
Time Petri Nets State Space Reduction Using

Dynamic Programming

Louchka Popova-Zeugmann

Department of Computer Science
Humboldt-Universität zu Berlin

Unter den Linden 6
10099 Berlin, Germany

popova@informatik.hu-berlin.de

Abstract. In this paper a parametric description for the state space
of an arbitrary TPN is given. An enumerative procedure for reducing
the state space is introduced. The reduction is defined as a truncated
multistage decision problem and solved recursively. A reachability graph
is defined in a discrete way by using the reachable integer-states of the
TPN.

Keywords: Time Petri Net, dynamic programming, state space reduction, integer-
state, reachability graph

1 Introduction

For more than forty years Petri nets have been used in order to describe and
study concurrent systems. At first sight, time and concurrence do not seem to
have much in common. But if one looks closer, they are often connected, e.g.
whenever local time dependencies between actions are relevant. There are endless
examples from different areas showing this. For this reason, a large variety of
time dependent Petri nets have been introduced and well studied. One of the
first such nets defined is the Time Petri net (TPN), introduced in [1] in order to
study recoverability problems in computer systems and to design communication
protocols.

Time Petri nets (TPN) are derived from classical Petri nets. Additionally,
each transition t is associated with a time interval [at, bt] . Here at and bt are
relative to the time, when t was enabled last. When t becomes enabled, it can
not fire before at time units have elapsed, and it has to fire not later than bt time
units, unless t got disabled in between by the firing of another transition. The
firing itself of a transition takes no time. The time interval is designed by real
numbers, but the interval bounds are nonnegative rational numbers. It is easy to
see (cf. [2]) that w.l.o.g. the interval bounds can be considered as integers only.
Thus, the interval bounds at and bt of any transition t are natural numbers,
including zero and at ≤ bt or bt = ∞.

Every possible situation in a given TPN can be described completely by a
state z = (m, h), consisting of a (place) marking m and a transition marking
h. The (place) marking, which is a place vector (i.e. the vector has as many
components as places in the considered TPN), is defined as the marking notion
in classical Petri nets. The time marking, which is a transition vector (i.e. the
vector has as many components as transitions in the considered TPN), describes
the time circumstances in the considered situation. In general, each TPN has
infinite number of states. Thus the central problem for analysis of a certain TPN
is the knowing of its state space.

In this paper the state space is characterized parametrically and it is shown
that knowledge of the integer-states, i.e. states whose time markings are (non-
negative) integers, is sufficient to determine the entire behavior of the net at any
point in time. While the calculation of a single integer-state is easy, the proof
that knowledge of the integer-states is sufficient for analysing a TPN is difficult.
This problem is divided into a finite number of problems, which are solved re-
cursively in a manner typical of the methodology of dynamic programming. A
parametrical characterization of the state space has already been introduced in
[3].

The new contributions presented in this paper are as follows. We extend
the fundamental property to the case where time is described by nonnegative
reals (instead of just rationals). Furthermore, we modify the definition of the
reachability graph in the case that infinity is allowed for a latest firing time.
This modified definition allows us to obtain a finite reachability graph if and
only if the TPN is bounded. This property previously held only when all lat-
est firing times were finite. Additionally, we elaborate the correlation between
the above described problem and dynamic programming. Dynamic programming
originated as a method for solving decision problems by Bellman, amongst oth-
ers, in [4] and later studied in [5], [6] etc. The algorithm, proved here shows that
the set of all reachable p−markings in a certain TPN is semi-decidable. The last
set is in general not decidable because of the equivalence between TPNs and
Turing machines (cf. [7]).

This paper is organised as follows. The next section gives some preliminary
definitions and remarks. The third section introduces a parametric characteri-
zation of the state space. Afterwards, the special meaning of the integer-states
is proved using the method of finite dynamic programming. This is followed by
introducing the reachability graph. In the fourth section some related work is
summarized. Finally, the last section gives some remarks including future out-
look.

2 Basic Notations and Definitions

As usual, we use the following notations in this paper : N is the set of natural
numbers, N+ := N\{0}. Q+

0 , res. R+
0 , is the set of nonnegative rational numbers,

res. the set of nonnegative real numbers . T ∗ denotes the language of all words
over the alphabet T , including the empty word e; l(w) is the length of the word

w. ℘(C) denotes the power set of a set C. | D | stands for the number of elements
of a finite set D. C|D| is the cartesian product C × · · · × C

︸ ︷︷ ︸

|D| times

. The ”floor” of a real

number r denoted by brc is the maximum of the set of integers that are not
greater than r, respectively the ”ceiling” of r denoted by dre is minimum of the
set of integers that are not smaller than r.

And now the definition of a (classical) Petri net is as follows:

Definition 1 (Petri net). The structure N = (P, T, F, V, mo) is called a Petri
net (PN) iff

(a) P, T, F are finite sets with
P ∩T = ∅, P ∪T 6= ∅, F ⊆ (P ×T)∪ (T ×P) and dom(F)∪ cod(F) = P ∪T

(b) V : F −→ N+ (weight of the arcs)
(c) mo : P −→N (initial marking)

A marking of a PN is a function m : P −→ N, such that m(p) denotes the
number of tokens at the place p. The pre-sets and post-sets of a transition t

are given by •t := {p | p ∈ P ∧ (p, t) ∈ F} and t• := {p | p ∈ P ∧ (t, p) ∈ F},
respectively. Each transition t ∈ T induces the marking t− and t+, defined as
follows:

t−(p) =

{
V (p, t) ,iff (p, t) ∈ F

0 ,iff (p, t) 6∈ F
t+(p) =

{
V (t, p) ,iff (t, p) ∈ F

0 ,iff (t, p) 6∈ F

Moreover, ∆t denotes t+ − t−. A transition t ∈ T is enabled (may fire) at
a marking m iff t− ≤ m (e.g. t−(p) ≤ m(p) for every place p ∈ P). When an
enabled transition t at a marking m fires, this yields a new marking m′ given by

m′(p) := m(p)+∆t(p) and denoted by m
t

−→ m′. Thus, the dynamical behavior
of a classical PN is characterized by firing transitions that leads to change of the
markings.

Example 1.

tt t

P P

P1

1 2

3

43

N : 1

2

t

2

Fig. 1. N1 - a (classical) Petri net

A marking m is a reachable one in N if there is a transition sequence which
can fire starting at m0 and ending at m. The set of all markings reachable in N

is denoted by RN .

