possible states
as the whole interior of the rectangle spanned on a and  b as sides. 

In  many  situations,  when  we  consider  the  reachability  graph  of  a  concurrent
system, whenever two actions can be executed in parallel, we can see a diamond-like
shape. 
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The diagonal  ab reflects the parallelism. Actions  a and  b can occur in any order
(left-hand and right-hand paths) or they can occur in parallel. 

The situation gets more complex if we allow multiple actions to be performed in
parallel.  The  diamond-like  pattern  can  no  longer  be  sufficient.  The  question  of
interleaving becomes inappropriate. Let's illustrate this phenomenon on one physical
example. From now on we assume that we have ideally resilient identical balls of
negligible radius. We will consider collisions without energy loss, satisfying the laws
of physics, so exchanging the momentum and energy (perfectly elastic collisions). 

Let's start with a simple example of three balls on a straight line. The left-hand ball
is moving with constant velocity v to the right, the right-hand ball is moving with
velocity v to the left, while the middle ball does not move. Let's encode the state of
the system by three letters: R for right, S for stand and L for left. So the initial state of
the system is RSL. 

There are three actions possible in the initial state: 
1. The first ball hits the middle one, stopping immediately and transmitting all

the momentum to the second ball leading to the state SRL. 
2. The third ball hits the middle one, leading to the state RLS
3. The first and the third ball hit the middle one, bouncing backwards, without

moving it, so leading to the final state LSR. 
Two first of them lead to consecutive events that must happen next. The complete

picture of the states is given on Fig 3. The labels on edges name the balls, which take
part in the collision. Mind that they reflect different actions (for instance 12 means
just that the ball 1 collides with ball 2, without specifying what kind of collision it is). 
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The diagonal labeled 123 reflects the event in which the first and the last ball hit
the middle one in the same moment. In fact it can be interpreted as 12 || 23, but this
time no interleaving is possible. The event 123 is not a combination of 12 and 23. 

Such hexagonal shape can be typical for 3 objects, which interact in more complex
situations, like one billiard ball hitting the two other ones, which stick together;  a
situation of great instability. 

We can presume that the multi-event parallelism can create much more complex
patterns. Let's consider one more example. Imagine 4 balls, like on Fig 4, targeting to
one common centre: ball 1 going South, ball 2 West, ball 3 North and ball 4 East. We
do not assume that the balls are equidistant from the center. It can happen that, for
instance, ball 1 hits ball 2 before any other event happens. According to the laws of
physics, in this case ball 1 and ball 2 will exchange the momentum, hence ball 1 will
start going West, and  ball 2 will go South. Observe, that if any collision happens, it
will  take place in the common center  and the resulting directions will be like the
original ones, so S-W-N-E. Eventually we expect that the four balls, after possible
bounces, will pass the center and leave the initial area going to infinity. 

Let us encode the states by four letters assigned to each of the balls, so the initial state
will be SWNE. 

On Fig. 5 we can see a part of the big state graph, again hiding some information,
like where the ball actually is with respect to the center. Some of the possible runs are
not shown, like the one, in which none or only one collision takes place.
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In  the  last  case  we can  see  an octagonal  shape  (among many)  SWNE-WSNE-
WNSE-ENSW-NESW-NEWS-NWES-SWEN,  which  makes  sequentially  the  same
result as the main diagonal SWNE-NESW. The diagonal run reflects the situation, in
which all the balls are equidistant and reach the center at the same time. Each of them
will  bounce symmetrically the two neighboring ones and go immediately,  without
intermediate steps into the final direction. Mind that inside the diagram we can see
two typical diamond-like occurrences of concurrent events. 

So again, here we cannot replace the concurrent behavior by the composition of the
sequential ones. Concurrency, like in the previous example, creates new run, which
has little to do with the partly sequential ones, leading to the same result. 

On Fig 5 we also see an interesting case of a diamond non-concurrency: the outer
edges, however they form a diamond shape, cannot be replaced by a diagonal 13 || 24.
Bouncing ball 1 against ball 3 can never happen in the same moment as bouncing ball
2 against ball 4. 

