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Petri Net

Definition (Petri Net)

The structure N = (P,T ,F ,V ,m0) is a Petri Net (PN), iff

I P,T und F are finite sets,
P−set of places
T−set of transitions

}
set of vertices

P ∩ T = ∅, P ∪ T 6= ∅,
F – set of edges (arcs)

F ⊆ (P × T ) ∪ (T × P) und dom(F ) ∪ cod(F ) = P ∪ T

I V : F −→ N+ (weights of edges)

I m0 : P −→ N (initial marking)
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Example

I m0 = (0, 1, 1)

I t−1 = (0, 1, 0) t+
1 = (1, 0, 0)

I ∆(t1) = −t−1 + t+
1 = (1,−1, 0)
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Firing transition

Definition

I A transition t ∈ T is enabled (may fire) at a marking m iff
all input-places of t have enough tokens

e.g. t− ≤ m .

I When an enabled transition t at a marking m fires,
a successor marking m′ is reached
given by m′ := m + ∆t

denoted by m
t−→ m′.
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Time Petri Net

Definition (Time Petri net)

The structure Z = (P,T ,F ,V ,mo , I ) is called a Time Petri net
(TPN) iff:

I S(Z ) := (P,T ,F ,V ,mo) is a PN (skeleton of Z )

I I : T −→ Q+
0 × (Q+

0 ∪ {∞}) and
I1(t) ≤ I2(t) for each t ∈ T , where I (t) = (I1(t), I2(t)).
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Time Petri Net

Definition (FTPN)

A TPN is called finite Time Petri net (FTPN) iff
I : T −→ Q+

0 ×Q+
0 .
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Example

I m0 = (0, 1, 1) p-marking

I h0 = (0, ], ], 0) t-marking

Louchka Popova-Zeugmann Quantitative Analysis of TPNs



Definitions
Main Property

Applications
Conclusion

Petri Net
Time Petri Net

Time Petri Net

Example

I m0 = (0, 1, 1) p-marking

I h0 = (0, ], ], 0) t-marking

Louchka Popova-Zeugmann Quantitative Analysis of TPNs



Definitions
Main Property

Applications
Conclusion

Petri Net
Time Petri Net

Time Petri Net

Example

I m0 = (0, 1, 1) p-marking

I h0 = (0, ], ], 0) t-marking

Louchka Popova-Zeugmann Quantitative Analysis of TPNs



Definitions
Main Property

Applications
Conclusion

Petri Net
Time Petri Net

state

Definition (state)

Let Z = (P,T ,F ,V ,mo , I ) be a TPN and h : T −→ R+
0 ∪ {#}.

z = (m, h) is called a state in Z iff:

I m is a p-marking in Z , e.g. m is a marking in S(Z ) .

I h is a t-marking in Z , e.g.
∀t ( (t ∈ T ∧ t− ≤ m) −→ (h(t) ∈ R+

0 ∧ h(t) ≤ lft(t))),
and
∀t ( (t ∈ T ∧ t− 6≤ m) −→ h(t) = #).
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Definition (state changing)

Let Z = (P,T ,F ,V ,mo , I ) be a TPN,
t̂ be a transition in T and
z = (m, h), z ′ = (m′, h′) be two states.
Then

(a) the transition t̂ is ready to fire in the state z = (m, h),

denoted by z
t̂−→ , iff

(i) t̂− ≤ m and
(ii) eft(t̂) ≤ h(t̂).

Louchka Popova-Zeugmann Quantitative Analysis of TPNs



Definitions
Main Property

Applications
Conclusion

Petri Net
Time Petri Net

Definition (state changing)

Let Z = (P,T ,F ,V ,mo , I ) be a TPN,
t̂ be a transition in T and
z = (m, h), z ′ = (m′, h′) be two states.

Then

(a) the transition t̂ is ready to fire in the state z = (m, h),

denoted by z
t̂−→ , iff

(i) t̂− ≤ m and
(ii) eft(t̂) ≤ h(t̂).