Definition 2 (Time Petri net). The structure Z = (P, T, F, V, mo, I) is called
a Time Petri net (TPN) iff:

(a) S(Z) := (P, T, F, V, mo) is a PN.
(b) I : T −→ Q+

0 × (Q+
0 ∪ {∞}) and I1(t) ≤ I2(t) for each t ∈ T , where

I(t) = (I1(t), I2(t)).

A TPN is called finite Time Petri net (FTPN) iff I : T −→ Q+
0 × Q+

0 .

I is the interval function of Z, I1(t) and I2(t) the earliest firing time of t

(eft(t)) and the latest firing time of t (lft(t)), respectively. It is not difficult
to see (cf. [3]) that considering TPNs with I : T −→ N×(N∪{∞}) will not result
in a loss of generality. Therefore, only such time functions I will be considered
subsequently. Furthermore, conflict is used in the strong sense: two transitions
t1 and t2 are in conflict iff Ft1 ∩ Ft2 6= ∅. The PN S(Z) is referred to as the
skeleton of Z.

Within this approach, the definition of a state is of fundamental importance
for the ensuing theory. A state is characterized by a marking together with
the momentary local time for enabled transitions or the sign] for the disabled
transitions.

Example 2.

tt t

P P

P1

1 2

3

43

Z : 1

2

t
[2,4] [2,3][1,5]

2
[0,3]

Fig. 2. Z1 - a Time Petri net (with S(Z1) = N1)

Definition 3 (state). Let Z = (P, T, F, V, mo, I) be a TPN and h : T −→
R+

0 ∪ {#}. z = (m, h) is called a state in Z iff:

(a) m is a reachable marking in S(Z).
(b) ∀t ((t ∈ T ∧ t− ≤ m) −→ h(t) ≤ lft(t)).
(c) ∀t ((t ∈ T ∧ t− 6≤ m) −→ h(t) = #).

Interpretation of the notion “state” is as follows: within the net, each transition
t has a clock h(t). If t is enabled at a marking m, the clock of t h(t) shows
the time elapsed since t became most recently enabled. If t is disabled at m,
the clock does not work (indicated by h(t) = #). Thus, the vector h which is a
vector of clocks is actually a transition marking and the already defined notion
“marking” is in fact a place marking. In the following we call the places marking
m a p-marking and the transitions marking h a t-marking.

The state zo := (mo, ho) with ho(t) :=

{
0 iff t− ≤ m0

iff t− 6≤ m0
is set as the initial

state of the TPN Z.

Example 3.

The initial state in Z1 , compare Fig. 2, is z0 = ((0, 1, 1)
︸ ︷︷ ︸

p−marking

, (0,],], 0)
︸ ︷︷ ︸

t−marking

).

Now the dynamic aspects of TPNs – changing from one state into another by
firing a transition or by time elapsing – can be introduced:

Definition 4 (state changing). Let Z = (P, T, F, V, mo, I) be a TPN, t̂ be a
transition in T and z = (m, h), z′ = (m′, h′) be two states. Then

(a) the transition t̂ is ready to fire in the state z = (m, h), denoted by z
t̂

−→ ,
iff

(i) t̂− ≤ m and
(ii) eft(t̂) ≤ h(t̂).

(b) the state z = (m, h) is changed into the state z′ = (m′, h′) by firing the

transition t̂, denoted by z
t̂

−→ z′ , iff

(i) t̂ is ready to fire in the state z = (m, h)
(ii) m′ = m + ∆t̂ and

(iii) ∀t (t ∈ T −→ h′(t) :=







iff t− 6≤ m′

h(t) iff t− ≤ m ∧ t− ≤ m′ ∧ Ft ∩ F t̂ = ∅
0 otherwise

).

(c) the state z = (m, h) is changed into the state z′ = (m′, h′) by the time

elapsing τ ∈ R+
0 , denoted by z

τ
−→ z′, iff

(i) m′ = m and
(ii) ∀t (t ∈ T ∧ h(t) 6= # −→ h(t) + τ ≤ lft(t)) i.e. the time elapsing τ is

possible, and

(iii) ∀t (t ∈ T −→ h′(t) :=

{
h(t) + τ iff t− ≤ m′

iff t− 6≤ m′).

The state z = (m, h) is called an integer state iff h(t) is an integer for each
enabled transition t in m.

Example 4.
In the net Z1, in the initial state, the transitions t1 and t4 are enabled, but neither
t1 nor t4 may fire because of their time restrictions. Thus, z0 can change into

another state only as time elapses. For example, the change of states z0
1.3
−→ z1

is feasible, where z1 is given by m1 = m0 and h1 = (1.3,],], 1.3). Furthermore,

z1 can change into the state z2 with z1
1.0
−→ z2, where the state z2 is given by

m2 = m1 and h2 = (2.3,],], 2.3). In z2 the transition t4 can fire, yielding the
state z3 with: m3 = (1, 1, 0) and h3 = (2.3,], 0.0,]). Now, as time progresses
by 2, state z3 changes into the state z4, with m4 = m3, h4 = (4.3,], 2.0,]).
Subsequently, t1 can fire and z4 is changed into a state z5 with m5 = (2, 0, 0)
and h5 = (], 0.0, 2.0,]). Afterwards t2 is ready to fire. Firing t2 at z5 leads to
z6 = (m6, h6) with m6 = (0, 1, 0) and h6 = (0.0,],],]). Thus, the sequence

zo
1.3
−→ z1

1.0
−→ z2

t4−→ z3
2.0
−→ z4

t1−→ z5
t2−→ z6 is executable in Z1. The initial

state and the states z5 and z6 are integer states, whereas the states z1, z2, z3 and
z4 are not.

Definition 5 (reachable state, state space). Let Z = (P, T, F, V, mo, I) be
a TPN.

(a) The state z = (m, h) is called reachable in Z (starting at z0), iff there exist
states z1, z

′
1, ..., zn, z′n, transitions t1, ..., tn and times τi ∈ R+

0 , i = 1, ..., n

and it holds

z0
τ1−→ z1

t1−→ z′1
τ2−→ z2

t2−→ z′2...
τn−→ zn

tn−→ z′n.

(b) The set StSp(Z) of all reachable states in Z is called the state space of Z.

It is easy to see that the set of all reachable p-markings in a TPN Z is the set
{m | (m, h) ∈ StSp(Z)}, which will be denoted with RZ .