With the increase of the number of parallel events, one can expect other shapes of
concurrency,  not  necessarily  being  planar.  Usually  they  reflect  unstable  physical
systems --  a  small  change in  the initial  state  can  cause  a dramatic  change in  the
behavior. Such instability is well recognized by the physicists. Let us look deeper into
some other part of the state graph of the behavior of the system from Fig. 4. For the
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moment let us concentrate on three balls 1,4,2, assuming that the ball 3 is far away
from the common center. So the initial state of these  balls is  SWNE, but the ball 3
will not change its status for a while. 

Fig.6 Unstable collision of 3 balls 

If all the three considered balls collide in the center simultaneously, then the ball 1
will go North, but the two balls 4 and 2 will exchange their momentums and absorb
the momentum of ball 1. As a result they will bounce in two directions a bit South, as
depicted in Fig.6. Let us call this state N(SE)N(SW) No other collision would happen,
so this would be a final state of the system. 

This will differ a lot from the case, in which the ball 2 would find itself a little bit
towards East in the initial position. In such a case two collisions between the balls
1,4,2 would happen. First the ball 1 would collide with the ball 4 exchanging their
momentums and transforming the system state to EWNS, next the ball 1 and 2 would
collide reaching the state WENS, quite different from the final state of Fig 6. So a
small change in the initial position would result in a major qualitative difference of
the final state.  This is an illustration of an instability phenomenon, in which case the
multi-collision  of  balls  cannot  be  factorized  as  a  result  of  interleaving  the  bi-
collisions.  

Anyway,  the  world  of  concurrency  seems  to  hide  some  mysteries.  Here  we
demonstated  a  set  of  examples  showing  why  interleaving  models  can  be  not
aproppriate for modeling true concurency. 
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Abstract

A new protocol using vectors of global timestamps for mutual exclusion in
systems with Distributed Shared Memory (DSM) is described and some of its
properties proved.

1. Introduction

Exclusive access to resources in concurrent programming has found various
solutions originating in aforetime works by Dekker (unpublished but presented
in [Dij 1968]), Dijkstra [Dij 1968 ], [Dij 2002], Lamport [La 1978], [La 1979],
Ricart &Agrawala [R-A 1981], Saxena&Rai [S-R 2003] and a number of others.
With coming of real multicomputer distributed systems without central memory
and clock, where cooperation or competition of computers takes place only
by message passing, the problem became essentially more complicated than in
case of time-sharing systems or multiprocessors with shared physical memory.
This concerns especially systems with no aid of central server: the computers
„negotiate” by exchanging messages through the network and only one at a time
is entitled to access a resource. A protocol based on vectors of global timestamps
is presented in this paper and some of its properties are proved. The protocol is
intended for systems with distributed shared memory (DSM), where the local
memory in every computer is uniformly accessible for all computers: DSM is
treated as a union of local memories. It is known that applications using DSM
with some models of memory consistency [Cz 2016], require mutual exclusion.
In the described solution, every computer keeps a vector of global timestamps
of current requests for critical section, which are being issued by the connected
computers. We do not discuss in details problems of timestamp advancement
and mechanism of vector clocks (cf, for instance [S-R 2003], [K-M-C-H 2016]).
It is assumed that such mechanisms provide current values of timestamps for
the protocol described here. Likewise an issue of deadlock and fairness has been
omitted, because of permitted space limitation of this paper.

A schematic structure of multicomputer system with Distributed Shared Mem-
ory is in Fig.1.1.
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Fig.1.1.

