Institut für Informatik Komplexität und Kryptografie Prof. Dr. Johannes Köbler

Übungen zur Kryptologie 2

8. Übung

Aufgabe 1 (4 Punkte)

Benutzen Sie das Chaum-van Antwerpen Verfahren mit den Parametern p=467, $\alpha=4$, a=101 und $\beta=449$, um eine verbindliche digitale Signatur für das Dokument x=64 zu erzeugen. Zeigen Sie, wie Alice mit Hilfe des Abstreitungsprotokolls Bob davon überzeugen kann, dass eine ihr vorgelegte Signatur y=25 für das Dokument x=157 gefälscht ist (unter der Annahme, dass Bob die Zufallszahlen $e_1=46$, $e_2=123$, $f_1=198$ und $f_2=11$ benutzt).

Aufgabe 2 (2 Punkte)

Betrachten Sie das Pedersen - van Heyst - Signaturverfahren mit den Parametern p = 3467, $\alpha = 4$, $a_0 = 1567$ und $\beta = 514$.

- a) Bestimmen Sie den zum Signierschlüssel $\overline{k}=(78,836,12,1369)$ gehörigen Verifikationsschlüssel k.
- b) Berechnen Sie eine Fail-Stop-Signatur y für das Dokument x=42 unter dem Signierschlüssel \overline{k} .
- c) Verifizieren Sie die Gültigkeit von y für x unter k.
- d) Geben Sie unter Benutzung von a_0 die Menge S(k, x, y) an.
- e) Bestimmen Sie den geheimen Signierschlüssel, mit dem die beiden Signaturen

\boldsymbol{x}	y
42	(1118, 1449)
969	(899, 471)

erzeugt wurden.

Aufgabe 3 (2 Punkte)

Betrachten Sie das Pedersen - van Heyst - Signaturverfahren mit den Parametern p = 5087, $\alpha = 25$ und $\beta = 1866$, sowie dem von Alice erzeugten Schlüsselpaar (\overline{k}, k) mit $\overline{k} = (144, 874, 1873, 2345)$ und k = (5065, 5076).

- a) Zeigen Sie, dass $(\overline{k}, k) \in S$ ist.
- b) Zeigen Sie, dass die Verifikationsbedingung ver(k, x, y) = 1 für das Dokument x = 4785 und die Signatur y = (2219, 458) erfüllt ist.
- c) Angenommen, Bob legt als Beweis für seine Behauptung, dass Alice das Dokument x=4785 unterschrieben hat, die Signatur y=(2219,458) vor. Zeigen Sie, wie Alice das Paar (x,y) dazu benutzen kann, um a_0 zu berechnen.