The sequence of transitions (t1, ..., tn) can fire in Z starting at z0, because
there is a sequence (τ1, t1, ..., τn, tn). We denote such a transition sequence
σ = (t1, ..., tn) feasible. The sequence σ(τ) = (τ1, t1, ..., τn, tn) which is a con-
crete execution of σ in Z is called a (feasible) run of σ. It is clear that in a
given TPN the state changes are achieved by alternating series of time elapsing
and firing. Obviously, for a given run the transition sequence is well defined and
for a given transition sequence there are infinitely many runs in general.

It is clear that the state space of a TPN is in general infinite and dense
in terms of the time. On the one hand the set of reachable p-markings can be
infinite. On the other hand, for a fixed p-marking the set of t-markings can be
infinite. Nevertheless, it is possible to pick up some “essential” states only, so
that qualitative and quantitative analysis is possible. In [3] it is shown, that the
essential states are the integer states.

The state space can be considered as the union of all sets Cσ, which are
defined below recursively:

Definition 6 (state class). Let Z = (P, T, F, V, mo, I) be a TPN and σ be a
feasible transition sequence. The set Cσ is called a state class, iff

Basis: Ce := {z | ∃τ(τ ∈ R+
0 ∧ z0

τ
−→ z)}

Step: Let Cσ be already defined. Then Cσt is derived from Cσ by firing t

(denoted by Cσ
t

−→ Cσt), iff

Cσt := {z | ∃z1∃z2∃τ(z1 ∈ Cσ ∧ τ ∈ R+
0 ∧ z1

t
−→ z2

τ
−→ z)}.

In other words, the state class Ce is the set of all reachable states in Z that one
gets after firing the empty transition sequence e at the initial state and afterwards
all states that are reachable by state changing with all possible elapses of time.
That is why, sometimes C0 stands for Ce. Obviously, it holds StSp(Z) =

⋃

σ

Cσ.

3 Fundamental Property

The properties of a Petri net, both the classical one as well as the TPN, can
be divided into two parts: There are static properties, like being pure, ordinary,
free choice, extended simple, conservative, etc., and there are dynamic properties
like being bounded, live, reachable, and having place- or transitions invariants,
deadlocks, etc. While it is easy to prove the static behavior of a net using only the
static definition, the dynamic behavior depends on both the static and dynamic
definitions and is quite complicated to prove. That means that in order to get
good knowledge of the dynamical behavior of the net, the set of all possible
situations reachable for the net have to be known, i.e. the state space must be
known. As already mentioned, this set is in general infinite and therefore hard
to handle.

Nevertheless, it is possible to pick up some “essential” states only, so that
qualitative and quantitative analysis is possible. In [3] it is shown, that the
essential states are the integer-states.

The aim of this section is to justify the reduction of the state space of a
certain TPN to a set of all its reachable integer-states as an adequate set for
testing dynamical properties. To do this we use dynamic programming.

Notions, notations, definitions and approach referring to dynamic programing
are used similar to [5]. We consider the problem as a non-optimization problem
just like the abstract dynamic programming model considered in chapter 14.3 in
[5] and solve it.

3.1 Parametric Description of the State Space

Let Z be an arbitrary TPN with the initial state z0 = (m0, h0). Let σ =
(t1, ..., tn) be a feasible transition sequence in Z and let σ(τ) = (τ1, t1, ..., τn, tn)
be a certain run. Obviously after firing σ(τ) a fix reachable state zσ(τ) is yielded.
When the times τ = (τ1, ..., τn) are given parametrically with X = (x1, ..., xn)
then the achieved state zσ(X) = (mσ(X), hσ(X)) is a parametrical one. It is easy
to see that the p-marking mσ(X) does not depend on X . It depends only on σ.

However, the t-marking hσ(X) depends on σ as well as on the parameter X . Fur-
thermore, it is clear that for a concrete value of X with the additional condition
that the refering run is feasible, the t-marking hσ(X) is well defined. Hence, an
unique parametric state zσ := zσ(X) can be assigned to each transition sequence
σ , i.e. we can consider a function between the set of all transition sequences in
Z and the set of all reachable states, defined parametrically. In order to make
certain that σ is feasible we consider the parametric state zσ together with a set
of conditions for the values of X . Thus, we can consider the state space as the
codomain of this function in connection with a set of certain additional condi-
tions. It is clear that the codomain of this function is the parametric description
of the state space of the TPN.

In order to define and investigate this function it is convenient to transfer
the subject matter into the terminology of a first-order predicate calculus. In
general this terminology is used similar to [8]. Let Z be an TPN and let S :=
{f2, A2, $, ut, vt|t ∈ T } be a set of a symbols where f2 is a binary function
symbol, A2 is a binary relation symbol, $ and ut, vt for each transition t are
constant symbols (for short: K := {$, ut, vt|t ∈ T }). Furthermore, we consider
the S-structure D := [D, ω] with D := R+

0 ∪ {]} as a domain and

ω(f2) := +, ω(A2) :=≤, ω(ut) := eft(t), ω(vt) := lft(t), ω($) :=].

Here, + is a binary operation on D, which coincides with the well-known addition
in R+

0 . In this context, it is not necessary to specify + any further. Similar
considerations apply to ≤.

Let SUM be the union of the set of all terms, in which each variable ap-
pears at most once and constants do not appear at all, and the set which
consists only of the constant symbol $. COND denotes the set of all formu-
lae A2termitermj where termi ∈ SUM \{$} and termj ∈ K \ {$}, or vice versa;
the term in {termi, termj} ∩ (SUM \{$}) is denoted by s(A2termitermj), the
one in {termi, termj}∩ (K \ {$}) with r(A2termitermj). Let β be an arbitrary
assignment for the set of variables XS := {xi | i ∈ N} into the domain D. Under
the interpretation I := (D, β) , the value of a term with respect to β (which is
an element in D) will be denoted by JtermKβ . In the following all used interpre-
tations I = (D, β) consists of the same S-structure D, i.e. the interpretations
differ to each other in the assignment β only. Thus, the assertion ” β satisfy a
formula c ” means that the interpretation I = (D, β) satisfy c.

Definition 1. Let Z = [P, T, F, V, m0, I] be a TPN. The function δ : T ∗ −→

RZ × SUM|T | ×℘(COND) is partially defined by induction:

Basis: δ(e) := [me, Σe, Be] where

(a) me = m0

(b) Σe(t) :=

{

x0 iff t− ≤ me

$ otherwise

(c) Be := {A2Σe(t)vt|t− ≤ me}.