2. Global timestamps revisited

A set Z is partially ordered iff its elements are related by relation �⊆ Z × Z

satisfying: for every x ∈ Z, y ∈ Z, z ∈ Z:

1. x � x (reflexivity)

2. if x � y and y � x then x = y (antisymmetry)

3. if x � y and y � z then x � z (transitivity)

Moreover, if apart from (1), (2), (3):

4. x � y or y � x (connectivity)

then Z is linearly (totally) ordered. As usually, x � y iff x � y and x �= y

Let E(S) denote a set of events that may occur during activity of a distributed
system S and let us define a partial order relation combining two kinds of
precedence of events: occurring in the same process and of message sending and
reception. For x, y ∈ E(S) two auxiliary binary relations

� � � � � � �
� � � � � � and

�	� � � 
 � �
� � � � � � �

are admitted as primary notions with the meaning:

• if x precedes y in the same process or if x = y then x
� � � � � � �
� � � � � � y

• if x is a sending message by a certain process and y is a reception of this
message by another process then x

��� � � 
 � �
� � � � � � � y

A (weak) precedence
� � � � �  � �
� � � � � � � ⊆ E(S) × E(S) is the least relation satisfying:

• if x
� � � � � � �
� � � � � � y or x

��� � � 
 � �
� � � � � � � y then x

� � � � �  � �
� � � � � � � y

• if x
� � � � �  � �
� � � � � � � y and y

� � � � �  � �
� � � � � � � z then x

� � � � �  � �
� � � � � � � z
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Events x, y are independent (concurrent) iff neither x
� � � � �  � �
� � � � � � � y nor y

� � � � �  � �
� � � � � � � x ,

written x||y

Relation
� � � � �  � �
� � � � � � � is a modified precedence introduced by Lamport [La 1978] but

due to the reflexivity of
� � � � � � �
� � � � � � , the relation

� � � � �  � �
� � � � � � � is a partial order — contrarily

to the Lamport’s version. A common (global) clock and common memory are
absent in asynchronous distributed systems, and partially ordered events are
watched from outside of the system as occuring in real (external) time, thus,
their precedence relation should imply similar order between real time instants
of their occurrences. So, an injection mapping C : E(S) → R (R - set of
real numbers), called a logical clock should be defined, satisfying implication

x
� � � � �  � �
� � � � � � � y ⇒ C(x) ≤ C(y), where values C(x), C(y) are logical (not real) time

instants of events x, y. To avoid absurd relationship of events to their time
instants visible from outside of the system (when message reception precedes
its dispatch), a compensation of processors’ local clocks is necessary. So, if a
sender sends a message together with its local time of dispatch and a receiver
gets it earlier with respect to its local time, then the receiver must put forward
its clock (a time register) to a time a little later than the time received from

the sender. This procedure ensures the implication x
� � � � �  � �
� � � � � � � y ⇒ C(x) ≤ C(y)

if the values C(x), C(y) are assumed to be compensated time instants of events
x, y, called their timestamps. Obviously the reverse implication does not hold
for some x, y if x||y (see Fig.2.1). The logical clock C measures the compensated
time. But it may happen that C(x) = C(y) and x �= y for some concurrent
x, y, so the mapping C is not one-to-one function, thus C does not establish
unique representation of events by their timestamps. However if the processes
are linearly ordered, e.g. numbered and the notion of event’s timestamp is
supplemented with a number of the process in which the event appears, then
events can be uniquely represented by the richer timestamps, called global. So,
let nr(p � ) be a unique number of process p � in which the event x occurs (a
given event may occur in exactly one process, thus it identifies this process). A
pair 〈C(x), nr(p � )〉 is called a global timestamp of event x and let � denote a
relation between global timestamps defined as 〈C(x), nr(p � )〉 � 〈C(y), nr(p � )〉
iff C(x) < C(y) or if C(x) = C(y) then nr(p � ) ≤ nr(p � ). Obviously � is
linear, the so-called lexicographic order and the one-to-one injection mapping
Γ : E(S) → R × N (N - set of natural numbers) has been established by
Γ(x) = 〈C(x), nr(p � )〉, because Γ(x) = Γ(y) ⇒ x = y for all x, y. Therefore, Γ
establishes a unique representation of events by their global timestamps. Again,

the implication x
� � � � �  � �
� � � � � � � y ⇒ Γ(x) � Γ(y) holds but not the reverse one (see

Fig.2.1).