Louchka Popova-Zeugmann Quantitative Analysis of TPNs



Definitions
Main Property

Applications
Conclusion

Petri Net
Time Petri Net

Definition (state changing)

Let Z = (P,T ,F ,V ,mo , I ) be a TPN,
t̂ be a transition in T and
z = (m, h), z ′ = (m′, h′) be two states.
Then

(a) the transition t̂ is ready to fire in the state z = (m, h),

denoted by z
t̂−→ , iff

(i) t̂− ≤ m and
(ii) eft(t̂) ≤ h(t̂).

Louchka Popova-Zeugmann Quantitative Analysis of TPNs



Definitions
Main Property

Applications
Conclusion

Petri Net
Time Petri Net

Definition (state changing)

Let Z = (P,T ,F ,V ,mo , I ) be a TPN,
t̂ be a transition in T and
z = (m, h), z ′ = (m′, h′) be two states.
Then

(a) the transition t̂ is ready to fire in the state z = (m, h),

denoted by z
t̂−→ , iff

(i) t̂− ≤ m and
(ii) eft(t̂) ≤ h(t̂).

Louchka Popova-Zeugmann Quantitative Analysis of TPNs



Definitions
Main Property

Applications
Conclusion

Petri Net
Time Petri Net

state changing

Definition (state changing)

(b) the state z = (m, h) is changed into the state z ′ = (m′, h′)

by firing the transition t̂, denoted by z
t̂−→ z ′ , iff

(i) t is ready to fire in the state z = (m, h)
(ii) m′ = m + ∆t̂ and
(iii) ∀t ( t ∈ T −→

h′(t) =:

 # iff t− 6≤ m′

h(t) iff t− ≤ m ∧ t− ≤ m′ ∧ Ft ∩ F t̂ = ∅
0 otherwise

).
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state changing

Definition (state changing)

(c) the state z = (m, h) is changed into the state z ′ = (m′, h′)

by the time elapsing τ ∈ R+
0 , denoted by z

τ−→ z ′, iff

(i) m′ = m and
(ii) ∀t ( t ∈ T ∧ h(t) 6= # −→ h(t) + τ ≤ lft(t) ) i.e. the time

elapsing τ is possible, and

(iii) ∀t ( t ∈ T −→ h′(t) :=

{
h(t) + τ iff t− ≤ m′

# iff t− 6≤ m′ ).
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(iii) ∀t ( t ∈ T −→ h′(t) :=

{
h(t) + τ iff t− ≤ m′

# iff t− 6≤ m′ ).
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
0
]
]
0

)
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
1.3
]
]

1.3

)
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
2.3
]
]

2.3

)
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1.3−→ 1.0−→ (m2,


2.3
]
]

2.3

)
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2.3
]

0.0
]
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4.3
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2.0
]
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4.3
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2.0
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z0
1.3−→ 1.0−→ t4−→ 2.0−→ (m4,


4.3
]

2.0
]

)
t1−→ (m5,


]

0.0
2.0
]

)
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Example

z0
1.3−→ 1.0−→ t4−→ 2.0−→ t1−→ (m5,


]

0.0
2.0
]

)
t2−→ (m6,


0.0
]
]
]

)
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Transition sequences, Runs

Definition

I transition sequence: σ = (t1, · · · , tn)

I run: σ(τ) = (t1, τ1, · · · , τn−1, tn)

I feasable run: z0
τ1−→ z∗0

t1−→ z1
τ2−→ · · · tn−→ zn

I feasable transition sequence : σ is feasable if there ex. a
feasable run σ(τ)
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Reachable state, Reachable marking, State space

Definition

I z is reachable state in Z if there ex. a feasable run σ(τ) and

z0
σ(τ)−→ z

I m is reachable marking in Z if there ex. a reachable state z
in Z with z = (m, h)