Step: Let σ be a transition sequence and assume that δ(σ) has been defined
as [mσ, Σσ, Bσ]. For a transition t̂ with Σσ(t̂) 6= $, δ(σt̂) = [mσt̂, Σσt̂, Bσt̂] is
defined as follows:

(a) mσt̂ := mσ + ∆(t̂),

(b) Σσt̂(t) :=







$ iff t− 6≤ mσt̂

xl(σ)+1 iff (t− 6≤ mσ ∧ t− ≤ mσt̂)∨

(t− ≤ mσ ∧ t− ≤ mσt̂ ∧ Ft ∩ F t̂ 6= ∅)

f2 Σσ(t)xl(σ)+1 otherwise

(c) Bσt̂ := Bσt ∪ {A2utΣσ(t̂)} ∪ {A2Σσt̂(t)vt | t− ≤ mσt̂}

With regard to the interpretation of the symbols for functions, predicates
and constants in the logic defined above, the following notational conventions
for terms in SUM \{$}, formulae in COND, and constants will be used for reasons
of convenience and increased readability:

x1 + · · · + xn := f2 . . . f2x1x2 . . . xn,

term1 ≤ term2 := A2term1term2,

and instead of constant symbols their interpretation under ω.

Obviously, there is a close connection between the state classes and the map-
ping δ defined above: Cσ = {(mσ, Σσ(t)) | Bσ}.

Example 1.
We consider Z1 again (cf. Fig. 2). The state class C0 has the parametric form

C0 = {((0, 1, 1), (x1,],], x1)) | 0 ≤ x1 ≤ 3}.

After firing t4 from an arbitrary state, belonging to C0, the set Ct4 will be
achieved, and Ct4 has the parametric form

Ct4 = {((1, 1, 0), (x1 + x2,], x2,])) | 2 ≤ x1 ≤ 3, x1 + x2 ≤ 5, 0 ≤ x2 ≤ 4}.

The parametric state ((0, 1, 1), (x1,],], x1)) defines the set C0, and the paramet-
ric state ((1, 1, 0), (x1 + x2,], x2,])) defines the set Ct4 . The parameter x1 in C0

has to satisfy the constraint 0 ≤ x1 ≤ 3, and the parameters x1, x2 in Ct4 have
to satisfy the three constraints 2 ≤ x1 ≤ 3, x1 + x2 ≤ 5, 0 ≤ x2 ≤ 4. At the same
time, C0 is the parametric description of the empty transition sequence, and Ct4

is the parametric description of the transition sequence t4. Thus, the parametric
description for the transition sequence (t4, t3) is

Ct4t3 = {((0, 1, 1), (x1 + x2 + x3,],], x3)) |
2 ≤ x1 ≤ 3, x1 + x2 ≤ 5,

2 ≤ x2 ≤ 4, x1 + x2 + x3 ≤ 5,

0 ≤ x3 ≤ 3
}.

Accordingly, for (t4, t3, t4) the parametric description is Ct4t3t4 =

{((1, 1, 0), (x1 + x2 + x3 + x4),], x4,])) |

2 ≤ x1 ≤ 3, x1 + x2 ≤ 5,

2 ≤ x2 ≤ 4, x1 + x2 + x3 ≤ 5,

2 ≤ x3 ≤ 3, x1 + x2 + x3 + x4 ≤ 5,

0 ≤ x4 ≤ 4

}.

3.2 Properties and Dynamic Programming

For each feasible transition sequence σ with δ(σ) = [mσ, Σσ, Bσ] it is easy to
prove that the following holds:

Remark 1. For each state z ∈ Cσ, there is an assignment β : X −→ R+
0 such

that: z = (mσ, JΣσKβ) and
∧

b∈Bσ

β satisfies b.

Also easy to prove is the converse:

Remark 2. For each assignment β : X −→ R+
0 with

∧

b∈Bσ

β satisfies b, the state

z := (mσ, JΣσKβ) is in Cσ.

By induction on σ it can be proved, too, that remark 3, remark 4 and remark
5 are true:

Remark 3. For any two transitions ti and tj in Z with Σσ(ti) = xi0+xi1+· · ·+xik

and Σσ(tj) = xj0 + xj1 + · · · + xjl
, it follows that ik−r = jl−r for all r =

0, 1, . . . , min{k, l}.

Remark 4. For each transition t ∈ T it is true that: if Σσ(t) = xi + . . .+xj then
each variable xk with i ≤ k ≤ j also appears in Σσ(t).

Remark 5. For each term ∈ SUM , which is a part of a formula b in Bσ, it is
true that: if term = xi + . . . + xj then each variable xk with i ≤ k ≤ j also
appears in term.

The following theorem supplies the fundamental property of the TPN that
allows one to consider an essential reduced state space.

Theorem 1. Let Z = [P, T, F, V, m0, I] be a TPN, σ a transition sequence of

length n, with δ(σ) = [mσ, Σσ, Bσ] and β̂ : X −→ R+
0 an assignment such that

∀c(c ∈ Bσ → β̂ satisfies c). Then there exists an assignment β∗ : X −→ N such
that:

(1) ∀c(c ∈ Bσ → β∗ satisfies c)
(2) ∀t(t ∈ T ∧ t− ≤ mσ → JΣσ(t)Kβ∗ ≤ JΣσ(t)K

β̂
)

(3)
q n∑

k=0

xk

y
β∗

≤
q n∑

k=0

xk

y
β̂
.

The meaning of the theorem is that if β̂ supplies a feasible run for σ with
real numbers for elapsed time then it is possible to find a further feasible run
for σ with integer time elapses (meaning of (1)). The differences between the
respective time elapses in both runs are allways smaller than 1 (follows from
the construction of β∗ given below). The difference between the clocks of each
enabled transition at mσ after the first run and after the second one is smaller

than 1, too (meaning of (2)). And finally also the difference between the total
times of both runs is smaller than 1 (meaning of (3)).

Idea of the proof: The integer values β∗(x1), β
∗(x2), · · · , β∗(xn) defined by

the assignment β∗ will be explicitly constructed out of the given assignment β̂

by successively transforming each non-integral real number to the nearby integer
in (n + 1) steps.

As the default value brc will be taken, in order to ensure that the second and
third property stated in the theorem are satisfied. By doing so, the restriction
yielded by the first property will be somewhat loosened, i.e., temporarily it is
sufficient that a required condition is “almost” satisfied. This means, that for
each formula c in Bσ, the value of the non-constant term s(c) under the current
assignment will only have to lie in a certain neighbourhood of the initial value
Js(c)K

β̂
.

If, by taking the integer part of the rational value for a certain variable, such
a neighbourhood will be left for at least one condition, dre will be taken instead.
The largest part of the proof aims to show that the three requirements stated
above will also be satisfied (with the first one once again “loosened”) in this
case.

