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The structure N = (P, T, F,V,mp) is a Petri Net (PN), iff
» P, T and F are finite sets,

P—set of places
T—set of transitions

} set of vertices(nodes)
PNT =0,

PUT #0,
F — set of edges (arcs)

FC(Px T)U(T x P)and dom(F)U cod(F)=PUT
> V:F — NT (weights of edges)

» mo : P — N (initial marking)
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The structure Z = (P, T, F,V,m,, 1) is called a Time Petri net
(TPN) iff:

» S(Z):= (P, T,F,V,m,) is a PN (skeleton of Z)
» [T — Qf x (QF U{occ}) and

h(t) < h(t) for each t € T, where I(t) = (h(t), h(t)).
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Petri Net
Time Petri Net

Let Z= (P, T,F,V,m,, 1) bea TPN and h: T — R{ U {#}.
z = (m, h) is called a state in Z iff:
» mis a p-marking in Z .

» his a t-marking in Z.
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Petri Net
Time Petri Net

Let Z=(P,T,F,V,mo,l) be a TPN,
z=(m,h), z/ = (m', h') be two states.
Then
z = (m, h) changes into 2’ = (m’, i) by

firing time
a transition elapsing
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Petri Net
Time Petri Net
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Time Petri Net
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Transition sequences, Runs Reachable state, Reachable marking, State space
Definition Definition
> transition sequence: o = (1, -, tn) >z |i(r§achable state in Z if there ex. a feasible run o(7) and
> run: o (7) = (7o, t1, 71, s Tn—1, tns Tn) 20 —2Z
. T _x Tk tn Tn. % » m is reachable marking in Z if there ex. a reachable state z
» feasible run: 2z — z5 — z1 — z{ -+ — z, — z, X .
. . . o in Z with z = (m, h)
» feasible transition sequence : o is feasible if there ex. a . .
. » The set of all reachable states in Z is the state space of Z
feasible run o(7)
( denoted: StSp(Z) ).
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Qualitative Properties Quantitative Properties
» static properties: being/having
» homogenous
» ordinary each time proposition as having/computing
> free choice » (min-/max) time length of path
> extended simple . . . .
» conservative > path between two states/markings with min-/max time length
> deadlocks, etc. » set of all reachable markings within a period
decidable without knowledge of the state space! > looking for efts and Ifts leading to certain
> dynamic properties: ~being/having qualitative/quantitative properties etc.
» bounded
> live ) decidable, if at all, with implicit/explicit knowledge
> reachable marlflr]g/st.ate ' of the state space
> place— or transitions invariants, etc.
decidable, if at all (TPN is equiv. to TM!),

with implicit/explicit knowledge of the state space
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Let Z=[P,T,F,V,mg,l] be a TPN and o = (t1, - ,t,) be a
transition sequence in Z.

6(o) = [my, Lo, By] is the parametric description of o, if
> mp L mgy

> Y ,(t) is a parametrical t—marking

» B, is a set of conditions (a system of inequalities)
Obviously

> 2902 (Mg, Ty) =: 2,

> S5tSp(Z) = 2.

[0,3]  [24]
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o= (e)

6(0) =C= {((07 1, 1)9 (Xliﬁi ﬁ)xl)) | 0<x < 3}

b T t,
Z T, 0, .., T, zp = (mp, hy),

and all T; € RS’.
Then, there exists a further feasible run o(7*) of o with
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Let Z be a TPN and o = (t1,--- , t,) be a feasible transition N R n ns Mn)s Ti 0"
o 5 o B T t,
sequence in Z, with a run o(7) as an execution of o, i.e. i .,

20 ——> - —— 8 = (m}, hY), T e N
1. For each i,0 < i < n the time 7} is a natural number.
2. For each enabled transition t at marking m,(= m) it holds:
2.1 hy(t)* = [hn(t)].
n n
22 37 =12l
=1 i=1
3. For each transition t € T holds:
t is ready to fire in z, iff t is ready to fire in |z,|, too.