Fig.2.1 exemplifies some relationships between events and their global timestamps
during a system activity fragment. Black and grey circles are events of send
and receive message respectively. Processes are numbered as follows: nr(p1) <

nr(p2) < nr(p3).
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Fig.2.1. a
� � � � �  � �
� � � � � � � k ⇒ 〈C(a), nr(p 
 )〉 ≺ 〈C(k), nr(p � )〉,

〈C(c), nr(p � )〉 ≺ C(h), nr(ph)〉 but c||h where p 
 = p � = p � = p  = p � = p1.
p � = p � = p � = p � = p2. p� = p � = p � = p � = p � = p3.

3. Distributed mutual exclusion, a protocol and its properties

The global timestamps are used in a number of implementations of mecha-
nisms in distributed systems. Consider a new protocol implementing distributed
mutual exclusion with the following assumptions:

1. computers work in paralel asynchronously and are numbered 1, 2, ..., n;

2. writing and reading to/from DSM memory is governed by the memory
manager of each computer; computers communicate by message passing
only and message propagation delay is finite but unpredictable.

3. there is one critical section (if there were more of them, the main concept
of the protocol would be retained);

4. each request to the protocol for the critical section makes deliver of a
current global timestamp of this event to the requesting computer;

5. computer of number i keeps vector −→
r � = [r � � , r � � , ..., r � � ] of variables r � �

i, k = 1, 2, ..., n allocated in its physical memory; it stores the current
timestamp of request in the component r � � , then fetches values of compo-
nents r � � (k �= i) from remaining computers and stores them in variables
r � � of its vector −→

r � . Fig.3.1 depicts location of vectors of timestamps in
the local memories;

6. initially all variables r � � contain ∞ with ∞ > x for any number x;

7. by min(−→
r � ) is denoted the least value of the components in −→

r � ;
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Fig.3.1. Structure of distributed system of n computers with vectors −→
r � =

[r � � , r � � , ..., r � � ] (i = 1, 2, ..., n) of timestamps allocated in local memories

A computer of number i when using the protocol depicted as a transition graph
in Fig.3.2 for exclusive access to a protected resource, passes throughout the
following states (subscript i in the names of states is omitted in order not to
overload notation):

• W — execution of local (not critical) section

• B — import of current timestamps stored in variables r � � of remaining
computers; execution of n − 1 assignments r � � := r � � (k �= i); test of
condition r � � > min(−→

r � ). State B is stable when the computer has
completed fetch of all values of r � � (note the various transmission duration
of these values - see Theorem 3.2). In what follows, the adjective "stable"
will be ommited when the noun "state" is used.

• Y — refusal to perform critical section (waiting state)

• R — execution of critical section

• G — release of critical section. This state is stable when the computer has
completed broadcast of ∞ to all remaining computers.

Their set: Ω = {W, B, Y, R, G}
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Fig.3.2. The distributed mutual exclusion protocol performed by computer
of number i in the cycle from request for critical section till release.

Let us admit the following denotations:

• Q � → Q �� - computer of number i passes from a state Q � ∈ Ω to the
next state Q �� ∈ Ω in the transition graph depicted in Fig.3.2. Note that
transitions B → R and Y → R are possible when r � � = min(−→

r � ), thus
due to steady growth of global timestamp as a strictly increasing function
of time, at most one computer may perform critical section at a time. A
formal proof is given further.

• Set of global states Ω
� = Ω × Ω × ... × Ω

︸ ︷︷ ︸

��� � ��� �
(the ith component correspods

to computer number i) satisfying: if
−→
Q = [Q � , Q � , . . . , Q � ] ∈ Ω

�
then

¬∃i, j : (i �= j ∧ Q � = R ∧ Q� = R).

• Initial state:
−−−→
Q � � � � = [W, W, . . . , W ] ∈ Ω

�
with r � � = ∞ for every

computer i = 1, 2, . . . , n.

• For
−→
Q = [Q � , Q � , . . . , Q � ] ∈ Ω

� and
−→
Q � = [Q � � , Q �� , . . . , Q �� ] ∈ Ω

� let
−→
Q ⇒

−→
Q � mean: there exists a computer of number i such that Q � → Q ��

and if ¬Q� → Q �� then Q� = Q �� .
−→
Q � is the next global state following

−→
Q . As usually, by

−→
Q

	
⇒

−→
Q � is denoted reachability of

−→
Q � from

−→
Q i.e

existence of global states
−→
Q


,
−→
Q

�

, ...,
−−−→
Q
� � �

,
−→
Q
�

with
−→
Q



=
−→
Q ,

−→
Q
�

=
−→
Q � ,

−→
Q

�
⇒

−−−→
Q

� � �

, j = 0, 1, ..., m − 1.