To complete the proof, it then remains to verify, that for the finally con-
structed assignment, which takes only integer values, the “loosened” version of
the first requirement is equivalent to the original one.

Construction of β∗

Let Xσ be the set of all variables which appear in Bσ, i.e. Xσ := {x0, x1, . . . , xn}
define a finite sequence of assignments βi : Xσ −→ R+

0 by induction:

Basis: β0 : Xσ −→ R+
0 with β0(x) := β̂(x) for all x ∈ Xσ.

Step: Assume that βi−1 has been defined. In order to describe the construc-
tion of βi, the following function is used:

βi(x) :=

{

βi−1(x) iff x 6= xn−(i−1)

bβi−1(x)c otherwise

Now define βi : Xσ −→ R+
0 by

βi(x) :=







βi−1(x) iff x 6= xn−i+1

bβi−1(x)c iff x = xn−i+1 ∧ ∀c(c ∈ Bσ → bJs(c)Kβ0
c − 1 < Js(c)Kβi

)

dβi−1(x)e otherwise

In words, βi describes how the value of the variable xn−(i−1) currently considered
should be modified in the default case. However, if for any condition c in Bσ,
the value of the term s(c) is decreased below the bound bJs(c)Kβ0

c − 1 as a
consequence, xn−(i−1) will be set to dβi−1(xn−(i−1))e instead (cf. Fig. 3).

Note that in each step the value of exactly one variable is changed, and
that the value changed in a specific step is not altered by other steps before or
afterwards. This implies in particular, that for variables xk with k < n− (j − 1)

βj(xk) = βj−1(xk) = . . . = β0(xk) (1)

e

bJs(c)Kβ0
c − 1 dJs(c)Kβ0

e + 1

dJs(c)Kβ0
ebJs(c)Kβ0

c

Js(c)Kβ0

Fig. 3. Position of the real number Js(c)Kβ0
and the integers bJs(c)Kβ0

c− 1, bJs(c)Kβ0
c,

dJs(c)Kβ0
e and dJs(c)Kβ0

e + 1

and that for variables xk with k ≥ n − (j − 1)

βj(xk) = βj+1(xk) = . . . = βn+1(xk) (2)

Furthermore, if β0(xn−(i−1)) is already an integer, then βi leaves xn−(i−1) unal-
tered, since for any integer k, k = bkc = dke.

Obviously all values βn+1(x0), βn+1(x1), . . . , βn+1(xn) are integers. Thus

β∗(xj) := βn+1(xj) for each j = 0, 1, . . . , n.

The ensuing tableau points up the successive constructing of β∗ from β̂:

β β(x0) β(x1) · · · β(xn−j) β(xn−(j−1)) · · · β(xn−1) β(xn)

β̂ := β0 r r · · · r r · · · r r

β1 r r · · · r r · · · r i

β2 r r · · · r r · · · i i
...

...
...

βj r r · · · r i · · · i i
...

...
...

βn r i · · · i i · · · i i

β∗ := βn+1 i i · · · i i · · · i i

The r in the tableau above stands for (nonnegative) real number and i – for
(nonnegative) integer.

The following three assertions about this sequence of assignments bundled in
the next lemma are proved by induction for each i:

Lemma 1. For all i ∈ {0, 1, . . . , n + 1} it holds:

(a) ∀c(c ∈ Bσ → Js(c)Kβi
∈ (bJs(c)Kβ0

c − 1, dJs(c)Kβ0
e + 1))

(b) ∀t(t ∈ T ∧ t− ≤ mσ → JΣσ(t)Kβi
≤ JΣσ(t)Kβ0

)

(c)
q n∑

k=0

xk

y
βi

≤
q n∑

k=0

xk

y
β0

Before starting the proof please note that (a), (b) and (c) from lemma 1
supply a finite number of inequalities. Namely (a) derives from each inequality
of V C1 two further inequalities:

Js(c)Kβi
≥ bJs(c)Kβ0

c − 1 and

Js(c)Kβi
≤ dJs(c)Kβ0

e + 1,

(b) supplies at most as many inequalities as the number of transitions in the
TPN and (c) delivers one inequality.

And as a last discussion before starting the proofs let us consider the asser-
tion of the theorem 1 more precisely and elaborate the connection to dynamic
programming. The theorem 1 solves the following problem :

Input: a TPN, a transition sequence σ = (t1, . . . , tn) and
a sequence of (n + 1) real numbers,

(β̂(x0), β̂(x1), · · · , β̂(xn)) subject to a certain finite
set V C1 of conditions.

Output: a sequence of (n + 1) integers,
(β∗(x0), β

∗(x1), · · · , β∗(xn)) subject to V C.

Thus, let now consider the solving of the output as the problem P∗, that
means:

Problem P∗: Compute a sequence of (n + 1) integers,
(β∗(x0), β

∗(x1), · · · , β∗(xn)) subject to V C∗2.

The solution strategy for the problem P∗ is a typical dynamic programming’s
one:

In the following disquisition about the connection between solving the prob-
lem P∗ and dynamic programming (DP) we use certain notions and notations
typical for both the theory of DP, and the theory of TPN. However, the meanings
of the notions state, state space, transition function etc. are different between
the two theories. The meaning of these should however be clear from the context.
Once again, DP notions and notations used here are the same as those in [5].

Thus, the target problem, now is Problem P∗.
The set of solutions of this problem zo is set of all sequences of integers

(β∗(x0), β
∗(x1), · · · , β∗(xn)) subject to V C.

1 V C is derived from the set of formulae Bσ where relation- and function symbols are
interpreted, i.e. V C is a finite set of inequalities with the variables x0, x1, . . . , xn.
Thus (β̂(x0), β̂(x1), · · · , β̂(xn)) subject to the finite set V C means that the real
numbers β̂(x0), β̂(x1), · · · , β̂(xn) satisfy all inequalities of V C. The semantics of this
is that the run σ(β̂) = (β̂(x0), t1, β̂(x1), t2, · · · , tn, β̂(xn)) is a feasible one in the
TPN.

2 V C∗ is the union of the set V C and the finite set of inequalities supply by (a), (b)
and (c). The semantics of this is that if the run σ(β̂) is feasible one in the TPN,
than the run σ(β∗) is feasible in the TPN, too, and the set of all transitions which
are ready to fire after the run σ(β∗) is the same as the set of all transitions which
are ready to fire after the run σ(β̂).

