Quantitative Analysis of Time Petri Nets Used for Modelling Biochemical Networks

Louchka Popova-Zeugmann

Humboldt-Universität zu Berlin Institut of Computer Science Unter den Linden 6, 10099 Berlin, Germany

Max-Planck-Institut für Molekulare Pflanzenphysiologie May 04, 2005

Outline

Definitions

Petri Net

Time Petri Net

Main Property

State Space Reduction

Applications

Reachability Graph

T-Invariants

Time Paths in unbounded TPNs

Time Paths in bounded TPNs

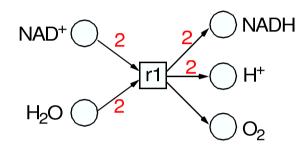
Time PN and Timed PN

Conclusion

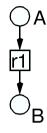
- chemical reactions
- -> atomic actions -> Petri net transitions

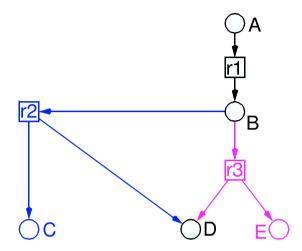
$$2 \text{ NAD}^+ + 2 \text{ H}_2\text{O} -> 2 \text{ NADH} + 2 \text{ H}^+ + \text{O}_2$$

input compounds



output compounds r1: A -> B



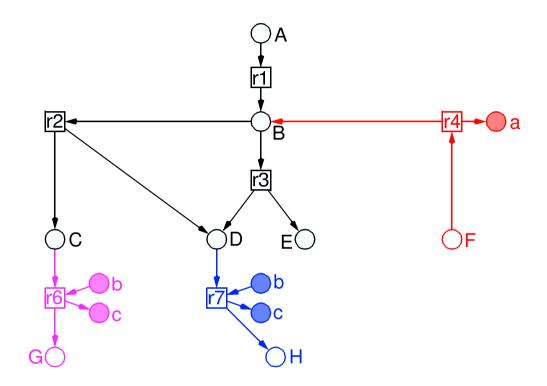


-> alternative reactions

$$r4: F -> B + a$$

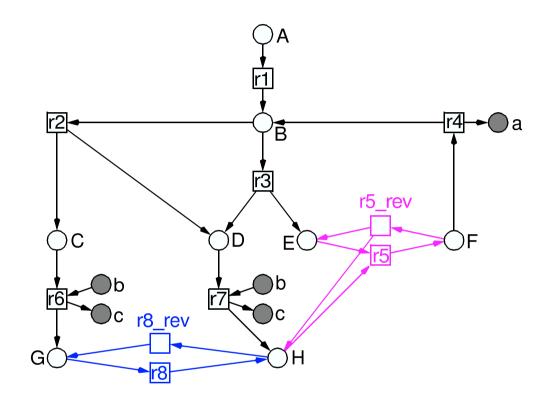
$$r6: C + b -> G + c$$

$$r7: D + b -> H + c$$



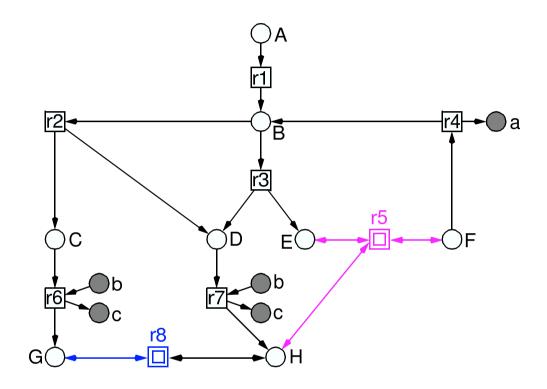
-> concurrent reactions

- r1: A -> B
- r2: B -> C + D
- r3: B -> D + E
- r4: F -> B + a
- r5: E + H <-> F
- r6: C + b -> G + c
- r7: D + b -> H + c
- r8: H <-> G



-> reversible reactions

- r1: A -> B
- r2: B -> C + D
- r3: B -> D + E
- r4: F -> B + a
- r5: E + H <-> F
- r6: C + b -> G + c
- r7: D + b -> H + c
- r8: H <-> G