I The set of all reachable states in Z is the state space of Z
( denoted: StSp(Z ) ).
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State class

Definition (state class)

Let Z be a TPN and σ be a feasable transition sequence. The set
Cσ is called a state class, iff

Basis: Ce := {z | ∃τ(τ ∈ R+
0 ∧ z0

τ−→ z)}
Step: Let Cσ be already defined. Then

Cσt is derived from Cσ by firing t (Cσ
t−→ Cσt), iff

Cσt := {z | ∃z1∃z2∃τ(z1 ∈ Cσ ∧ τ ∈ R+
0 ∧

z1
t−→ z2

τ−→ z)}.

Obviously: StSp(Z ) =
⋃
σ

Cσ
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Properties

I static properties:

being
I pure
I ordinary
I free choice
I extended simple
I conservative, etc.

decidable without knowledge of the state space!

I dynamic properties:

being/having
I bounded
I live
I reachable marking/state
I place- or transitions invariants
I deadlocks, etc.

decidable, if at all (TPN is equiv. to TM!),
with implicit/explicit knowledge of the state space
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State Space Reduction

Parametric Description of the State Space

Let Z = [P,T ,F ,V ,m0, I ] be a TPN and σ = (t1, · · · , tn) be a
transition sequence in Z .
δ(σ) = [mσ,Σσ,Bσ] is the parametric description of σ, if

I m0
σ−→ mσ

I Σσ(t) is a term (in a FO Logic), ”1/2–interpreted” as a sum
of variables for each transition t

I Bσ is a set of formulae (in a FO Logic), ”1/2–interpreted” as
a system of inequalities.

Obviously δ(σ) = Cσ.
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State Space Reduction

Example

σ = (e) =⇒

δ(σ) = Ce = {((0, 1, 1)︸ ︷︷ ︸
mσ

, (x1, ], ], x1)︸ ︷︷ ︸
Σσ

) | 0 ≤ x1 ≤ 3︸ ︷︷ ︸
Bσ

}
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State Space Reduction

Example

σ = (t4, t3)

σ = (t4, t3) =⇒ δ(σ) = Ct4t3 =

{(

 0
1
1

 ,


x1 + x2 + x3

]
]
x3

) |
2 ≤ x1 ≤ 3, x1 + x2 ≤ 5
2 ≤ x2 ≤ 4, x1 + x2 + x3 ≤ 5
0 ≤ x3 ≤ 3

}.
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State Space Reduction

Theorem (1)

Let Z be a TPN and σ = (t1, · · · , tn) be a feasible transition
sequence in Z , with a run σ(τ) as an execution of σ, i.e.

z0
τ0−→ t0−→ · · · τn−→ tn−→ zn = (mn, hn),

and all τi ∈ R+
0 .

Then, there exists a further feasible run σ(τ∗) of σ with

z0
τ∗0−→ t0−→ · · · τ∗n−→ tn−→ z∗n = (m∗

n, h
∗
n).

such that
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State Space Reduction

Theorem (1 – continuation)

z0
τ0−→ t0−→ · · · τn−→ tn−→ zn = (mn, hn), τi ∈ R+

0 .

z0
τ∗0−→ t0−→ · · · τ∗n−→ tn−→ z∗n = (m∗

n, h
∗
n)

, τ∗i ∈ N.

1. For each i , 0 ≤ i ≤ n holds: τ∗i ∈ N.

2. For each enabled transition t at marking mn(= m∗
n) it holds:

2.1 hn(t)
∗ = bhn(t)c.

2.2
n∑

i=1

τ∗i = b
n∑

i=1

τic
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State Space Reduction

Theorem (2 – similar to 1)

Let Z be a TPN and σ = (t1, · · · , tn) be a feasible transition
sequence in Z , with a run σ(τ) as an executuion of σ, i.e.

z0
τ0−→ t0−→ · · · τn−→ tn−→ zn = (mn, hn),

and all τi ∈ R+
0 .

