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1 Introduction

Time Petri nets were introduced by Merlin in [5] in order to study recover-
ability problems in computer systems and the design of communication proto-
cols. Berthomieu and Menasche in [2] res. Berthomieu and Diaz in [1] provide a
method for the analysis of the qualitative behavior of the net. They divide the
state spaces in state classes which are describe by a marking and time domain
given by inequalities. The reachability graph is defined as a directed graph where
the vertices are the reachable state classes and the edges are labeled by tran-
sitions. The net time is taken into account in the reachability graph by means
of the inequalities which describe the state classes. This is a disadvantage for a
quantitative analysis of the TPN. The reachability graph has the property, that
the graph is finite iff the TPN is bounded. A similar definition for a reachability
graph for a TPN delivers [3].

The property from above namely that the graph is finite iff the TPN is
bounded is also true for the reachability graph defined here. In contrast to above,
the time appears explicitly in this reachability graph as weights on some edges of
the graph. Moreover, the vertices contain no information. Thus, our reachability
graph is a usual directed weighted graph. Therefore, it is now possible to use the
graph theory in order to accomplish quantitative analysis.

2 Basics

2.1 Notations and Definitions

In this note we use following notations: N is the set of natural numbers, N+

:= N \ {0}. Q+

0 res. R+

0 is the set of nonnegative rational numbers res. set of
nonnegative real numbers . Let g be a given function from A to B. T ∗ denotes
the language of all words over the alphabet T , including the empty word e; l(w)
is the length of the word w.

Definition 1 (Petri net). The structure N = (P, T, F, V, mo) is called a Petri
net (PN) iff



(a) P, T, F are finite sets with
P ∩T = ∅, P ∪T 6= ∅, F ⊆ (P ×T )∪ (T ×P ) and dom(F )∪ cod(F ) = P ∪T

(b) V : F −→ N+ (weight of the arcs)
(c) mo : P −→ N (initial marking)

A marking of a PN is a function m : P −→ N, such that m(p) denotes the
number of tokens at the place p. The pre-sets and post-sets of a transition t are
given by •t := {p | p ∈ P ∧ (p, t) ∈ F} and t• := {p | p ∈ P ∧ (t, p) ∈ F},
respectively. Each transition t ∈ T induces the marking t− and t+, defined as
follows:

t−(p) =

{

V (p, t) ,iff (p, t) ∈ F

0 ,iff (p, t) 6∈ F
t+(p) =

{

V (t, p) ,iff (t, p) ∈ F

0 ,iff (t, p) 6∈ F

Moreover, ∆t denotes t+ − t−. A transition t ∈ T is enabled (may fire) at a
marking m iff t− ≤ m (e.g. t−(p) ≤ m(p) for every place p ∈ P ). When an
enabled transition t at a marking m fires, this yields a new marking m′ given by

m′(p) := m′(p) + ∆t(p) and denoted by m
t

−→ m′.

Definition 2 (Time Petri net). The structure Z = (P, T, F, V, mo, I) is called
a Time Petri net (TPN) iff:

(a) S(Z) := (P, T, F, V, mo) is a PN.
(b) I : T −→ Q+

0 × (Q+

0 ∪ {∞}) and I1(t) ≤ I2(t) for each t ∈ T , where
I(t) = (I1(t), I2(t)).

A TPN is called finite Time Petri net (FTPN) iff I : T −→ Q+

0 × Q+

0 .

I is the interval function of Z, I1(t) and I2(t) the earliest firing time of t (eft(t))
and the latest firing time of t (lft(t)), respectively. It is not difficult to see (cf. [7])
that considering TPNs with I : T −→ N × (N ∪ {∞}) will not result in a loss of
generality. Therefore only such time functions I will be considered subsequently.
Furthermore, conflict is used in the strong sense: two transitions t1 and t2 are
in conflict iff •t1 ∩• t2 6= ∅. The PN S(Z) referred to as the skeleton of Z.

A state is characterized by a marking together with the momentary local
time for enabled transitions or the sign ] for the disabled transitions.

Definition 3 (state). Let Z = (P, T, F, V, mo, I) be a TPN and h : T −→
R+

0
∪ {#}. The pair z = (m, h) is called a state in Z iff:

(a) m is a reachable marking in S(Z).
(b) ∀t ( (t ∈ T ∧ t− ≤ m) −→ h(t) ≤ lft(t)).
(c) ∀t ( (t ∈ T ∧ t− 6≤ m) −→ h(t) = #).

Interpretation of the notion “state” is as follows: within the net, each transition
t has a clock h(t). If t is enabled at a marking m, the clock of t h(t) shows the
time elapsed since t became most recently enabled. If t is disabled at m, the
clock does not work (indicated by h(t) = #). We call m a place-marking (short:
p-marking) and h - a transition-marking (short: t-marking).