The state space (for P∗) is the set S = {0, 1, . . . , n}.
The family of the modified problems P∗(s), s∈S are obviously the problems

Problem P∗(s): Compute a sequence of (n + 1) numbers,
(βs(x0), β

s(x1), · · · , βs(xn) with
βs(x0), β

s(x1), · · · , βs(xn−s)) are reals and
βs(xn−(s−1)), · · · , βs(xn) are integers
subject to V C∗.

The existence of the assignment βs for each s is verified by lemma 1.

The set of its critical states is the singleton So = {n}.

The set of its terminal states is the singleton St = {0}.

Thus the set of non-terminal states is S′′ = S \ St = {1, 2, . . . , n}.
The T-linker LT has the form LT(z(so)) = zo = z(so).
The transition function t is defined as

t(s) := s - 1, s ∈ S′′.

And lastly the linker L is clearly given by

z(s) = L(s, {(s′,z(s′)) | s′ ∈ t(s)}), ∀s ∈ S′′

= L(s, z(t(s)))

= L(s,z(s-1)) := βs

and βs is defined as in the constuction of β∗.

Now we are going to verify Lemma 1. The subsequent example 3.1 illustrates
the use of DP for a concrete TPN.

Proof of Lemma 1:
Induction on i:
Basis: For i = 0, all three assertions are trivially true.
Step: Assume that the assertions have been justified for each of 1, . . . , i, and

consider the case i + 1. If βi(xn−i) ∈ N, then βi+1 = βi and all assertions follow
immediately from the induction hypothesis. Therefore, it may be assumed that
βi(xn−i) is not an integer.

Two cases need to be considered:

Case 1: βi+1(xn−i) = bβi(xn−i)c
Hence, it holds:

βi+1(x) ≤ βi(x) for each x ∈ Xσ. (3)

to (a):
Let b be any condition (i.e. a formula) in Bσ. If xn−i does not appear in s(b),
then Js(b)Kβi+1

= Js(b)Kβi
, and the first assertion follows from the induction

hypothesis. Hence, assume that xn−i is in s(b).

Since βi+1(x) ≤ βi(x) for each x ∈ Xσ, it is evident that

Js(b)Kβi+1
≤ Js(b)Kβi

By the induction hypothesis, Js(b)Kβi
< dJs(b)Kβ0

e + 1, so the previous in-
equality becomes

Js(b)Kβi+1
< dJs(b)Kβ0

e + 1 (4)

As βi+1(xn−i) has been set to bβi(xn−i)c, the corresponding criteria in the
definition of βi+1

∀c(c ∈ Bσ → bJs(c)Kβ0
c − 1 < Js(c)Kβi+1

)

has been fulfilled. Since βi+1 = βi+1, it follows for the condition b in partic-
ular:

bJs(b)Kβ0
c − 1 < Js(b)Kβi+1

(5)

Because b was chosen arbitrarily, the inequalities (4) and (5) combine prove
the first assertion in the case i + 1, and therefore complete the induction
step.
to (b):
The inequality (3) leads immediately to

JΣσ(t)Kβi+1
≤ JΣσ(t)Kβi

for each transition t which is enabled after the firing of σ, and because of
the induction hypothesis

JΣσ(t)Kβi
≤ JΣσ(t)Kβ0

the second assertion (b) is proved.
to (c):
The inequality (3) instantaneously yields (c).

Case 2: βi+1(xn−i) = dβi(xn−i)e
i.e. a formula c̃ exists in Bσ, such that

Js(c̃)Kβi+1
≤ bJs(c̃)Kβ0

c − 1 (6)

and thus xn−i does appear in c̃.
Further it is true in this case that:

βi(x) ≤ βi+1(x) for each x ∈ Xσ. (7)

to (a):
Let b be any formula in Bσ again. Then it holds:

bJs(b)Kβ0
c − 1 < Js(b)Kβi

ind. hypothesis

≤ Js(b)Kβi+1
because of (7) (8)

On the other hand, it is true for the formula c̃:

Js(c̃)Kβi+1
= Js(c̃)Kβi

− βi(xn−i) + βi+1(xn−i)

= Js(c̃)Kβi
− βi(xn−i) + dβi(xn−i)e

= Js(c̃)Kβi
− βi(xn−i) + bβi(xn−i)c + 1

= Js(c̃)Kβi+1
+ 1

≤ bJs(c̃)Kβ0
c because of (6)

i.e.

Js(c̃)Kβi+1
≤ bJs(c̃)Kβ0

c (9)

and therefore Js(c̃)Kβi+1
≤ Js(c̃)Kβ0

is true, too. (10)

Because of (8) and (9) assertion (a) holds for the formula c̃.
Now suppose that

Js(b)Kβi+1
≥ dJs(b)Kβ0

e + 1 (11)

which in particular implies

Js(b)Kβi+1
≥ Js(b)Kβ0

+ 1. (12)

Let jc̃ and kc̃ be the minimal and maximal variable index which appears in
s(c̃), respectively. Refering to Remark 5. above it is clear that

s(c̃) = xjc̃
+ xjc̃+1 + . . . + xn−i + xn−(i−1) + . . . + xkc̃

. (13)

Similarly, there are indices jb and kb such that

s(b) = xjb
+ xjb+1 + . . . + xn−i + xn−(i−1) + . . . + xkb

. (14)

Hence, it holds for the indices n − i, kc̃ and kb:

n − i ≤ kc̃ and n − i ≤ kb

i.e. n − kc̃ < i + 1 and n − kb < i + 1

The values of the variables according to the two assignments β0 and βi+1

are:

βi+1(xjc̃
) · · · βi+1(xn−(i+1))

︸ ︷︷ ︸

βi+1 = β0

↑ ↑
real real

βi+1(xn−i) · · · βi+1(xkc̃
)

︸ ︷︷ ︸

βi+1 6= β0

↑ ↑
int. real

(15)

According to the definition (construction) of β∗ it is clear, that the assign-
ment βi+1 changes the value of the variable xn−i and the assignment βn−r

changes the value of xr+1.
Hence, refering to (13), (10) may be rewritten as

(βi+1(xjc̃
) − β0(xjc̃

))+

(βi+1(xjc̃+1) − β0(xjc̃+1)) + . . .+

(βi+1(xn−i) − β0(xn−i)) + (βi+1(xn−i+1) − β0(xn−i+1)) + . . .+

(βi+1(xkc̃
) − β0(xkc̃

)) ≤ 0

(16)

and refering to (15), (16) may be rewritten as

(βi+1(xn−i) − β0(xn−i) + (βi+1(xn−i+1) − β0(xn−i+1)) + . . .+

(βi+1(xkc̃
) − β0(xkc̃

)) ≤ 0
(17)

Similarly, (12) and (14) yield

(βi+1(xn−i) − β0(xn−i)) + (βi+1(xn−i+1) − β0(xn−i+1)) + . . .+

(βi+1(xkb
) − β0(xkb

)) ≥ 1
(18)

Three sub-cases need to be considered:

Case 2.1: kc̃ = kb

Then it holds:

1 ≤ Js(b)Kβi+1
− Js(b)Kβ0

because of (12)

= Js(c̃)Kβi+1
− Js(c̃)Kβ0

because of (17) and 18

≤ 0 because of (10)

Clearly, this is a contradiction.