Then, there exists a further feasible run σ(τ∗) of σ with

z0
τ∗0−→ t0−→ · · · τ∗n−→ tn−→ z∗n = (m∗

n, h
∗
n).

such that
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State Space Reduction

Theorem (2 – continuation)

1. For each i , 0 ≤ i ≤ n the time τ∗i is a natural number.

2. For each enabled transition t at marking mn(= m∗
n) it holds:

2.1 hn(t)
∗ = dhn(t)e.

2.2
n∑

i=1

τ∗i = d
n∑

i=1

τie
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Example

σ = (t1t3t4t2t3)

σ(τ) := z0
0.7−→ t1−→ 0.0−→ t3−→ 0.4−→ t4−→ 1.2−→ t2−→ 0.5−→ t3−→ 1.4−→ z
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Example

σ = (t1t3t4t2t3)

mσ = (1, 2, 2, 1, 1)
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Example ( continuation )

Σσ =



x4 + x5

x5

x5

x5

x0 + x1 + x2 + x3 + x4 + x5

]

 and
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Example ( continuation )

Bσ = {

0 ≤ x0, x0 ≤ 2, x0 + x1 + x2 ≤ 5
0 ≤ x1, x2 ≤ 2, x2 + x3 ≤ 5
1 ≤ x2, x3 ≤ 2, x0 + x1 + x2 + x3 ≤ 5
1 ≤ x3, x4 ≤ 2, x0 + x1 + x2 + x3 + x4 ≤ 5
0 ≤ x4, x5 ≤ 2, x0 + x1 + x2 + x3 + x4 + x5 ≤ 5
0 ≤ x5, x0 + x1 ≤ 5 x4 + x5 ≤ 2

}.
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Example ( continuation )

The run σ(τ) with

σ(τ) := z0
0.7−→ t1−→ 0.0−→ t3−→ 0.4−→ t4−→ 1.2−→ t2−→ 0.5−→ t3−→ 1.4−→ z

is feasible.
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Example ( continuation )

The run σ(τ) with

z0
0.7−→ t1−→ 0.0−→ t3−→ 0.4−→ t4−→ 1.2−→ t2−→ 0.5−→ t3−→ 1.4−→ (m,



1.9

1.4

1.4

1.4

4.2

]

)

is feasible.
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Example ( continuation )

x0 x1 x2 x3 x4 x5 Σσ(t1) Σσ(t2) Σσ(t5)

β̂ = β0 0.7 0.0 0.4 1.2 0.5 1.4 1.9 1.4 4.2
β1 0.7 0.0 0.4 1.2 0.5 1 1.5 1.0 3.8
β2 0.7 0.0 0.4 1.2 0 1 1.0 3.3
β3 0.7 0.0 0.4 1 0 1 3.1
β4 0.7 0.0 1 1 0 1 3.7
β5 0.7 0 1 1 0 1 3.7
β6 1 0 1 1 0 1 4.0
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Example ( continuation )

x0 x1 x2 x3 x4 x5 Σσ(t1) Σσ(t2) Σσ(t5)

β̂ = β0 0.7 0.0 0.4 1.2 0.5 1.4 1.9 1.4 4.2
β1 0.7 0.0 0.4 1.2 0.5 2 2.5 2.0 4.8
β2 0.7 0.0 0.4 1.2 0 1 2.0 4.3
β3 0.7 0.0 0.4 2 0 1 5.1
β4 0.7 0.0 0 1 0 1 4.7
β5 0.7 0 1 1 0 1 4.7
β6 1 0 1 1 0 1 5.0
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Example ( continuation )

Hence, the runs

σ(τ∗1 ) := z0
1−→ t1−→ 0−→ t3−→ 1−→ t4−→ 1−→ t2−→ 0−→ t3−→ 1−→ bzc

and

σ(τ∗2 ) := z0
1−→ t1−→ 0−→ t3−→ 0−→ t4−→ 2−→ t2−→ 0−→ t3−→ 2−→ dze

are feasible in Z , too.
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Corollary

I Each feasible t-sequence σ in Z can be realized with an
”integer” run.