-> reversible reactions - hierarchical nodes

$$r2: B -> C + D$$

$$r4: F -> B + a$$

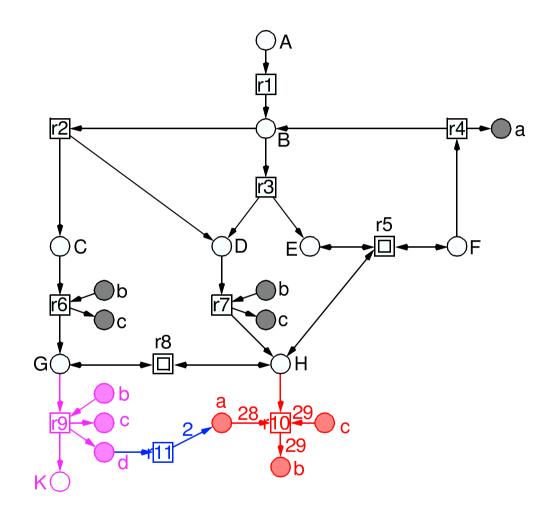
$$r5: E + H < -> F$$

$$r6: C + b -> G + c$$

$$r7: D + b -> H + c$$

$$r9: G + b -> K + c + d$$

r11: d -> 2a



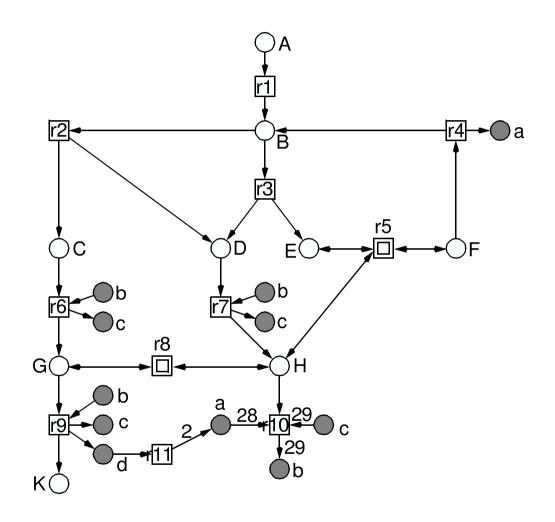
$$r2: B -> C + D$$

$$r5: E + H < -> F$$

$$r6: C + b -> G + c$$

$$r7: D + b -> H + c$$

$$r9: G + b -> K + c + d$$



r1: A -> B

r2: B -> C + D

r3: B -> D + E

r4: F -> B + a

r5: E + H <-> F

r6: C + b -> G + c

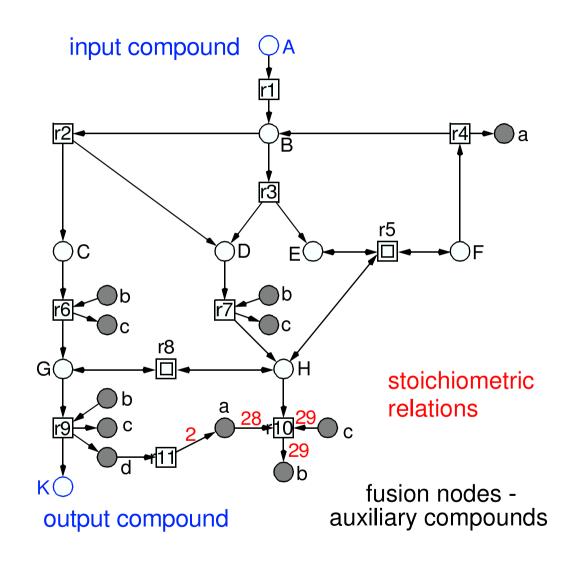
r7: D + b -> H + c

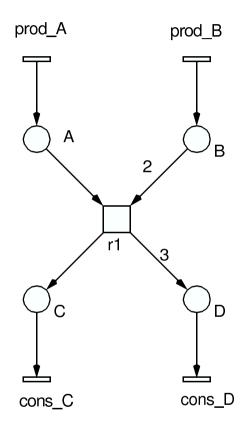
r8: H <-> G

r9: G + b -> K + c + d

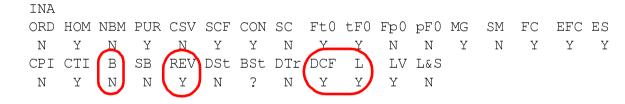
r10: H + 28a + 29c -> 29b

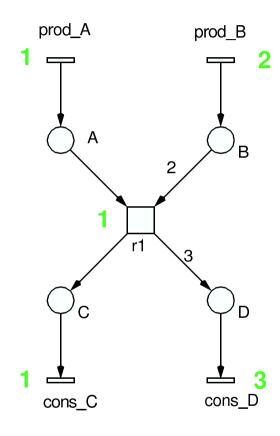
r11: d -> 2a





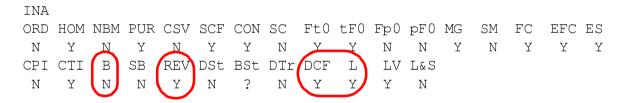
-> properties as time-less net

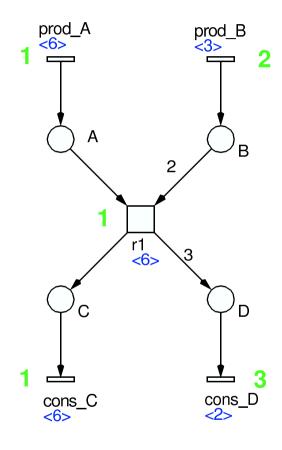




T-INVARIANTE

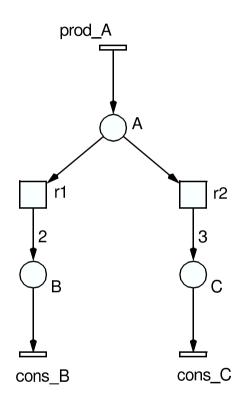
-> properties as time-less net



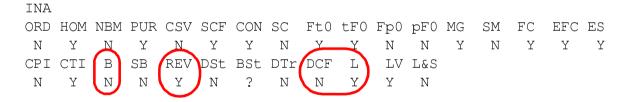


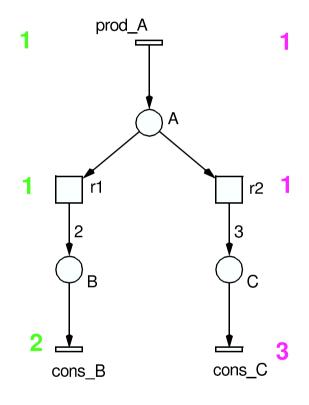
T-INVARIANTE

-> properties as time net



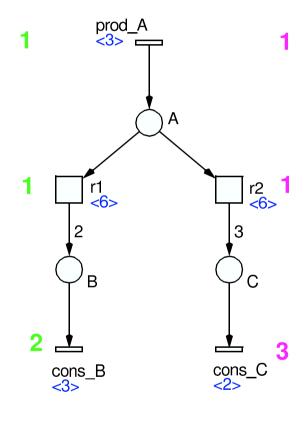
-> properties as time-less net





T-INVARIANTE1 T-INVARIANTE2

-> properties as time-less net



T-INVARIANTE1 T-INVARIANTE2

-> properties as time net

INA
ORD HOM NBM PUR CSV SCF CON SC Ft0 tF0 Fp0 pF0 MG SM FC EFC ES
N Y N Y N Y Y N Y N Y Y N N Y Y Y
CPI CTI B SB REV DSt BSt DTr DCF L LV L&S
N Y Y N N ? N Y Y Y N

Definition (Petri Net)

The structure $N = (P, T, F, V, m_0)$ is a **Petri Net (PN)**, iff

Definition (Petri Net)

The structure $N = (P, T, F, V, m_0)$ is a **Petri Net (PN)**, iff

 \triangleright P, T und F are finite sets,

Definition (Petri Net)

The structure $N = (P, T, F, V, m_0)$ is a **Petri Net (PN)**, iff

► P, T und F are finite sets, P—set of places

Definition (Petri Net)

The structure $N = (P, T, F, V, m_0)$ is a **Petri Net (PN)**, iff

ightharpoonup P, T und F are finite sets,

P-set of places

T-set of transitions

Definition (Petri Net)

The structure $N = (P, T, F, V, m_0)$ is a **Petri Net (PN)**, iff

▶ P, T und F are finite sets,
 P-set of places
 T-set of transitions

Definition (Petri Net)

The structure $N = (P, T, F, V, m_0)$ is a **Petri Net (PN)**, iff

▶ P, T und F are finite sets, P-set of places T-set of transitions $P \cap T = \emptyset$, $P \cup T \neq \emptyset$,

Definition (Petri Net)

The structure $N = (P, T, F, V, m_0)$ is a **Petri Net (PN)**, iff

```
▶ P, T \text{ und } F \text{ are finite sets,}
P-\text{set of places}
T-\text{set of transitions}
set of vertices
P \cap T = \emptyset, \quad P \cup T \neq \emptyset,
F-\text{set of edges (arcs)}
```


Definition (Petri Net)

The structure $N = (P, T, F, V, m_0)$ is a **Petri Net (PN)**, iff

▶ P, T und F are finite sets, P—set of places T—set of transitions $P \cap T = \emptyset$, $P \cup T \neq \emptyset$, F— set of edges (arcs) $F \subseteq (P \times T) \cup (T \times P)$ und $dom(F) \cup cod(F) = P \cup T$

Definition (Petri Net)

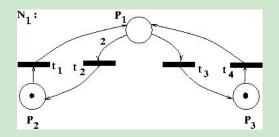
The structure $N = (P, T, F, V, m_0)$ is a **Petri Net (PN)**, iff

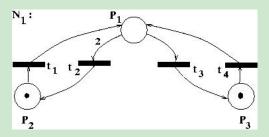
- ▶ P, T und F are finite sets, P-set of places T-set of transitions $P \cap T = \emptyset, \quad P \cup T \neq \emptyset,$ F- set of edges (arcs) $F \subseteq (P \times T) \cup (T \times P) \text{ und } dom(F) \cup cod(F) = P \cup T$
- $ightharpoonup V: F \longrightarrow \mathbb{N}^+$ (weights of edges)

Definition (Petri Net)

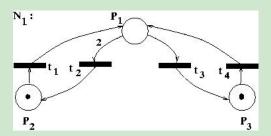
The structure $N = (P, T, F, V, m_0)$ is a **Petri Net (PN)**, iff

- ▶ P, T und F are finite sets, P-set of places T-set of transitions $P \cap T = \emptyset, \quad P \cup T \neq \emptyset,$ F set of edges (arcs) $F \subseteq (P \times T) \cup (T \times P) \text{ und } dom(F) \cup cod(F) = P \cup T$
- $ightharpoonup V: F \longrightarrow \mathbb{N}^+$ (weights of edges)
- ▶ $m_0: P \longrightarrow \mathbb{N}$ (initial marking)

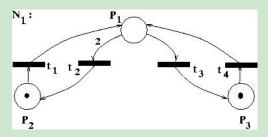




$$ightharpoonup m_0 = (0, 1, 1)$$

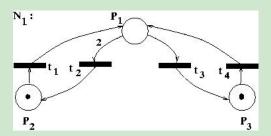


- $ightharpoonup m_0 = (0, 1, 1)$
- $t_1^- = (0,1,0)$



$$m_0 = (0,1,1)$$

$$t_1^- = (0,1,0)$$
 $t_1^+ = (1,0,0)$



$$m_0 = (0,1,1)$$

$$t_1^- = (0,1,0)$$
 $t_1^+ = (1,0,0)$

$$lacksquare$$
 $\Delta(t_1) = -t_1^- + t_1^+ = (1, -1, 0)$

Definition

▶ A transition $t \in T$ is **enabled (may fire)** at a marking m iff all input-places of t have enough tokens

Definition

▶ A transition $t \in T$ is **enabled (may fire)** at a marking m iff all input-places of t have enough tokens

e.g.
$$t^- \leq m$$
 .