Let Z be a TPN and o = (t1,--- , t,) be a feasible transition
sequence in Z, with a run o(7) as an execution of o, i.e.

( 1 T t,
20 T T (i ),

and all 7; € R{.
Then, there exists a further feasible run o(7*) of o with
to T tn

—

2050 T B e (m, BE).

such that

1. For each i,0 < i < n the time 7/ is a natural number.
2. For each enabled transition t at marking m,(= m}) it holds:

2.1 ho(t)* = [ha(t)].
22 Y=Y
i=1 i=1
3. For each transition t € T holds:
t is ready to fire in z, i t is ready to fire in [z,], too.
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State Space Reduction
Dynamic Programming

The theorem 1 solves the following problem :
Input: a TPN, a transition sequence o = (ti,..., t,) and
a sequence of (n+ 1) real numbers,

(B(x0), B(x1), -+, B(xn)) subject to a certain fi-
nite set VC of conditions (inequalities).

Output:  a sequence of (n+ 1) integers,
(ﬂ*(X0)7 ﬁ*(xl)v o 7ﬁ*(xn)) subject to VC.

o =] E E nae
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State Space Reduction
Dynamic Programming

The solving of the output is the problem P*:

Problem P*:  Compute a sequence of (n+ 1) integers,
(B*(x0), B*(x1), -+ , B*(xn)) subject to VC*t,

The solution strategy for the problem P* is a typical dynamic
programming’s one.

LVC* is a certain finite superset of the set VC IRy = = = 9ac
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State Space Reduction
Dynamic Programming

o= (t1 t3 ty to t3)

nae
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State Space Reduction
Dynamic Programming

0.7 t 0.0 t3 0.4 ty 1.2 t 0.5 t3 1.4
U'(T):ZZQ —_— s S S S = s Z
o =2 = E = @QC”

State Space Reduction
Dynamic Programming

o = (titstatyts)

my = (17 22,1, 1)

o =] = = = DA
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State Space Reduction
Dynamic Programming

X0+ X1+Xx2+X3+Xs+ x5
i

o =} = = = 9wa¢
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State Space Reduction

Py
0<x, x0 <2,
0<x1, xx<2,

B:{ISXZ’ x3 < 2,

7 1SX33 X4S27
0<x4, x5<2,
0<x, xo+x1<5
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State Space Reduction
Dynamic Programming

Xo+x1+x2 <5

x2+x3 <5
Xo+x1+x2+x3<5 }
Xo+x1+Xxo+x3+x4 <5
Xo+x1+Xx2+x3+x4+x5 <5
Xg + x5 <2

o =] = = =
TPN State Space Reduction Using DP and Time Paths

Definitions

Main Property State Space Reduction
Applications Dynamic Programming
Conclusion

State Space Reduction

The run o(7) with
o(r) =

1.9
1.4
07 t, 00 5 04 t, 12 t 05 5 1.4 1.4
20 —>—>—>—>—>—>—>—>—>—>—>(m, 14 )
4.2
f
is feasible.

o = ® ® E
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State Space Reduction
Dynamic Programming
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State Space Reduction

| X0 | X1 | X2 | X3 | Xa | Xs Zg(tl)zo-(tz)zg(ts)
6 = 0] 0.7/0.0/0.4]|1.2|05| 14 1.9 1.4 4.2

6 07]00l04|12/05 1| 15 1.0 358
B07100l04]12] 0| 1| 1.0 3.3
Bsl0.7|0.0/04] 1| 0| 1 3.1
Bal07|00l 1] 1] 0] 1 3.7
Gsllo7l 0| 1| 1|01 3.7
Bell1lo|1|1|0]|1 4.0

o = = = = 9ae
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1] Xo| X1 | X2 | X3

):cr(tl) za(tZ) Z,(t5)

B = Bollo7]0.0]04]1.2

6071 0.0|0.4| 1.2
6071 0.0| 0.4] 1.2
Bs]l0.7] 0.0[ 0.4] 2
Bsll0.7| 0.0] 0| 2
Bs|lo7| 0] o 2
Bell1 10|02
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05(1.4| 1.9 14 42