I Each reachable marking in Z can be found using ”integer”
runs only.

I If z is reachable in Z , then bzc and dze are reachable in Z ,
too.

I The length of the shortest and longest time path between two
arbitrary states are natural numbers.
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I Each feasible t-sequence σ in Z can be realized with an
”integer” run.

I Each reachable marking in Z can be found using ”integer”
runs only.

I If z is reachable in Z , then bzc and dze are reachable in Z ,
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Definition

A state z = (m, h) in a TPN is integer one iff
for all enabled transitions t at m holds: h(t) ∈ N.

Theorem ( 3 )

Let Z be a FTPN.
The set of all reachable integer states in Z is finite

if and only if

the set of all reachable markings in Z is finite.

Remark: Theorem 3 can be generalized for all TPNs (applying a
further reduction).
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Reachability Graph

Definition

Basis)
z0 ∈ RG (Z )

Step)
Let z be in RG (Z ) already.
1. for i=1 to n do

if z
ti−→ z ′ possible in Z then z ′ ∈ RG (Z ) end

2. if z
1−→ z ′ possible in Z then z ′ ∈ RG (Z )

=⇒ The reachability graph is a weighted directed graph.
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A TPN and its full Reachability Graph

Example (A TPN Z and its full reachability graph RG (1)(Z ))
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Example (The reduced reachability graphs RG (2)(Z ) and
RG (Z ))
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Example (The reachability graph RG (Z3))
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Definition

The transition sequence σ is a feasible T-invariant in a TPN Z if
for each marking m in Z holds: m

σ−→ m.

For timeless PN: σ is a feasible T-invariant iff
m = m + C · ψ(σ) and ψ(σ) - the Parikh-vektor of σ.
=⇒ easy to be found.
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Lemma

Let Z be a TPN, S(Z ) be the skeleton of Z and σ be a feasible
T-invariant in S(Z ).
σ is a feasible T-invariant in Z iff Bσ has a solution.

Computing the T-invariants of a Z :

I Solve the linear system of equations C · x = 0 for x ∈ N.
I Decide feasibility of a T-invariant σ with Parikh(σ) = x .

I If σ is feasible, then solve the linear system of inequalities
Bσ in R+

0 .
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Remark: The reachability graph of a TPN is not used for
computing the feasible T-invariants of Z

=⇒

feasible T-invariants for unbounded nets can be computed!
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Let Z = (P,T ,F ,V , I ,mo) be a TPN.
Then the following problems can be decided/computed without
knowledge of its RG:

Result 1:

Input: The time function I is fixed,
σ is an arbitrary transition sequence.

Output: Feasibility of σ in Z?
Solution: Solve a linear system of inequalities in R+

0 .
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Let Z = (P,T ,F ,V , I ,mo) be a TPN.
Then the following problems can be decided/computed without
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Result 1:

Input: The time function I is fixed,
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Output: Feasibility of σ in Z?
Solution: Solve a linear system of inequalities in R+
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Let Z = (P,T ,F ,V , I ,mo) be a TPN.
Then the following problems can be decided/computed without
knowledge of its RG:

Result 2:

Input: The time function I is not fixed,
σ is an arbitrary transition sequence.

Output: Feasibility of σ in Z for a fixed I?
Solution: Solve a linear system of inequalities in Q+

0 .
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Let Z = (P,T ,F ,V , I ,mo) be a TPN.
Then the following problems can be decided/computed without
knowledge of its RG:

Result 3:

Input: The time function I is fixed,
σ is an arbitrary transition sequence.

Output: min /max-length of σ.
Solution: Solve a linear program in R+

0 .
(Actually, the solution is in N.)
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Let Z = (P,T ,F ,V , I ,mo) be a TPN.
Then the following problems can be decided/computed without
knowledge of its RG:

Result 4:

Input: The time function I is not fixed,
σ is an arbitrary transition sequence,
λ is an arbitrary real number.