Now the dynamic aspects of TPNs – changing from one state into another –

can be introduced: The state zo := (mo, ho) with ho(t) :=

{

0 iff t− ≤ m0

# iff t− 6≤ m0

is set as the initial state of the TPN Z. A transition t is ready to fire in the

state z = (m, h), denoted by z
t

−→ , iff t− ≤ m and eft(t) ≤ h(t). A transition
t̂, which is ready to fire in the state z = (m, h), may fire yielding a new state
z′ = (m′, h′), defined by m′ = m + ∆t̂ and

h′(t) =:







# iff t− 6≤ m

h(t) iff t− ≤ m ∧ t− ≤ m′ ∧• t ∩• t̂ = ∅
0 otherwise

.

Thus, the firing mode can be defined now as follow: A state z = (m, h) is changed

into the state z′ = (m′, h′) by firing the transition t̂, denoted by z
t̂

−→ z′ .
And, the state z = (m, h) is changed into the state z′ = (m′, h′) by the time

duration τ ∈ Q+

0
, denoted by z

τ
−→ z′, iff m′ = m and the time duration τ

is possible – formally: ∀t ( (t ∈ T ∧ h(t) 6= #) −→ h(t) + τ ≤ lft(t) and

h′(t) :=

{

h(t) + τ iff t− ≤ m

# iff t− 6≤ m
). z = (m, h) is called an integer-state iff h(t)

is an integer for each enabled transition t in m.

2.2 Time Petri nets and Turing Machines

It is well known that classical Petri nets are not equivalent to the Turing Ma-
chines. However, most of the time a small extension like inhibitor arcs, firing in
maximal steps etc. makes the modified classical Petrinets already equivalent to
the Turing machines. The proof can be done using register machines.

2.3 State Space

The state space of an arbitrary Time Petri net is the set of all reachable states of
the net, starting at z0. Of course, this set is in general infinite: Already, the set
of all reachable states for a fixed m-marking is in general infinite (and dense).
Nevertheless, it is possible to pick up some “essential” states so that a qualitative
and quantitative analysis is possible. In [7] it is shown that the essential states
are the integer-states.

The graph RGZ(zo) is called the reachability graph of the TPN Z iff its
vertices are the reachable integer-states and its edges are defined by the triples

(z, t, z′) and (z, τ, z′) where z
t

−→ z′ and z
τ

−→ z′, respectively. This graph is
finite iff the set of the reachable markings of the net is finite. Moreover, this set
is finite, if the set of reachable markings of the skeleton – the timeless net – is
finite. The other direction is not true in general.

The state space of a given TPN Z can be defined recursively as follow:

Definition 4 (state space).
Let Z be a TPN. The set StSp(Z) is called the state space of Z iff StSp(Z) =

⋃

C, where each set C is defined recursive as follow:



Basis: C0 := {z | ∃τ(τ ∈ R+

0 ∧ z0

τ
−→ z)}

Step: Let C be already defined. Then C′ is derived from C by firing t̂

( formally C
t̂

−→ C′ ), iff

C′ := {z | ∃z1∃z2∃τ(z1 ∈ C ∧ τ ∈ R+

0 ∧ z1

t̂
−→ z2

τ
−→ z)}.

The sets C are called here classes of reachable states in Z.

3 Firing Sequences

3.1 Parametric description

In order to study transition sequences in a TPN we introduce the notion para-
metric description of a sequence as defined and ample studied in [7].

It is clear that a transitions sequence in a given TPN is a chronology of firing
transitions.This means that it is a ”what – when entity” in a TPN. Furthermore,
it is also clear that even if the ”what” is fixed the ”when” is in general still
variable. In order to mirror this fact we define the notion parametric description
of a transition sequence.

In short, the parametric description of a sequence σ = (t1, ..., tn) is a triple
δ(σ) = [mσ, Σσ, Bσ]. The time that can/must elapse between the firing of two in
σ successive transitions ti and ti+1 is variable. We describe it with the variable
xi. Of course, xi has to fulfill certain constrains, which are defined in Bσ. mσ

is the p-marking reached after the firing of σ. Σσ is a vector where the number
of its components is equal to the number of thansitions in the net, and each
component is a sum of variables. Σσ is a parametrically defined t-marking. Bσ

is a set of inequalities. Σσ and Bσ describe parametrically all passible times for
the enabled transitions in mσ. The pair (mσ, Σσ) is a state, which is reachable
after firing σ, when the variables xi satisfy the inequalities in Bσ. For a detailed
definition see [7].