05 2 25 2.0 48
0| 2 2.0 4.3
0] 2 5.1
0] 2 4.7
0] 2 4.7
0| 2 5.0
o =) = = =
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State Space Reduction

Hence, the runs
1 5 0 » 1 & 1 & 0 5 1
_— ) — — — — — — —>sz

0'(7'1*)2220 — == =

07 # 00 t 04 &% 12 t 05 t3 1.4

0'(7—):20 —_——— — — — — — — —— —>

1 & 0 5 0 t 2 tH 0 t 2
—_— — — — — — — —>[z}

0'(7'2*) =zy — — =

are feasible in Z, too.
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Where is

the Dynamic Programming
here?

Let us consider the tableau | again!
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Input:

» The TPN 2,

» the transition sequence o = (t1, t3, ty, to, t3)

> the six (6 =n+1, i.e. n=25) elapses of time
B(x0) = 0.7, 3(xa) = 0.0, B(x0) = 0.4,
Blxs) = 12, A(xa) = 0.5, A(xs) = 1.4,
which are real numbers and

> the run o(3) = (0.7, 11,0.0, t3,0.4, t4,1.2, t,0.5, t3,1.4)
is a feasible one in 2.
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Output:

» Six elapses of time 3*(xo), 3*(x1), - ,3*(xs) which are
integers,

» o(f*) is a feasible run in Z,.

» The set of transitions which are ready to fire after ()
is the same as the set of transitions which are ready to
fire after o(3*).
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| H X0 ‘ X1 ‘ X2 ‘ X3 ‘ X4 ‘ X5 H Zo-(tl) ):U(tz) Za(t5)
6 = [0]/0.7/0.0/0.4|1.2/05| 1.4 1.9 1.4 4.2
(1(/0.7/0.0/04]1.2/05] 1
£2(0.7/0.0/04]12] 0| 1
(3]/0.7/ 0.0/ 0.4 0|1
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| H X0 ‘ X1 ‘ X2 ‘ X3 ‘ X4 ‘ X5 H ):g(tl) Zfr(tz) Zg(ts)
5 = [(0|0.7/0.0/04]|1.2/05|1.4 1.9 1.4 4.2
$110.7/0.0/04]1.2{05| 1
520.7{0.0/04]12| 0] 1
33)0.7{0.0/04] 1| 0] 1
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| X0 | X1 | X2 | X3 | X4 | X5 Z[r(tl) Zg(tg) Zg(ts)
# = [()/0.7/0.0/04|1.2/05|1.4 1.9 1.4 4.2
£11/0.710.0/04]1.2/05] 1 15 1.0 3.8
£2(0.7/0.0/04][1.2] 0| 1 1.0 3.3
£3]/0.7/0.0/04| 1| 0] 1 3.1
B4]/0.7/00 1| 1|01 3.7
G507 0] 1 110]1 3.7
B = Pel|l 1] 0] 1 1101 4.0

Yo(t1) = x4 + x5,

Z(r(t2) = ):a(t?}) = Zcr(t4) = X5
Y, (ts5) = x1 4+ X2+ X3 + x4 + X5
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» The set of its critical states is the singleton S° = {5}.

» The set of its terminal states is the singleton St = {0}.

» The set of non-terminal states is " =S\ St = {1,2,...,5}
» The T-linker Lt has the form Lt(z(s®)) = z° = z(s°).
» The transition function t is defined as

t(s) :=s-1, ses”.
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» The linker L is clearly given by

2(s) = L(s {(s'2(s) | s e t(s)}),
= L(s,2(t(s)))
= L(sz(s-1)) := fs

Vs € §”
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The time length of the run a(B) is . .
lo(s) = B(x0) + B(x1) + Bx2) + B(x3) + B(xa) + B(xs) = 4.2

In tableau I: The time length of the run o(3*) is I;(g+) = 4

In tableau II: The time length of the run o(3*) is 5y = 5

i.e. gy =4<42=l;5)=42"5= I

ar «Fr =
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» Each feasible t-sequence o in Z can be realized with an
"integer” run.