Output: Existence of a fixed I and a run σ(τ) in Z
and the length of σ(τ) ≤ λ?

Solution: Solve a linear program in Q+
0 .
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Result 5:

Input: The time function I is not fixed,
σ1 = (σ, t ′) is a arbitrary t-sequence and
σ2 = (σ, t ′′) is a arbitrary t-sequence.

Output: Existence of a fixed I so that σ1 is feasible in Z
and σ2 is not feasible in Z?

Solution: Solve

max{< c ′, x >| A′ · x ≤ b′}︸ ︷︷ ︸
linear program in Q+

0

< min{< c ′′, x >| A′′ · x ≤ b′′}︸ ︷︷ ︸
linear program in Q+

0

.
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Let Z = (P,T ,F ,V , I ,mo) be a bounded TPN. Additionally the
following problems can be decided/computed with the knowledge
of its RG, amongst others:

Result 6:

Input: z and z ′ - two states (in Z ).

Output: – Is there a path between z and z ′ in RG (Z )?
– If yes, compute the path with the shortest time length.

Solution: By means of prevalent methods of the graph theory,
e.g. Bellman-Ford algorithm (the running time is
O(|V | · |E |) and RG (Z ) = (V ,E ) )
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Let Z = (P,T ,F ,V , I ,mo) be a bounded TPN. Additionally the
following problems can be decided/computed with the knowledge
of its RG, amongst others:

Result 6:

Input: z and z ′ - two states (in Z ).

Output: – Is there a path between z and z ′ in RG (Z )?
– If yes, compute the path with the shortest time length.

Solution: By means of prevalent methods of the graph theory,
e.g. Bellman-Ford algorithm (the running time is
O(|V | · |E |) and RG (Z ) = (V ,E ) )
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Let Z = (P,T ,F ,V , I ,mo) be a bounded TPN. Additionally the
following problems can be decided/computed with the knowledge
of its RG, amongst others:

Result 7:

Input: m and m′ - two markings (in Z ).

Output: – Is there a path between m and m′ in RG (Z )?
– If yes, compute the path with the shortest time length.

Solution: By means of prevalent methods of the graph theory,
for computing all-pairs shortest paths.
The running time is polynomial, too.
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Definition

The longest path between two states (vertices in RG (Z )) z and
z ′ is lp(z , z ′) with

lp(z , z ′) :=


∞ , if a cycle is reachable starting on z

max
∑
σ(τ)

τi , if z
σ(τ)−→ z ′

Louchka Popova-Zeugmann Quantitative Analysis of TPNs



Definitions
Main Property

Applications
Conclusion

Reachability Graph
T-Invariants
Time Paths in unbounded TPNs
Time Paths in bounded TPNs
Time PN and Timed PN

Result 8:

Input: z and z ′ - two states (in Z ).

Output: – Is there a path between z and z ′ in RG (Z )?
– If yes, compute the path with the longest time length.

Solution: By means of prevalent methods of the graph theory,
e.g. Bellman-Ford algorithm (polyn. running time).
or by computing all strongly connected components
of RG (Z ). (linear running time)
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Result 9:

Input: m and m′ - two states (in Z ).

Output: – Is there a path between z and z ′ in RG (Z )?
– If yes, compute the path with the longest time length.

Solution: By means of prevalent methods of the graph theory,
e.g. Bellman-Ford algorithm (polyn. running time).
or by computing all strongly connected components
of RG (Z ). (linear running time)
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Transformation Timed PN −→ Time PN
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Conclusion

I theoretical approach

BN =⇒ modelling =⇒ PN =⇒ modelling of
steady state

=⇒

DPN =⇒ analysing =⇒ TPN

I experimental approach

BN =⇒ modelling & analysing =⇒TPN
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