3.2 Integer sequences

As already mentioned repeatedly, the paper [7] considers firing in TPN’s. The
main results achieved in this paper are important for this study and therefore
we resume them shortly:

Let us consider an arbitrary TPN. Furthermore, we consider an arbitrary
transition sequence σ = (t1, ..., tn) and an arbitrary concrete realization (run)
of it: Starting at the initial state of the net it is possible to fire the sequence by
alterneting concrete elapsing times τi and transition firings. Thus, the run of σ

has the form σ(τ) = (τ1, t1, ..., τn, tn) and all τi’s are real numbers.
Then it is always possible to find a further concrete realization (called

run) σ(τ∗) = (τ∗

1 , t1, ..., τ
∗

n , tn) with:

(1) all elapsing times τ∗

i
are integers



(2) for all i’s the difference between τi and τ∗

i
is always smaller then 1.

(3) for each transition t enabled after firing σ(τ∗) is true that the clock h(t)
shows an integer time (i.e. if h(t) 6= ] then h(t) is an integer) and

(4) the difference between the times showing by the clock of each transition t

after firing σ(τ) and after firing σ(τ∗) is always smaller then 1. In partic-
ular,

(a) it is possible to find such a run σ(τ∗), so that the time showing by each
clock h(t) (for enabled transition t ) is always smaller then the time
showing after firing σ(τ). In other words, the run σ(τ∗) can be chosen
so, that the time shown by each clock h(t) is exactly the integer part
of the time shown by the same clock after the firing of the run σ(τ).

(b) analogosly to prior item, it is possible to find such a run σ(τ∗) but
the time showing by each clock h(t) (for enabled transition t ) is now
always greater then the time showing after firing σ(τ). That means, the
run σ(τ∗) can be chosen so, that the time shown by each clock h(t) is
exactly 1 plus the integer part of the time shown by the same clock
after the firing of the run σ(τ).

(5) the time difference between the time used for the firing of σ(τ) and the time
used by σ(τ∗) is always smaller then 1 (i.e. the difference between the sum
of all τ∗

i
’s and the sum of all τi’s is smaller then 1). And particularly, in case

of 4.a and 4.b it holds:

(a) in case of 4.a. the time used by σ(τ) is smaller then the time used by
σ(τ∗) and that means of course, that the first time here is the integer
part of the second one.

(b) in case of 4.b. the time used by σ(τ) is greater then the time used by
σ(τ∗) and that means here, that the first time here is 1 plus the integer
part of the second one.

4 Reachability of states

It is clear that the reachability of an arbitrary state in an arbitrary TPN is
undecidable due to of the equivalence between TPN’s and Turing machines.
Nevertheless, using necessary conditions, which are only we can prove the non-
reachability of an arbitrary state in an arbitrary TPN.

The set of all reachable p-markings of an arbitrary TPN is a part of the
set of all reachable markings of its skeleton. Thus, the most general necessary
condition for the reachability of a p-marking in a TPN is the condition that the
marking is reachable in its skeleton. Because the skeleton is a classical PN the
last reachability problem is solvable.

When a TPN is bounded the reachability of a state is decidable. In order to
see this, let as consider an arbitrary state z = (m, h).

– If all clocks h(t) are integers, then z is reachable iff it belongs to the reach-
ability graph of the net. And this one is finite, because the TPN is bounded.



– In the case of all h(t) are non-negative rational numbers, then the con-
sidered TPN can be transformed into a further TPN with the same struc-
ture. The time intervals now are derived from the old net by multiplication
of all eft’s and lft’s with r = LCM {h(t) | t enabled by m}. The second
TPN is bounded, too. The state z is reachable in the old TPN iff the state
z∗ = (m, h∗) is reachable in the new one, where h∗(t) = h(t) · r for enabled
transitions t and h∗(t) = h(t) for disabled transitions. Obviously, the state
z∗ is an integer one. Therefore, z∗ is a vertex in the reachability graph of
the new TPN iff z∗ is reachable in them. For more see [6].

– The last case is that all h(t) are real numbers. Because the TPN is bounded,
there is a finite number of vertices in the reachability graph with the marking
m. Let z∗ = (m, h∗) be such a vertex. Now, we can find all path in the
reachability graph from z0 to z∗, and the paths do not contained any loops.
In other words, we consider all paths, where each vertex appears once at
most. The number of these paths is finite. For each such path σ we consider
the parametric description. Thus, we obtain with Bσ and Σσ(t) = h∗(t) a
system of linear inequalities. It is solvable iff the state z∗ is reachable in the
TPN. This algorithm is NP-hard.

In the third case a pre-test can be done in linear time, which yields a necessary
condition for the reachability of z. As a pre-test can be checked whether the states
z and z belong to the reachability graph of the net. For the state z = (m, h)
holds, that m = m and h(t) = bh(t)c for all t enabled in m, for disabled t is
h(t) = h(t). Analogously z is the state (m, h) with h(t) = dh(t)e for enabled
transitions and h(t) = h(t) for disabled. According to [7] it is true, that if z is
reachable, than z and z are reachable, too. This property is true for unbounded
nets, too. Obviously, the z and z are integer states and if they are reachable then
they belong to the reachable graph of the net. Thus, if z or z are not reachable
in the TPN Z than the state z is not reachable in Z, too.