It follows from the transition graph in Fig.3.2 that for any computer of number
i = 1, 2, ...n:
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1. Storing a timestamp in register r � � proceeds only in the state B of computer
of number i; r � � retains this value until the transition R → G takes place.

2. Storing ∞ in register r � � and sending to r � � of remaining computers pro-
ceeds only in the state G. Thus, from point 1 follows that r � � decreases
its value only in the state B.

3. Global states are exactly those reachable from the initial state
−−−→
Q � � � � = [W, W, . . . , W ].

4. Because computation of min(−→
r � ) in the state B of computer of number i

takes place on completion of fetching values of r � � from remaining com-
puters, the order of entering computers into the critical section does not
depend of the transmission latency. This is the FCFS order (First Come
First Served) due to the steady growth of the global timestamps. For-
mal proofs of mutual exclusion realized by the protocol in Fig.3.2 as well
as independence of the FCFS strategy of the order of message transmis-
sions and their latency when executing actions in the state B are given in
Theorems 3.1 and 3.2.

Table 3.1 presents an exemplary piece of run of a four computers system with
Distributed Shared Memory. This is the following succession of global states:
[B, W, B, W ] ⇒ [Y, W, R, W ] ⇒ [Y, W, R, B] ⇒ [Y, B, R, Y ] ⇒ [Y, Y, G, Y ] ⇒

[R, Y, W, Y ] ⇒ [G, Y, W, Y ] ⇒ [W, Y, W, R]
Global timestamps, i.e. pairs of numbers, are coded by single numbers — for
simplicity of notation.

Before demonstration of correctness of the protocol and its FCFS strategy
of giving entrance to critical section for computers, let us make some remarks.

• Consumption of time. In the state B, computer i, on request for critical
section, broadcasts message „send me value of your r � � ” to all n − 1
remaining computers, and waits for delivery. In the worst case the message
reaches all destinations one after one and responses arrive one after one.
This takes 2(n − 1) transmissions. In the state G, on release of critical
section, the computer i broadcasts ∞ to all r � � of all n − 1 remaining
computers. This takes n − 1 transmissions in the worst case.

• Failure. If a computer k sends incorrect timestamp stored in r � � to
requesting computers in the state B, then their behaviour depends on this
value. This may cause indefinite wait of requesting computer i in the state
Y (if r � � is small enough to make min(−→

r � ) permanently less than r � � ) or
violation of mutual exclusion (if computer k delivers to computer i value
of r � � such that r � � = min(−→

r � ), and after a while it delivers to computer j

value of r � � such that r� � = min(−→
r� ); computer j may then enter into the

critical section before computer i leaves it). Problems of failure as well as
decidability of deadlock and fairness (cf. [Cz 1980]) are left to a separate
paper.
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Table 3.1 Exemplary run of a system with four computers using protocol de-
picted in Fig.3.2. Pattern of the computers’ background corresponds to their
local states as pictured in the protocol in Fig.3.2

281



Table 3.1 cont.
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Theorem 3.1

In no global state two distinct computers can perform critical section.

Proof. Let on the contrary, in a global state
−→
Q = [Q � , ...Q � , ...Q� , ...Q � ] ∈

Ω
� computers of number i and j perform critical section. Then r � � = min(−→

r � )
and r� � = min(−→

r� ) in the local states Q � and Q� of these computers. By
definition of the global timestamps r � � �= r� � because events of request for
critical section are distinct, so, their global timestamps (i.e. values of r � � and
r� � ) are also distinct — due to the one-to-one function Γ (Section 3). But because
of actions in the stable state B of the protocol in Fig.3.2, r � � = r � � and r � � = r � �
hold. Since r � � and r � � are minimal in vectors −→

r � and −→
r� respectively, so, r � � �

r � � and r� � � r� � , therefore r � � � r� � and r� � � r � � which implies r � � = r� � (by
antisymmetry of � - see Section 2 for definition of the order � between global
timestamps) — a contradiction! �

Lemma 3.1

Suppose that in a global state
−→
Q = [Q � , ...Q � , ...Q� , ...Q � ], computers of

number i and j both are not in the local state W (i.e. min(−→
r � ) < ∞, min(−→

r � ) <

∞) or both are in W (i.e. min(−→
r � ) = ∞, min(−→

r� ) = ∞). Then min(−→
r � ) =

min(−→
r� ).

Proof. Let min(−→
r � ) < ∞, min(−→

r � ) < ∞. Then in the global state
−→
Q ,

exactly one computer, say of number k, either is performing critical section or
is ready to do this, therefore r � � = min(−→

r � ). According to the protocol in
Fig.3.2 r � � = r� � = r � � = min(−→

r � ) and r � � , r � � are the least components of

vectors −→
r � , −→

r� in the state
−→
Q . Thus min(−→

r � ) = min(−→
r � ) = min(−→

r � ). �

Theorem 3.2

Computers enter into the critical section in the order of their requesting for
it. This order is independent of the data transmission latency.

Proof. Let
−→
Q = [Q � , ...Q � , ...Q� , ...Q � ] be a global state with local states

Q � , Q� each of them either B or Y , thus r � � < ∞, r � � < ∞. It is to be
proved that if computer i enters into state Q � before entering of j into state
Q� , i.e. if r � � < r� � , then state R would be reached by computer i before

computer j. By Lemma 3.1, min(−→
r � ) = min(−→

r � ) in
−→
Q and according to

the protocol in Fig.3.2, variables r � � , r� � are not changing their values until

computers i, j reach state G. Thus, if eventually a global state
−→
Q � = [Q � � , ..., Q �� =

R, ...Q �� , ...Q �� ] nearest to
−→
Q is reached from

−→
Q then min(−→

r � ) = r � � in
−→
Q � . But

if a global state
−→
Q

�

= [Q
�

� , ..., Q
�

� , ...Q
�

� = R, ...Q
�

� ] had been reached from
−→
Q

before
−→
Q � then min(−→

r� ) = r� � in
−→
Q

�

would hold. Thus, min(−→
r � ) ≤ r � � < r� � =

min(−→
r� ) because values of r � � and of r� � in the state

−→
Q

�

are the same as in
−→
Q

and min(−→
r � ) = min(−→

r� ) - a contradiction!
Now, note that the value of min(−→

r � ) is established only when values of r � �
are completely transmitted from all computers k �= i to computer i and stored in
r � � (see the protocol in Fig.3.2). This value does not depend on duration of these
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transmissions nor on their order. Therefore the order of entering computers into
critical section is independent of transmission latency but only on the order of
their requesting for it. �

Independence of min(−→
r � ) of order as well as latency of transmissions when

the run of four computers system shown in Table 3.1, has reached state 1:
[B, W, B, W ], is illustrated in Fig.3.3(a) and (b). i↑(r � � ) � means: "computer
k sends value of r � � up to computer i" ; k↓(r � � ) � means: "computer i receives
a value sent by computer k and stores it in r � � ".

Fig.3.3(a). Diagram of global state [B, W, B, W ]

Fig.3.3(b). The same global state and min(−→
r � ) as in (a) but different order and

latency of transmissions

Summary

The protocol presented in Fig.3.2 may seem similar to that in [R-A 1981]
in that it is fully distributed (without a coordinating server) and because of
usage of global timestamps and two-way communication between computer re-
questing for critical section and remaining computers. However the algorithm
proposed here is differently organized: a requesting computer, updates its own
vector of timestamps and makes a decision on the basis of its content whether
to enter into critical section or wait. Using ∞ as a largest number, not assumed
by any timestamp unifies activities when making the decision. Most important
properties of the algorithm are formally proved. The algorithm seems suitable
for system with Distributed Shared Memory, since problems with data incon-
sistency do not arise (Theorem 3.2).
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