» Each reachable marking in Z can be found using "integer”
runs only.

» [If z is reachable in Z, then |z| and [z] are reachable in Z,
too.

» The length of the shortest and longest time path between two
arbitrary p-markings are natural numbers.
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A state z=(m, h) in a TPN is an integer one iff
for all enabled transitions t at m holds: h(t) € N.
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Let Z be a FTPN.

The set of all reachable integer states in Z is finite
if and only if

the set of all reachable markings in Z is finite.

Remark: Theorem 3 can be generalized for all TPNs (applying a
further reduction).
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Definitions

Main Property Reachability Graph
Applications Time Paths in bounded TPNs
Conclusion

Reachability Graph

Definition
Basis) 1 zg € RG(Z)
Step)
Let z be in RG(Z) already.
1. for i=1 to n do
if z = 2 possible in Z then z € RG(Z) end
2. ifz -2 2/ possible in Z then z' € RG(Z)

== The reachability graph is a weighted directed graph.

Definitions
Main Property Reachability Graph
Applications Time Paths in bounded TPNs
Conclusion

o 3 =» «=» z o T > <= E S
Louchka Popova-Zeugmann TPN State Space Reduction Using DP and Time Paths Louchka Popova-Zeugmann TPN State Space Reduction Using DP and Time Paths
Definitions Definitions
Main Property Reachability Graph Main Property Reachability Graph
Applications Time Paths in bounded TPNs Applications Time Paths in bounded TPNs
Conclusion Conclusion

o B (Er (2> E

Let Z=(P,T,F,V,I, m,) be a bounded TPN. The following
problems can be decided/computed with the knowledge of its RG,
amongst others:

Input: z and Z’ - two states (in Z).

Output: - Is there a path between z and Z' in RG(Z)?
— If yes, compute the path with the shortest time length.

Solution: By means of prevalent methods of the graph theory,
e.g. Bellman-Ford algorithm (the running time is
O(|V|-|E[) and RG(Z) = (V, E))

)} o =3 = = = )}
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Conclusion Conclusion
The longest path between two states (vertices in RG(Z)) z and
Input: m and m’ - two markings (in Z). Z'is Ip(z, Z') with
Output:  — Is there a path between m and m’ in RG(Z)? co ,if a cycle is react\able starting on z
— If yes, compute the path with the shortest time length. In(z,2) = before(r(;achlng z
9 T . o(T
max > 1 ,ifz — 2
Solution: By means of prevalent methods of the graph theory, o(7)
for computing all-pairs shortest paths.
The running time is polynomial, too.
o = = = = o & = = = 9ac
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Definitions
Main Property Reachability Graph
Applications Time Paths in bounded TPNs
Conclusion
Input: z and Z’ - two states (in Z).
Output: - Is there a path between z and Z' in RG(Z)?

— If yes, compute the path with the longest time length.

Solution: By means of prevalent methods of the graph theory,
e.g. Bellman-Ford algorithm (polyn. running time).
or by computing all strongly connected components
of RG(Z). (linear running time)

Result:

Input:

Output:

Solution:

Definitions
Main Property Reachability Graph
Applications Time Paths in bounded TPNs
Conclusion

m and m’ - two states (in Z).

— Is there a path between z and z’ in RG(Z)?

— If yes, compute the path with the longest time length.

By means of prevalent methods of the graph theory,
e.g. Bellman-Ford algorithm.

or by computing all strongly connected components
of RG(Z).
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Applications Applications
Conclusion Conclusion
Conclusion
A /'W [4.8]
» The State Space Reduction of a TPN is a nonoptimization
truncated decision problem
» The minimal and the maximal time length of a path between
two markings in a TPN is a natural number (if finite)
=
it can be computed in polynomial/linear time (with res. to the Thank you!
RG)
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