Institut für Informatik Komplexität und Kryptografie Prof. Dr. Johannes Köbler

Übungen zur Kryptologie 2

2. Übung

Aufgabe 1

- a) Konstruieren Sie für jede Primzahl p und jede natürliche Zahl $l \geq 2$ einen stark universalen MAC (M,T,K,\mathcal{A}) mit $\|M\|=(p^l-1)/(p-1),\ \|T\|=p$ und $\|K\|=p^l$.
- b) Sei (M, T, K, A) ein stark universaler MAC. Konstruieren Sie auf der Basis von (M, T, K, A) einen stark universalen MAC (M, T', K', A') mit $||T'|| = ||T||^l$ und $||K'|| = ||K||^l$.

Aufgabe 2

Sei A eine $m \times l$ -Matrix über einem endlichen Körper K und sei $y \in K^m$. Zeigen Sie, dass das Gleichungssystem

$$Ax = y$$

im Falle der Lösbarkeit genau $||K||^{l-r}$ Lösungen besitzt, falls r der Rang von A ist. Geben Sie eine notwendige und hinreichende Bedingung dafür an, dass das Gleichungssystems für alle $y \in K^m$ lösbar ist.

Aufgabe 3

Zeigen Sie, dass für jeden MAC (M, T, K, A) gilt: $\beta = 1/\|T\|$ impliziert $\alpha = 1/\|T\|$.

Aufgabe 4

Konstruieren Sie stark universale MACs mit ||M|| = 6 und ||T|| = 5 sowie ||M|| = 13 und ||T|| = 3.