Case 2.2: kc̃ < kb

In this case the two terms s(c̃) and s(b) have the form:

s(c̃) = xjc̃
+ · · · +xn−i+ · · · + xkc̃

s(b) = xjb
+ · · · +xn−i+ · · · + xkc̃

+ · · · + xkb

Because of (1) and (2) this leads to the following values of the variables
in s(b) according to the assignments β0, βn−kc̃

and βn+1 :

s(b) =

β0=βn−kc̃

︷ ︸︸ ︷

xjb
+ · · ·+

︸ ︷︷ ︸

βi+1 = βn−kc̃

↑ ↑
real real

xn−i + · · · + xkc̃
︸ ︷︷ ︸

βi+1 6= βn−kc̃

↑ ↑
int. real

β0 6=βn−kc̃

︷ ︸︸ ︷

+ · · · + xkb
︸ ︷︷ ︸

βi+1 = βn−kc̃

↑ ↑
int. int.

. (19)

Now consider the values of the term s(b) according to the assignments
βi+1 and βn−kc̃

.

Because of (19), βo and βn−kc̃
agree on all variables with indices not

greater then kc̃. That is way inequality (17) leads to

(βi+1(xn−i) − βn−kc̃
(xn−i)+

(βi+1(xn−i+1) − βn−kc̃
(xn−i+1)) + . . . +

(βi+1(xkc̃
) − βn−kc̃

(xkc̃
)) ≤ 0

(20)

Thus (19) and (20) yield

Js(b)Kβi+1
− Js(b)Kβn−kc̃

≤ 0 (21)

But (11) and (21) then yield

Js(b)Kβn−kc̃
≥ dJs(b)Kβ0

e + 1

which contradicts the induction hypothesis for n−kc̃, then n−kc̃ < i+1.
Case 2.3: kc̃ > kb

Now the two terms s(c̃) and s(b) have the form:

s(c̃) = xjc̃
+ · · · +xn−i+ · · · + xkb

+ · · · xkc̃

s(b) = xjb
+ · · · +xn−i+ · · · + xkb

Analogosly to Case 2.2 this leads to the following values of the variables
in s(b) according to the assignments β0, βn−kb

and βn+1 :

s(c̃) =

β0=βn−k
b

︷ ︸︸ ︷

xjb
+ · · · +

︸ ︷︷ ︸

βi+1 = βn−kb

↑ ↑
real real

xn−i + · · · + xkb
︸ ︷︷ ︸

βi+1 6= βn−kb

↑ ↑
int. real

β0 6=βn−k
b

︷ ︸︸ ︷

+ · · · + xkc̃
︸ ︷︷ ︸

βi+1 = βn−kb

↑ ↑
int. int.

. (22)

Now the term s(c̃) will be evaluated by the assignments βi+1 and βn−kb

and afterwards Js(b)Kβi+1
and Js(b)Kβn−k

b
will be compared:

Because of (22), βi+1 and βn−kb
agree on all variables with indices smaller

than n − i and also agree on all variables with indices greater than kb.
That is why the inequality (18) leads to

(βi+1(xn−i) − βn−kb
(xn−i)+

(βi+1(xn−i+1) − βn−kb
(xn−i+1)) + . . . +

(βi+1(xkb
) − βn−kb

(xkb
)) ≥ 1

(23)

Hence, (23) together with (13) show that

Js(c̃)Kβi+1
− Js(c̃)Kβn−k

b
≥ 1 (24)

But (9) and (24) then yield

Js(c̃)Kβn−k
b
≤ bJs(c̃)Kβ0

c − 1

which contradicts the induction hypothesis for n−kb, then n−kb < i+1.

The assumption (11) has led to a contradiction in all three sub-cases. There-
fore the following inequality must hold:

Js(b)Kβi+1
< dJs(b)Kβ0

e + 1 (25)

Because b was chosen arbitrarily, (8) and (25) prove the first assertion (a).

to (b):
Let t be a transition which is not disabled after the firing of σ. If xn−i does

not appear in Σσ(t), then JΣσ(t)Kβi+1
= JΣσ(t)Kβi

, and JΣσ(t)Kβi+1
≤ JΣσ(t)Kβ0

follows from the induction hypothesis. Therefore, assume that xn−i does appear
in Σσ(t).

By the construction of Σσ (cf. remark 3), xn appears in every component
which is not $. Referring to remark 4, this implies that there is an index jt such
that

Σσ(t) = xjt
+ xjt+1 + . . . + xn−i + xn−(i−1) + . . . + xn (26)

Because of (19), βi+1 and βn−kc̃
agree on all variables with indices smaller

than n − i and on all variables with indices greater than kc̃.
Hence, (20) together with (26) show that

JΣσ(t)Kβi+1
− JΣσ(t)Kβn−kc̃

≤ 0 (27)

Using the induction hypothesis for n − kc̃, (27) yields

JΣσ(t)Kβi+1
≤ JΣσ(t)Kβ0

Since t was chosen arbitrarily, the second assertion (b) is also proved.
to (c):
Again, because of (19), βi+1 and βn−kc̃

agree on all variables with indices
smaller than n − i and on all variables with indices greater than kc̃ it follows
from (20):

q n∑

k=0

xn

y
βi+1

≤
q n∑

k=0

xn

y
βn−kc̃

But by the induction hypothesis for n − kc̃,

q n∑

k=0

xn

y
βn−kc̃

≤
q n∑

k=0

xn

y
β0

which, together with the previous inequality, proves the third assertion (c):

q n∑

k=0

xn

y
βi+1

<
q n∑

k=0

xn

y
β0

.

With it the lemma 1 is proved. �

Proof of theorem 1:
It is obvious, that (a), (b) and (c) lead to the validation of the assertions of

the theorem 1: It is immediately clear, that property (2) is the same as (b) and
resp. (3) is the same as (c) for setting β∗ := βn+1 .