Definition

- ▶ A transition $t \in T$ is **enabled (may fire)** at a marking m iff all input-places of t have enough tokens e.g. $t^- \le m$.
- When an enabled transition t at a marking m fires, a successor marking m' is reached

Definition

- ▶ A transition $t \in T$ is **enabled (may fire)** at a marking m iff all input-places of t have enough tokens e.g. $t^- \le m$.
- When an enabled transition t at a marking m fires, a **successor** marking m' is reached given by $m' := m + \Delta t$

Definition

- ▶ A transition $t \in T$ is **enabled (may fire)** at a marking m iff all input-places of t have enough tokens e.g. $t^- \le m$.
- ► When an enabled transition t at a marking m fires, a **successor** marking m' is reached given by $m' := m + \Delta t$

denoted by $m \xrightarrow{t} m'$.

Definition (Time Petri net)

The structure $Z = (P, T, F, V, m_o, I)$ is called a **Time Petri net (TPN)** iff:

Definition (Time Petri net)

The structure $Z = (P, T, F, V, m_o, I)$ is called a **Time Petri net (TPN)** iff:

▶ $S(Z) := (P, T, F, V, m_o)$ is a PN (skeleton of Z)

Definition (Time Petri net)

The structure $Z = (P, T, F, V, m_o, I)$ is called a **Time Petri net (TPN)** iff:

- ▶ $S(Z) := (P, T, F, V, m_o)$ is a PN (skeleton of Z)
- $ightharpoonup I: T \longrightarrow \mathbb{Q}_0^+ \times (\mathbb{Q}_0^+ \cup \{\infty\})$ and

Definition (Time Petri net)

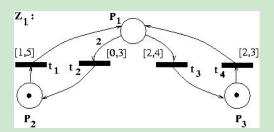
The structure $Z = (P, T, F, V, m_o, I)$ is called a **Time Petri net (TPN)** iff:

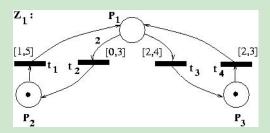
- ▶ $S(Z) := (P, T, F, V, m_o)$ is a PN (skeleton of Z)
- ▶ $I: T \longrightarrow \mathbb{Q}_0^+ \times (\mathbb{Q}_0^+ \cup \{\infty\})$ and $I_1(t) \le I_2(t)$ for each $t \in T$, where $I(t) = (I_1(t), I_2(t))$.

Definition (FTPN)

A TPN is called finite Time Petri net (FTPN) iff

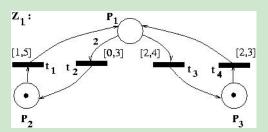
$$I: T \longrightarrow \mathbb{Q}_0^+ \times \mathbb{Q}_0^+.$$





$$ightharpoonup m_0 = (0,1,1)$$

p-marking



- $m_0 = (0,1,1)$
- *p*-marking
- $h_0 = (0, \sharp, \sharp, 0)$
- t-marking

Definition (state)

Let $Z = (P, T, F, V, m_o, I)$ be a TPN and $h : T \longrightarrow \mathbb{R}_0^+ \cup \{\#\}$. z = (m, h) is called a **state** in Z iff:

Definition (state)

Let $Z = (P, T, F, V, m_o, I)$ be a TPN and $h : T \longrightarrow \mathbb{R}_0^+ \cup \{\#\}$. z = (m, h) is called a **state** in Z iff:

 \blacktriangleright m is a p-marking in Z, e.g. m is a marking in S(Z).

Definition (state)

Let $Z = (P, T, F, V, m_o, I)$ be a TPN and $h: T \longrightarrow \mathbb{R}_0^+ \cup \{\#\}$. z = (m, h) is called a **state** in Z iff:

- \blacktriangleright m is a p-marking in Z, e.g. m is a marking in S(Z).
- \blacktriangleright h is a t-marking in Z,

Definition (state)

Let $Z = (P, T, F, V, m_o, I)$ be a TPN and $h : T \longrightarrow \mathbb{R}_0^+ \cup \{\#\}$. z = (m, h) is called a **state** in Z iff:

- \blacktriangleright m is a p-marking in Z, e.g. m is a marking in S(Z) .
- ▶ h is a t-marking in Z, e.g. $\forall t \ (\ (t \in T \land t^- \le m) \longrightarrow (h(t) \in \mathbb{R}_0^+ \land h(t) \le \mathit{lft}(t))),$

Definition (state)

Let $Z = (P, T, F, V, m_o, I)$ be a TPN and $h: T \longrightarrow \mathbb{R}_0^+ \cup \{\#\}$. z = (m, h) is called a **state** in Z iff:

- \blacktriangleright m is a p-marking in Z, e.g. m is a marking in S(Z).
- \blacktriangleright h is a t-marking in Z, e.g. $\forall t \ (\ (t \in T \land t^- \leq m) \longrightarrow (h(t) \in \mathbb{R}_0^+ \land h(t) \leq lft(t))),$ and

$$\forall t \ (\ (t \in T \land t^- \nleq m) \ \longrightarrow \ h(t) = \#).$$

Let $Z = (P, T, F, V, m_o, I)$ be a TPN, \hat{t} be a transition in T and z = (m, h), z' = (m', h') be two states.

Let $Z = (P, T, F, V, m_o, I)$ be a TPN, \hat{t} be a transition in T and z = (m, h), z' = (m', h') be two states. Then

(a) the transition \hat{t} is **ready** to fire in the state z = (m, h), denoted by $z \stackrel{\hat{t}}{\longrightarrow}$, iff

Let $Z = (P, T, F, V, m_o, I)$ be a TPN, \hat{t} be a transition in T and z = (m, h), z' = (m', h') be two states. Then

- (a) the transition \hat{t} is **ready** to fire in the state z=(m,h), denoted by $z \stackrel{\hat{t}}{\longrightarrow}$, iff
 - (i) $\hat{t}^- \leq m$ and
 - (ii) $eft(\hat{t}) \leq h(\hat{t})$.

Definition (state changing)

(b) the state z=(m,h) is **changed** into the state z'=(m',h') by firing the transition \hat{t} , denoted by $z \stackrel{\hat{t}}{\longrightarrow} z'$, iff

- (b) the state z=(m,h) is **changed** into the state z'=(m',h') by firing the transition \hat{t} , denoted by $z \xrightarrow{\hat{t}} z'$, iff
 - (i) t is ready to fire in the state z = (m, h)

- (b) the state z=(m,h) is **changed** into the state z'=(m',h') by firing the transition \hat{t} , denoted by $z \xrightarrow{\hat{t}} z'$, iff
 - (i) t is ready to fire in the state z = (m, h)
 - (ii) $m' = m + \Delta \hat{t}$ and

- (b) the state z=(m,h) is **changed** into the state z'=(m',h') by firing the transition \hat{t} , denoted by $z \xrightarrow{\hat{t}} z'$, iff
 - (i) t is ready to fire in the state z = (m, h)
 - (ii) $m' = m + \Delta \hat{t}$ and

(iii)
$$\forall t \ (t \in T \longrightarrow f'(t)) =: \begin{cases} \# & \text{iff} \quad t^- \not \leq m' \\ h(t) & \text{iff} \quad t^- \leq m \land t^- \leq m' \land Ft \cap F\hat{t} = \emptyset \end{cases}$$
.