5 Shortest and Longest Time Paths

In the quantitative analysis of TPNs the question ”How much time elapses be-
tween the appearance of two p-markings” is basic one. In general a TPN is a
model of a certain time dependent system. The minimal and the maximal time
demand reflects time bounds for occurring events in the system. These bounds
are important for ascertaining deadlines.

Generally a TPN is unbounded. Moreover, it is clear that in the case of
bounded TPN methods from the graph theory can be used for analysis due to
the finiteness and the structure of the reachability graph,

The shortest time path between two markings m1 and m2 is the time that
elapse between two states z1 and z2. The p-marking of z1 is m1 and the p-marking
of z2 is m2.If there is a run between z1 and z2 then z1 is the last state with the
p-marking m1 and z2 is the first state with the p-marking m2 in the run. The
shortest time path is the minimum over all runs. In other words, the shortest



path between m1 and m2 is the minimal time elapsing between the reachability
of two states in the TPN which markings are m1 and m2, respectively. Using the
results from [7], it is easy to see that the minimal time for reaching a state with
a certain marking is an integer one and the achieved state is an integer state.
Thus, the minimal time between the appearance of two markings is also integer
and the corresponding states are integer states. Therefore, when the TPN is
bounded, the states which are decisive for the computing of the shortest path
belong to the reachability graph.

The longest time path between two p-markings is defined in an analogous
manner to the shortest time path. The only difference is that z1 is the first
appearance of m1 and z2 – the last appearance of m2. If there is a cycle starting
with z1 and before reaching z2 then we say that longest time path is infinite.
This definition is not the usual one for longest paths. Newertheless, such paths
are important for the check of keeping deadlines. For more cf. [8].

The problems of shortest and longest time paths between two markings are
the problems of finding the minimal and the maximal paths between two finite
sets of states. Each of the both sets consists of all reachable integer states with
the same p-marking. The problem of the shortest path can be solved by an ”’all-
pairs shortest path”’-algorithm (cf. [4]). The problem of the longest path can be
solved by an similar defined ”’all-pairs longest path”’-algorithm. The running
time is polynomial.

5.1 Shortest and Longest Path in an arbitrary TPN

Let us consider an arbitrary TPN Z and two markings m1 and m2. If the net is
unbounded then the reachability graph is infinite. Hence the both sets we spoke
above, can be infinite. Therefore the number of sequences leading from the first
to the second one can be also infinitely. In this case we can compute the minimal
and the maximal time distance between m1 and m2 only if there is an additional
information: the moments (states) of considering the p-markings, i.e. two states
z1 = (m1, h1) and z2 = (m2, h2), and a transition sequence σ = (ti1 , ..., tik

) with
σ

−→. Solving two LPs we can compute the minimal and the maximal elapse of
times between m1 and m2 in σ. The running time is polynomial.

5.2 Shortest and Longest Path in a bounded TPN

Let Z be a bounded TPN and RZ(z0) be the reachability graph of Z. As shown
in [6] this reachability graph is finite.

Now we consider two integer states and study the time distance between
them.

Let z1 and z2 be two integer states in Z. Hence, each of them is a vertex in
RZ(z0). Following, the problems of finding shortest res. longest paths between
two integer states is finding the shortest res. longest paths between two vertices in
a weighted directed graph. In general, the shortest path can be find in polynomial
time as shown e.g. in [8].



The longest path from z1 to z2 lp(z1, z2) can be find in linear time. In the
following we are going to present an algorithm for this:

(1) Remove all output edges of z2 from RZ(z0). The new graph let be called R̃

for short.
(2) Compute allstrongly connected components (SCCs) of R̃.
(3) Check if z1 belongs to a SCC Qz1

= (V1, E1) with | V1 |≥ 2.
if yes then go to (7) else go to (4).

(4) Compute the acyclic component graph R̃SCC .
(5) Check in R̃SCC if it is possible starting at Qz1

to reach a vertex P ( P is a
SCC in R̃ so let P = (VP , EP ) be) and | VP |≥ 2.
if yes then go to (7) else go to (6).

(6) Compute longest path from Qz1
to Qz2

. STOP.
(7) Set lp(z1, z2) = ∞. STOP.

6 Conclusion

In this note we considered the decidability of the reachable states in a TPN.
For this purpose we defined a parametric description of transition sequences and
introduced integer sequences. Afterwards, we discussed a computation of the
shortest and longest paths between two markings. Subsequently, we spoke about
computation of the shortest and longest paths between two states. Eventually, we
presented an algorithm for computing of the longest path between two (integer)
states with a linear running time.
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