Definition (state changing)

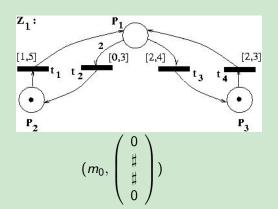
(c) the state z=(m,h) is **changed** into the state z'=(m',h') by the time elapsing $\tau \in \mathbb{R}_0^+$, denoted by $z \stackrel{\tau}{\longrightarrow} z'$, iff

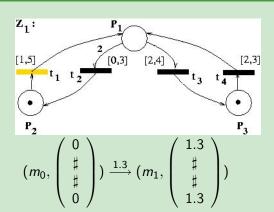
- (c) the state z=(m,h) is **changed** into the state z'=(m',h') by the time elapsing $\tau \in \mathbb{R}_0^+$, denoted by $z \stackrel{\tau}{\longrightarrow} z'$, iff
 - (i) m' = m and

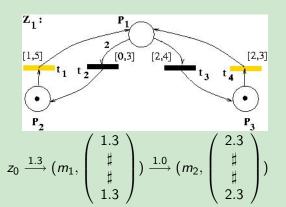
- (c) the state z=(m,h) is **changed** into the state z'=(m',h') by the time elapsing $\tau \in \mathbb{R}^+_0$, denoted by $z \xrightarrow{\tau} z'$, iff
 - (i) m' = m and
 - (ii) $\forall t \ (t \in T \land h(t) \neq \# \longrightarrow h(t) + \tau \leq lft(t))$ i.e. the time elapsing τ is possible, and

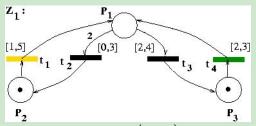
- (c) the state z=(m,h) is **changed** into the state z'=(m',h') by the time elapsing $\tau \in \mathbb{R}_0^+$, denoted by $z \stackrel{\tau}{\longrightarrow} z'$, iff
 - (i) m' = m and
 - (ii) $\forall t \ (t \in T \land h(t) \neq \# \longrightarrow h(t) + \tau \leq lft(t))$ i.e. the time elapsing τ is possible, and

(iii)
$$\forall t \ (t \in T \longrightarrow h'(t) := \begin{cases} h(t) + \tau & \text{iff} \quad t^- \leq m' \\ \# & \text{iff} \quad t^- \not\leq m' \end{cases}$$
).

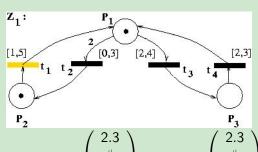




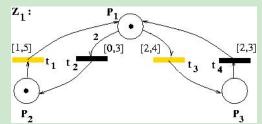




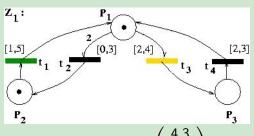
$$z_0 \xrightarrow{1.3} \xrightarrow{1.0} (m_2, \begin{pmatrix} 2.3 \\ \sharp \\ 2.3 \end{pmatrix}) \xrightarrow{t_4}$$



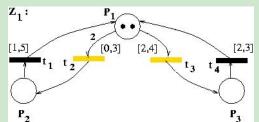
$$z_0 \xrightarrow{1.3} \xrightarrow{1.0} (m_2, \begin{pmatrix} 2.3 \\ \sharp \\ 2.3 \end{pmatrix}) \xrightarrow{t_4} (m_3, \begin{pmatrix} 2.3 \\ \sharp \\ 0.0 \\ \sharp \end{pmatrix})$$



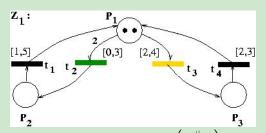
$$z_0 \xrightarrow{1.3} \xrightarrow{1.0} \xrightarrow{t_4} (m_3, \begin{pmatrix} 2.3 \\ \sharp \\ 0.0 \\ \sharp \end{pmatrix}) \xrightarrow{2.0} (m_4, \begin{pmatrix} 4.3 \\ \sharp \\ 2.0 \\ \sharp \end{pmatrix})$$



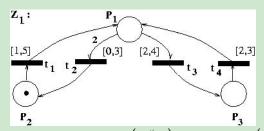
$$z_0 \xrightarrow{1.3} \xrightarrow{1.0} \xrightarrow{t_4} \xrightarrow{2.0} \left(m_4, \begin{pmatrix} 4.3 \\ \sharp \\ 2.0 \\ \sharp \end{pmatrix}\right) \xrightarrow{t_1}$$



$$z_0 \xrightarrow{1.3} \xrightarrow{1.0} \xrightarrow{t_4} \xrightarrow{2.0} (m_4, \begin{pmatrix} 4.3 \\ \sharp \\ 2.0 \\ \sharp \end{pmatrix}) \xrightarrow{t_1} (m_5, \begin{pmatrix} \sharp \\ 0.0 \\ 2.0 \\ \sharp \end{pmatrix})$$



$$z_0 \xrightarrow{1.3} \xrightarrow{1.0} \xrightarrow{t_4} \xrightarrow{2.0} \xrightarrow{t_1} \left(m_5, \begin{pmatrix} \sharp \\ 0.0 \\ 2.0 \\ \sharp \end{pmatrix}\right) \xrightarrow{t_2}$$



$$z_0 \xrightarrow{1.3} \xrightarrow{1.0} \xrightarrow{t_4} \xrightarrow{2.0} \xrightarrow{t_1} (m_5, \begin{pmatrix} \sharp \\ 0.0 \\ 2.0 \\ \sharp \end{pmatrix}) \xrightarrow{t_2} (m_6, \begin{pmatrix} 0.0 \\ \sharp \\ \sharp \end{pmatrix})$$

Definition

▶ transition sequence: $\sigma = (t_1, \dots, t_n)$

- ▶ transition sequence: $\sigma = (t_1, \dots, t_n)$
- ▶ run: $\sigma(\tau) = (t_1, \tau_1, \cdots, \tau_{n-1}, t_n)$

- ▶ transition sequence: $\sigma = (t_1, \dots, t_n)$
- ▶ run: $\sigma(\tau) = (t_1, \tau_1, \dots, \tau_{n-1}, t_n)$
- ▶ feasable run: $z_0 \xrightarrow{\tau_1} z_0^* \xrightarrow{t_1} z_1 \xrightarrow{\tau_2} \cdots \xrightarrow{t_n} z_n$

- ▶ transition sequence: $\sigma = (t_1, \dots, t_n)$
- ▶ run: $\sigma(\tau) = (t_1, \tau_1, \dots, \tau_{n-1}, t_n)$
- ▶ feasable run: $z_0 \xrightarrow{\tau_1} z_0^* \xrightarrow{t_1} z_1 \xrightarrow{\tau_2} \cdots \xrightarrow{t_n} z_n$
- ▶ feasable transition sequence : σ is feasable if there ex. a feasable run $\sigma(\tau)$

Reachable state, Reachable marking, State space

Definition

▶ z is **reachable state** in Z if there ex. a feasable run $\sigma(\tau)$ and $z_0 \xrightarrow{\sigma(\tau)} z$

Reachable state, Reachable marking, State space

- ▶ z is **reachable state** in Z if there ex. a feasable run $\sigma(\tau)$ and $z_0 \xrightarrow{\sigma(\tau)} z$
- ▶ m is **reachable marking** in Z if there ex. a reachable state z in Z with z = (m, h)

Reachable state, Reachable marking, State space

- ▶ z is **reachable state** in Z if there ex. a feasable run $\sigma(\tau)$ and $z_0 \xrightarrow{\sigma(\tau)} z$
- ▶ m is **reachable marking** in Z if there ex. a reachable state z in Z with z = (m, h)
- ► The set of all reachable states in Z is the state space of Z (denoted: StSp(Z)).

Definition (state class)

Let Z be a TPN and σ be a feasable transition sequence. The set C_σ is called a state class, iff

Definition (state class)

Let Z be a TPN and σ be a feasable transition sequence. The set C_σ is called a state class, iff

Basis:
$$C_e := \{ z \mid \exists \tau (\tau \in \mathbb{R}_0^+ \land z_0 \xrightarrow{\tau} z) \}$$

Definition (state class)

Let Z be a TPN and σ be a feasable transition sequence. The set C_{σ} is called a state class, iff

Basis:
$$C_e := \{ z \mid \exists \tau (\tau \in \mathbb{R}_0^+ \land z_0 \xrightarrow{\tau} z) \}$$

Step: Let
$$C_{\sigma}$$
 be already defined. Then

 $C_{\sigma t}$ is derived from C_{σ} by firing t ($C_{\sigma} \stackrel{t}{\longrightarrow} C_{\sigma t}$), iff

$$C_{\sigma t} := \{ z \mid \exists z_1 \exists z_2 \exists \tau (z_1 \in C_{\sigma} \land \tau \in \mathbb{R}_0^+ \land z_1 \xrightarrow{t} z_2 \xrightarrow{\tau} z) \}.$$

Definition (state class)

Let Z be a TPN and σ be a feasable transition sequence. The set C_σ is called a state class, iff

Basis:
$$C_e := \{ z \mid \exists \tau (\tau \in \mathbb{R}_0^+ \land z_0 \xrightarrow{\tau} z) \}$$

Step: Let
$$C_{\sigma}$$
 be already defined. Then

 $C_{\sigma t}$ is derived from C_{σ} by firing t ($C_{\sigma} \stackrel{t}{\longrightarrow} C_{\sigma t}$), iff

$$C_{\sigma t} := \{ z \mid \exists z_1 \exists z_2 \exists \tau (z_1 \in C_{\sigma} \land \tau \in \mathbb{R}_0^+ \land z_1 \xrightarrow{t} z_2 \xrightarrow{\tau} z) \}.$$

Obviously:
$$StSp(Z) = \bigcup_{\sigma} C_{\sigma}$$

► static properties:

dynamic properties:

- static properties: being
 - pure
 - ordinary
 - ▶ free choice
 - extended simple
 - conservative, etc.
- ▶ dynamic properties:

- ► static properties: being
 - pure
 - ordinary
 - free choice
 - extended simple
 - conservative, etc.
- dynamic properties: being/having
 - ▶ bounded
 - ► live
 - reachable marking/state
 - place- or transitions invariants
 - ▶ deadlocks, etc.

- ▶ static properties: being
 - pure
 - ordinary
 - free choice
 - extended simple
 - conservative, etc.

decidable without knowledge of the state space!

- dynamic properties: being/having
 - bounded
 - ► live
 - reachable marking/state
 - place- or transitions invariants
 - ▶ deadlocks, etc.

- ▶ static properties: being
 - pure
 - ordinary
 - free choice
 - extended simple
 - conservative, etc.

decidable without knowledge of the state space!

- dynamic properties: being/having
 - bounded
 - live
 - ► reachable marking/state
 - place- or transitions invariants
 - ▶ deadlocks, etc.

decidable, if at all (TPN is equiv. to TM!),

with implicit/explicit knowledge of the state space

Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \dots, t_n)$ be a transition sequence in Z.

Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \dots, t_n)$ be a transition sequence in Z.

Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \dots, t_n)$ be a transition sequence in Z.

- ▶ $\Sigma_{\sigma}(t)$ is a term (in a FO Logic), "1/2-interpreted" as a sum of variables for each transition t

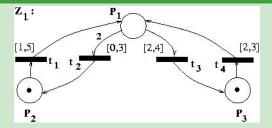
Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \dots, t_n)$ be a transition sequence in Z.

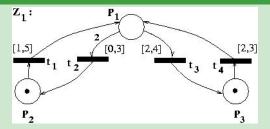
- ▶ $\Sigma_{\sigma}(t)$ is a term (in a FO Logic), "1/2-interpreted" as a sum of variables for each transition t
- ▶ B_{σ} is a set of formulae (in a FO Logic), "1/2-interpreted" as a system of inequalities.

Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \dots, t_n)$ be a transition sequence in Z.

- ▶ $\Sigma_{\sigma}(t)$ is a term (in a FO Logic), "1/2-interpreted" as a sum of variables for each transition t
- ▶ B_{σ} is a set of formulae (in a FO Logic), "1/2-interpreted" as a system of inequalities.

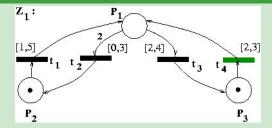
Obviously
$$\delta(\sigma) = C_{\sigma}$$
.

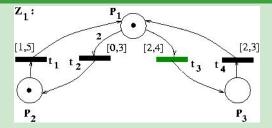


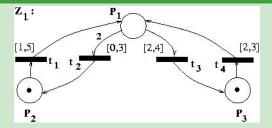


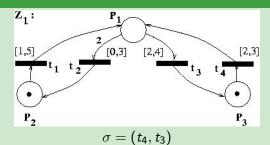
$$\sigma = (e) \implies$$

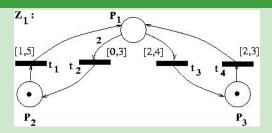
$$\delta(\sigma) = C_{e} = \{(\underbrace{(0,1,1)}_{m_{\sigma}}, \underbrace{(x_{1},\sharp,\sharp,x_{1})}_{\Sigma_{\sigma}}) \mid \underbrace{0 \leq x_{1} \leq 3}_{B_{\sigma}}\}$$











$$\sigma = (t_4, t_3) \implies \delta(\sigma) = C_{t_4 t_3} =$$

$$\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} x_1 + x_2 + x_3 \\ \sharp \\ x_3 \end{pmatrix}) \mid \begin{array}{c} 2 \le x_1 \le 3, & x_1 + x_2 \le 5 \\ 2 \le x_2 \le 4, & x_1 + x_2 + x_3 \le 5 \end{array} \}.$$

Theorem (1)

Let Z be a TPN and $\sigma = (t_1, \dots, t_n)$ be a feasible transition sequence in Z, with a run $\sigma(\tau)$ as an execution of σ , i.e.

$$z_0 \xrightarrow{\tau_0} \xrightarrow{t_0} \cdots \xrightarrow{\tau_n} \xrightarrow{t_n} z_n = (m_n, h_n),$$

and all $\tau_i \in \mathbb{R}_0^+$.

Then, there exists a further feasible run $\sigma(\tau^*)$ of σ with

$$z_0 \xrightarrow{\tau_0^*} \xrightarrow{t_0} \cdots \xrightarrow{\tau_n^*} \xrightarrow{t_n} z_n^* = (m_n^*, h_n^*).$$

such that

Theorem (1 – continuation)

$$z_0 \xrightarrow{\tau_0} \xrightarrow{t_0} \cdots \xrightarrow{\tau_n} \xrightarrow{t_n} z_n = (m_n, h_n), \ \tau_i \in \mathbb{R}_0^+.$$

$$z_0 \xrightarrow{\tau_0^*} \xrightarrow{t_0} \cdots \xrightarrow{\tau_n^*} \xrightarrow{t_n} z_n^* = (m_n^*, h_n^*)$$

Theorem (1 – continuation)

$$z_0 \xrightarrow{\tau_0} \xrightarrow{t_0} \cdots \xrightarrow{\tau_n} \xrightarrow{t_n} z_n = (m_n, h_n), \ \tau_i \in \mathbb{R}_0^+.$$

$$z_0 \xrightarrow{\tau_0^*} \xrightarrow{t_0} \xrightarrow{t_0} \cdots \xrightarrow{\tau_n^*} \xrightarrow{t_n} z_n^* = (m_n^*, h_n^*)$$

1. For each
$$i, 0 \le i \le n$$
 holds: $\tau_i^* \in \mathbb{N}$.

Theorem (1 – continuation)

$$z_0 \xrightarrow{\tau_0} \xrightarrow{t_0} \cdots \xrightarrow{\tau_n} \xrightarrow{t_n} z_n = (m_n, h_n), \ \tau_i \in \mathbb{R}_0^+.$$

$$z_0 \xrightarrow{\tau_0^*} \xrightarrow{t_0} \cdots \xrightarrow{\tau_n^*} \xrightarrow{t_n} z_n^* = (m_n^*, h_n^*), \ \tau_i^* \in \mathbb{N}.$$

1. For each $i, 0 \le i \le n$ holds: $\tau_i^* \in \mathbb{N}$.

Theorem (1 – continuation)

$$z_0 \xrightarrow{\tau_0} \xrightarrow{t_0} \cdots \xrightarrow{\tau_n} \xrightarrow{t_n} z_n = (m_n, h_n), \ \tau_i \in \mathbb{R}_0^+.$$

$$z_0 \xrightarrow{\tau_0^*} \xrightarrow{t_0} \cdots \xrightarrow{\tau_n^*} \xrightarrow{t_n} z_n^* = (m_n^*, h_n^*), \ \tau_i^* \in \mathbb{N}.$$

- 1. For each $i, 0 \le i \le n$ holds: $\tau_i^* \in \mathbb{N}$.
- 2. For each enabled transition t at marking $m_n (= m_n^*)$ it holds:

2.1
$$h_n(t)^* = \lfloor h_n(t) \rfloor$$
.

$$2.2 \sum_{i=1}^{n} \tau_i^* = \left\lfloor \sum_{i=1}^{n} \tau_i \right\rfloor$$

Theorem (2 – similar to 1)

Let Z be a TPN and $\sigma = (t_1, \dots, t_n)$ be a feasible transition sequence in Z, with a run $\sigma(\tau)$ as an executuion of σ , i.e.

$$z_0 \xrightarrow{\tau_0} \xrightarrow{t_0} \cdots \xrightarrow{\tau_n} \xrightarrow{t_n} z_n = (m_n, h_n),$$

and all $\tau_i \in \mathbb{R}_0^+$.

Then, there exists a further feasible run $\sigma(\tau^*)$ of σ with

$$z_0 \xrightarrow{\tau_0^*} \xrightarrow{t_0} \cdots \xrightarrow{\tau_n^*} \xrightarrow{t_n} z_n^* = (m_n^*, h_n^*).$$

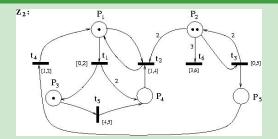
such that

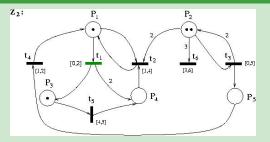
Theorem (2 – continuation)

- 1. For each $i, 0 \le i \le n$ the time τ_i^* is a natural number.
- 2. For each enabled transition t at marking $m_n (= m_n^*)$ it holds:

2.1
$$h_n(t)^* = \lceil h_n(t) \rceil$$
.

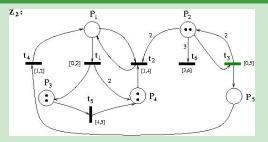
$$2.2 \sum_{i=1}^{n} \tau_i^* = \left[\sum_{i=1}^{n} \tau_i \right]$$





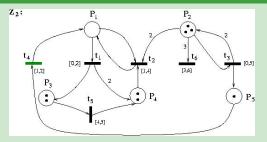
$$\sigma = (t_1t_3t_4t_2t_3)$$

$$\sigma(\tau) := z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} z_1$$



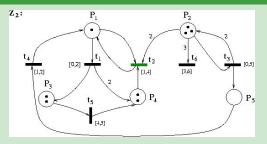
$$\sigma = (t_1t_3t_4t_2t_3)$$

$$\sigma(\tau) := z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} z_1$$



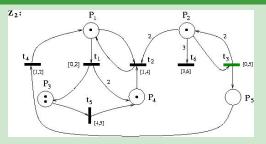
$$\sigma = (t_1t_3t_4t_2t_3)$$

$$\sigma(\tau) := z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} z_1$$



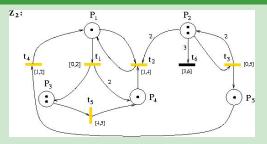
$$\sigma = (t_1t_3t_4t_2t_3)$$

$$\sigma(\tau) := z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} z$$



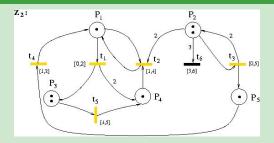
$$\sigma = (t_1t_3t_4t_2t_3)$$

$$\sigma(\tau) := z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} z_1$$



$$\sigma = (t_1t_3t_4t_2t_3)$$

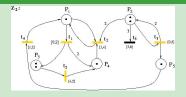
$$\sigma(\tau) := z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} z$$



$$\sigma = (t_1t_3t_4t_2t_3)$$

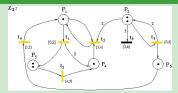
$$m_{\sigma}=(1,2,2,1,1)$$

Example (continuation)



$$\Sigma_{\sigma} = \left(egin{array}{c} x_4 + x_5 & & & & & \\ & x_5 & & & & & \\ & x_5 & & & & \\ & x_0 + x_1 + x_2 + x_3 + x_4 + x_5 & & & \\ & & & & & & \end{array}
ight) \; ext{ and } \;$$

Example (continuation)



$$B_{\sigma} = \left\{ \begin{array}{ll} 0 \leq x_{0}, & x_{0} \leq 2, & x_{0} + x_{1} + x_{2} \leq 5 \\ 0 \leq x_{1}, & x_{2} \leq 2, & x_{2} + x_{3} \leq 5 \\ 1 \leq x_{2}, & x_{3} \leq 2, & x_{0} + x_{1} + x_{2} + x_{3} \leq 5 \\ 1 \leq x_{3}, & x_{4} \leq 2, & x_{0} + x_{1} + x_{2} + x_{3} + x_{4} \leq 5 \\ 0 \leq x_{4}, & x_{5} \leq 2, & x_{0} + x_{1} + x_{2} + x_{3} + x_{4} + x_{5} \leq 5 \\ 0 \leq x_{5}, & x_{0} + x_{1} \leq 5 & x_{4} + x_{5} \leq 2 \end{array} \right.$$

Example (continuation)

The run $\sigma(\tau)$ with

$$\sigma(\tau) := z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} z$$

is feasible.

Example (continuation)

The run $\sigma(\tau)$ with

$$\sigma(\tau) := z_0 \xrightarrow{\mathbf{0.7}} \xrightarrow{t_1} \xrightarrow{\mathbf{0.0}} \xrightarrow{t_3} \xrightarrow{\mathbf{0.4}} \xrightarrow{t_4} \xrightarrow{\mathbf{1.2}} \xrightarrow{t_2} \xrightarrow{\mathbf{0.5}} \xrightarrow{t_3} \xrightarrow{\mathbf{1.4}} z$$

is feasible.

Example (continuation)

The run $\sigma(\tau)$ with

$$z_0 \xrightarrow{\mathbf{0.7}} \xrightarrow{t_1} \xrightarrow{\mathbf{0.0}} \xrightarrow{t_3} \xrightarrow{\mathbf{0.4}} \xrightarrow{t_4} \xrightarrow{\mathbf{1.2}} \xrightarrow{t_2} \xrightarrow{\mathbf{0.5}} \xrightarrow{t_3} \xrightarrow{\mathbf{1.4}} (m, \begin{pmatrix} 1.4 \\ 1.4 \\ 1.4 \\ 4.2 \\ \sharp \end{pmatrix})$$

is feasible.

Example (continuation)										
		<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>x</i> ₅	$ \Sigma_{\sigma}(t_1)$	$\Sigma_{\sigma}(t_2)$	$\Sigma_{\sigma}(t_5)$
$\hat{\beta} = \beta$	30 (0.7	0.0	0.4	1.2	0.5	1.4	1.9	1.4	4.2
Æ	$eta_1 \parallel$ (0.7	0.0	0.4	1.2	0.5	1	1.5	1.0	3.8
Æ	$\beta_2 \parallel 0$	0.7	0.0	0.4	1.2	0	1	1.0		3.3
Æ	33 (0.7	0.0	0.4	1	0	1			3.1
Æ	34 (0.7	0.0	1	1	0	1			3.7
ß	₃₅ ∥ (0.7	0	1	1	0	1			3.7
ß	86	1	0	1	1	0	1			4.0

Example (continuation)												
				<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>x</i> ₅	$ \Sigma_{\sigma}(t_1)$	$\Sigma_{\sigma}(t_2)$	$\Sigma_{\sigma}(t_5)$
	$\hat{\beta}$	=	β_0	0.7	0.0	0.4	1.2	0.5	1.4	1.9	1.4	4.2
			β_1	0.7	0.0	0.4	1.2	0.5	2	2.5	2.0	4.8
			β_2	0.7	0.0	0.4	1.2	0	1	2.0		4.3
			β_3	0.7	0.0	0.4	2	0	1			5.1
			β_4	0.7	0.0	0	1	0	1			4.7
			β_5	0.7	0	1	1	0	1			4.7
			β_6	1	0	1	1	0	1			5.0

Example (continuation)

Hence, the runs

$$\sigma(\tau_1^*) := z_0 \xrightarrow{\mathbf{1}} \xrightarrow{t_1} \xrightarrow{\mathbf{0}} \xrightarrow{t_3} \xrightarrow{\mathbf{1}} \xrightarrow{t_4} \xrightarrow{\mathbf{1}} \xrightarrow{t_2} \xrightarrow{\mathbf{0}} \xrightarrow{t_3} \xrightarrow{\mathbf{1}} \lfloor z \rfloor$$

and

$$\sigma(\tau_2^*) := z_0 \xrightarrow{\mathbf{1}} \xrightarrow{t_1} \xrightarrow{\mathbf{0}} \xrightarrow{t_3} \xrightarrow{\mathbf{0}} \xrightarrow{t_4} \xrightarrow{\mathbf{2}} \xrightarrow{t_2} \xrightarrow{\mathbf{0}} \xrightarrow{t_3} \xrightarrow{\mathbf{2}} \lceil z \rceil$$

are feasible in Z, too.

Corollary

▶ Each feasible t-sequence σ in Z can be realized with an "integer" run.

Corollary

- ▶ Each feasible t-sequence σ in Z can be realized with an "integer" run.
- ► Each reachable marking in Z can be found using "integer" runs only.

Corollary

- ▶ Each feasible t-sequence σ in Z can be realized with an "integer" run.
- Each reachable marking in Z can be found using "integer" runs only.
- ▶ If z is reachable in Z, then $\lfloor z \rfloor$ and $\lceil z \rceil$ are reachable in Z, too.

Corollary

- ▶ Each feasible t-sequence σ in Z can be realized with an "integer" run.
- Each reachable marking in Z can be found using "integer" runs only.
- ▶ If z is reachable in Z, then $\lfloor z \rfloor$ and $\lceil z \rceil$ are reachable in Z, too.
- ► The length of the shortest and longest time path between two arbitrary states are natural numbers.

Definition

A state z=(m,h) in a TPN is **integer** one iff for all enabled transitions t at m holds: $h(t) \in \mathbb{N}$.

Definition

A state z=(m,h) in a TPN is **integer** one iff for all enabled transitions t at m holds: $h(t) \in \mathbb{N}$.

Theorem (3)

Let Z be a FTPN.

The set of all reachable integer states in Z is finite

if and only if

the set of all reachable markings in Z is finite.

Definition

A state z=(m,h) in a TPN is **integer** one iff for all enabled transitions t at m holds: $h(t) \in \mathbb{N}$.

Theorem (3)

Let Z be a FTPN.

The set of all reachable integer states in Z is finite

if and only if

the set of all reachable markings in Z is finite.

Remark: Theorem 3 can be generalized for all TPNs (applying a further reduction).

Definitions
Main Property
Applications
Conclusion

Reachability Graph T-Invariants

Time Paths in unbounded TPNs
Time Paths in bounded TPNs
Time PN and Timed PN

Reachability Graph

Definition

Basis)

 $z_0 \in RG(Z)$

Reachability Graph T-Invariants

Time Paths in unbounded TPNs
Time Paths in bounded TPNs
Time PN and Timed PN

Reachability Graph

Definition

Basis)

 $z_0 \in RG(Z)$

Step)

Let z be in RG(Z) already.

Reachability Graph T-Invariants

Time Paths in unbounded TPNs
Time Paths in bounded TPNs
Time PN and Timed PN

Reachability Graph

Definition

Basis)

 $z_0 \in RG(Z)$

Step)

Let z be in RG(Z) already.

1. <u>for</u> i=1 <u>to</u> n <u>do</u>

 $\underline{if} \ z \xrightarrow{t_i} z'$ possible in Z $\underline{then} \ z' \in RG(Z)$ \underline{end}

Definition

Basis)

 $z_0 \in RG(Z)$

Step)

Let z be in RG(Z) already.

for i=1 to n do

$$\underline{if} z \xrightarrow{t_i} z'$$
 possible in Z $\underline{then} z' \in RG(Z)$ \underline{end}

2. <u>if</u> $z \xrightarrow{1} z'$ possible in Z <u>then</u> $z' \in RG(Z)$

Reachability Graph

Time Paths in unbounded TPNs Time Paths in bounded TPNs Time PN and Timed PN

Reachability Graph

Definition

Basis)

 $z_0 \in RG(Z)$

Step)

Let z be in RG(Z) already.

for i=1 to n do

$$\underline{if} \ z \xrightarrow{t_i} z' \ possible \ in \ Z \ \underline{then} \ z' \in RG(Z) \ \underline{end}$$

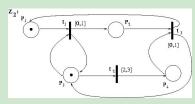
- 2. <u>if</u> $z \xrightarrow{1} z'$ possible in Z <u>then</u> $z' \in RG(Z)$
- \Longrightarrow The reachability graph is a weighted directed graph.

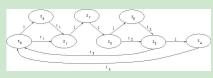
Reachability Graph

Time Paths in unbounded TPNs
Time Paths in bounded TPNs
Time PN and Timed PN

A TPN and its full Reachability Graph

Example (A TPN Z and its full reachability graph $RG^{(1)}(Z)$)





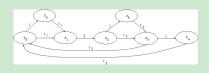
Definitions
Main Property
Applications
Conclusion

Reachability Graph

Time Paths in unbounded TPNs

Time Paths in unbounded TPNs
Time PN and Timed PN

Example (The reduced reachability graphs $RG^{(2)}(Z)$ and RG(Z))



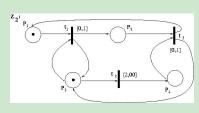
Reachability Graph

T-Invariants

Time Paths in unbounded TPNs
Time Paths in bounded TPNs

Time PN and Timed PN

Example (The reachability graph $RG(Z_3)$)



Definition

The transition sequence σ is a **feasible T-invariant** in a TPN Z if for each marking m in Z holds: $m \xrightarrow{\sigma} m$.

Definition

The transition sequence σ is a **feasible T-invariant** in a TPN Z if for each marking m in Z holds: $m \xrightarrow{\sigma} m$.

For **timeless PN:** σ is a feasible T-invariant iff $m=m+C\cdot\psi(\sigma)$ and $\psi(\sigma)$ - the Parikh-vektor of σ . \Longrightarrow easy to be found.

Lemma

Let Z be a TPN, S(Z) be the skeleton of Z and σ be a feasible T-invariant in S(Z).

 σ is a feasible T-invariant in Z **iff** B_{σ} has a solution.

Lemma

Let Z be a TPN, S(Z) be the skeleton of Z and σ be a feasible T-invariant in S(Z).

 σ is a feasible T-invariant in Z **iff** B_{σ} has a solution.

Computing the T-invariants of a Z:

▶ Solve the linear system of equations $C \cdot x = 0$ for $x \in \mathbb{N}$.

Lemma

Let Z be a TPN, S(Z) be the skeleton of Z and σ be a feasible T-invariant in S(Z).

 σ is a feasible T-invariant in Z **iff** B_{σ} has a solution.

Computing the T-invariants of a Z:

- ▶ Solve the linear system of equations $C \cdot x = 0$ for $x \in \mathbb{N}$.
- ▶ Decide feasibility of a T-invariant σ with Parikh $(\sigma) = x$.

Lemma

Let Z be a TPN, S(Z) be the skeleton of Z and σ be a feasible T-invariant in S(Z).

 σ is a feasible T-invariant in Z **iff** B_{σ} has a solution.

Computing the T-invariants of a Z:

- ▶ Solve the linear system of equations $C \cdot x = 0$ for $x \in \mathbb{N}$.
- ▶ Decide feasibility of a T-invariant σ with Parikh $(\sigma) = x$.
- ▶ If σ is feasible, then solve the linear system of inequalities B_{σ} in \mathbb{R}_0^+ .

Remark: The reachability graph of a TPN is not used for computing the feasible T-invariants of Z

feasible T-invariants for unbounded nets can be computed!

Definitions
Main Property
Applications
Conclusion

Reachability Graph T-Invariants Time Paths in unbounded TPNs Time Paths in bounded TPNs Time PN and Timed PN

Let $Z = (P, T, F, V, I, m_o)$ be a TPN.

Then the following problems can be decided/computed without knowledge of its RG:

Let $Z = (P, T, F, V, I, m_o)$ be a TPN.

Then the following problems can be decided/computed without knowledge of its RG:

Result 1:

Input: The time function *I* is fixed,

 σ is an arbitrary transition sequence.

Output: Feasibility of σ in Z?

Solution: Solve a linear system of inequalities in \mathbb{R}_0^+ .

Let $Z = (P, T, F, V, I, m_o)$ be a TPN.

Then the following problems can be decided/computed without knowledge of its RG:

Result 2:

Input: The time function *I* is not fixed,

 $\boldsymbol{\sigma}$ is an arbitrary transition sequence.

Output: Feasibility of σ in Z for a fixed I?

Solution: Solve a linear system of inequalities in \mathbb{Q}_0^+ .

Let $Z = (P, T, F, V, I, m_o)$ be a TPN.

Then the following problems can be decided/computed without knowledge of its RG:

Result 3:

Input: The time function *I* is fixed,

 σ is an arbitrary transition sequence.

Output: min / max-length of σ .

Solution: Solve a linear program in \mathbb{R}_0^+ .

(Actually, the solution is in \mathbb{N} .)

Let $Z = (P, T, F, V, I, m_o)$ be a TPN.

Then the following problems can be decided/computed without knowledge of its RG:

Result 4:

The time function *I* is not fixed. Input:

 σ is an arbitrary transition sequence,

 λ is an arbitrary real number.

Output: Existence of a fixed I and a run $\sigma(\tau)$ in Z

and the length of $\sigma(\tau) < \lambda$?

Solve a linear program in \mathbb{Q}_0^+ . Solution:

Result 5:

Input: The time function *I* is not fixed,

 $\sigma_1 = (\sigma, t')$ is a arbitrary t-sequence and $\sigma_2 = (\sigma, t'')$ is a arbitrary t-sequence.

Output: Existence of a fixed I so that σ_1 is feasible in Z

and σ_2 is not feasible in Z?

Solution: Solve

$$\underbrace{\max\{< c', x > \mid A' \cdot x \leq b'\}}_{\text{linear program in } \mathbb{Q}_0^+} < \underbrace{\min\{< c'', x > \mid A'' \cdot x \leq b''\}}_{\text{linear program in } \mathbb{Q}_0^+}.$$

Definitions
Main Property
Applications
Conclusion

Reachability Graph
T-Invariants
Time Paths in unbounded TPNs
Time Paths in bounded TPNs
Time PN and Timed PN

Let $Z = (P, T, F, V, I, m_o)$ be a bounded TPN. Additionally the following problems can be decided/computed with the knowledge of its RG, amongst others:

Let $Z = (P, T, F, V, I, m_o)$ be a bounded TPN. Additionally the following problems can be decided/computed with the knowledge of its RG, amongst others:

Result 6:

Input: z and z' - two states (in Z).

Output: – Is there a path between z and z' in RG(Z)?

- If yes, compute the path with the shortest time length.

Solution: By means of prevalent methods of the graph theory,

e.g. Bellman-Ford algorithm (the running time is

$$\mathcal{O}(|V| \cdot |E|)$$
 and $RG(Z) = (V, E)$)

Let $Z = (P, T, F, V, I, m_o)$ be a bounded TPN. Additionally the following problems can be decided/computed with the knowledge of its RG, amongst others:

Result 7:

Input: m and m' - two markings (in Z).

Output: – Is there a path between m and m' in RG(Z)?

– If yes, compute the path with the shortest time length.

Solution: By means of prevalent methods of the graph theory,

for computing all-pairs shortest paths.
The running time is polynomial, too.

Definition

The **longest path** between two states (vertices in RG(Z)) z and z' is Ip(z, z') with

$$\textit{lp}(z,z') := \left\{ \begin{array}{ll} \infty & \text{, if a cycle is reachable starting on } z \\ \max \sum\limits_{\sigma(\tau)} \tau_i & \text{, if } z \xrightarrow{\sigma(\tau)} z' \end{array} \right.$$

Result 8:

Input: z and z' - two states (in Z).

Output: – Is there a path between z and z' in RG(Z)?

– If yes, compute the path with the longest time length.

Solution: By means of prevalent methods of the graph theory,

e.g. Bellman-Ford algorithm (polyn. running time). or by computing all strongly connected components

of RG(Z). (linear running time)

Result 9:

Input: m and m' - two states (in Z).

Output: – Is there a path between z and z' in RG(Z)?

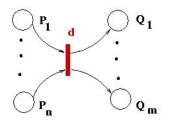
– If yes, compute the path with the longest time length.

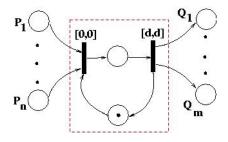
Solution: By means of prevalent methods of the graph theory,

e.g. Bellman-Ford algorithm (polyn. running time). or by computing all strongly connected components

of RG(Z). (linear running time)

Transformation Timed PN — Time PN





Conclusion

▶ theoretical approach

$$\mathsf{BN} \Longrightarrow \mathit{modelling} \Longrightarrow \mathsf{PN} \Longrightarrow \begin{array}{c} \mathit{modelling of} \\ \mathit{steady state} \end{array} \Longrightarrow$$

$$DPN \Longrightarrow analysing \Longrightarrow TPN$$

experimental approach

$$BN \Longrightarrow modelling \& analysing \Longrightarrow TPN$$