Consider a condition c in Bσ. Since β∗ assigns only integers to the variables,
Js(c)Kβ∗ is also an integer. The first assertion in lemma 1 implies that

Js(c)Kβ∗ ∈ (bJs(c)Kβ0
c − 1, dJs(c)Kβ0

e + 1)

But the only integers in the interval (bJs(c)Kβ0
c−1, dJs(c)Kβ0

e+1) are bJs(c)Kβ0
c

and dJs(c)Kβ0
e.

r(c) is a constant symbol, which is interpreted by ω as an integer, namely
eft(t) or lft(t) for some transition t. Clearly, if for a given real number r and an
integer i, the inequalities r ≤ i or i ≤ r hold, then brc ≤ i or i ≤ brc are also
fulfilled, respectively, and the same applies to dre.

Therefore, for both possible values bJs(c)Kβ0
c and dJs(c)Kβ0

e of Js(c)Kβ∗ , it
follows that β∗ satisfies c.

Since c was chosen arbitrarily, β∗ satisfies all conditions in Bσ, so that prop-
erty (1) stated in the theorem follows from lemma 1(a) and hence theorem 1 is
proved. �

The next proposition immediately follows from theorem 1:

Corollary 1. Let z = (m, h) be an arbitrary reachable state in a TPN Z. Then
the state z := (m, bhc) is also reachable in Z.

Proof: The existence of z := (m, bhc) follows immediately from theorem 1(2).
�

The next theorem can be proved analogously to theorem 1.

Theorem 2. Let Z = [P, T, F, V, m0, I] be a TPN, σ a transition sequence of

length n, with δ(σ) = [mσ, Σσ, Bσ] and β̂ : X −→ R+
0 an assignment such that

∀c(c ∈ Bσ → β̂ satisfies c). Then there exists an assignment β∗ : X −→ N such
that:

(a) ∀c(c ∈ Bσ → β∗ satisfies c)
(b) ∀t(t ∈ T ∧ t− ≤ mσ → JΣσ(t)Kβ∗ ≥ JΣσ(t)K

β̂
)

(c)
q n∑

k=0

xk

y
β∗

≥
q n∑

k=0

xk

y
β̂

Corollary 2. Let z = (m, h) be an arbitrary reachable state in a TPN Z. Then
the state z := (m, dhe) is also reachable in Z.

Proof: The existence of z := (m, dhe) follows immediately from theorem 2(2).
�

Example 2.

Let us consider the following TPN Z2

[1,2]

[4,5]

[1,4] [3,6]
[0,5]

t
[0,2]

t t t

P

P1

3

P2

5

P

P4

3

t

t2 64 1

5

2

2

3

22

Z :2

Fig. 4. Z2 - a TPN

and the transition sequence σ = (t1t3t4t2t3). Successively it can be computed

mσ = (1, 2, 2, 1, 1),

Σσ = (x4 + x5, x5, x5, x5, x0 + x1 + x2 + x3 + x4 + x5,]) and

Bσ = {

0 ≤ x0, x0 ≤ 2, x0 + x1 + x2 ≤ 5,

0 ≤ x1, x2 ≤ 2, x2 + x3 ≤ 5,

1 ≤ x2, x3 ≤ 2, x0 + x1 + x2 + x3 ≤ 5,

1 ≤ x3, x4 ≤ 2, x0 + x1 + x2 + x3 + x4 ≤ 5,

0 ≤ x4, x5 ≤ 2, x0 + x1 + x2 + x3 + x4 + x5 ≤ 5,

0 ≤ x5, x0 + x1 ≤ 5, x4 + x5 ≤ 2

}.

It can be proved easily that the transition sequence σ is feasible, because the
run σ(τ) with

σ(τ) := z0
0.7
−→

t1−→
0.0
−→

t3−→
0.4
−→

t4−→
1.2
−→

t2−→
0.5
−→

t3−→
1.4
−→ z

is a feasible one in Z2. This is the case, since the values 0.7, 0.0, 0.4, 1.2, 0.5,

1.4 assign to the variables x1, x2, x3, x4, x5 (with an assignment β̂) satisfy Bσ.

In the next two tableaus I and II the recursive construction of integer values
for x1, x2, x3, x4, x5 according to theorem 1 (tableau I), res. to theorem 2 (II)is
shown. Since Σσ(t2) = Σσ(t3) = Σσ(t4) only Σσ(t2) is shown in the tableaus.

Actually, the tableaus I and II illustrate the solution of the input problem
by using dynamic programming. If we consider, for example, tableau I in more
detail, the following concrete problem is solved:

Input: The TPN Z2, the transition sequence σ = (t1, t3, t4, t2, t3)
and the six (6 = n + 1, i.e.n = 5) elapces of time

β̂(x0) = 0.7, β̂(x1) = 0.0, β̂(x2) = 0.4,

β̂(x3) = 1.2, β̂(x4) = 0.5, β̂(x5) = 1.4,
which are real numbers with the property that

σ(β̂) = (0.7, t1, 0.0, t3, 0.4, t4, 1.2, t2, 0.5, t3, 1.4)
is a feasible run in Z2

Output: Six elapces of time β∗(x0), β
∗(x1), · · · , β∗(x5)

which are integers, and σ(β∗) is a feasible run in Z2.

The set of transitions which are ready to fire after σ(β̂)
is the same as the set of transitions which are ready to fire
after σ(β∗)

Thus, the target problem P ∗ here is the computing of the six integers. Each
row s (s = 0, 1, · · · , 6) in the tableau I is a solution of one modified problem
P ∗(s). P ∗(s) modifies one elapse of time, which is not integer in P ∗(s− 1), to a
number which is an integer such that the modified run remains feasible.

I x0 x1 x2 x3 x4 x5 Σσ(t1) Σσ(t2) Σσ(t5)

β̂ = β0 0.7 0.0 0.4 1.2 0.5 1.4 1.9 1.4 4.2
β1 0.7 0.0 0.4 1.2 0.5 1 1.5 1.0 3.8
β2 0.7 0.0 0.4 1.2 0 1 1.0 3.3
β3 0.7 0.0 0.4 1 0 1 3.1
β4 0.7 0.0 1 1 0 1 3.7
β5 0.7 0 1 1 0 1 3.7

β∗ = β6 1 0 1 1 0 1 4.0

and

II x0 x1 x2 x3 x4 x5 Σσ(t1) Σσ(t2) Σσ(t5)

β̂ = β0 0.7 0.0 0.4 1.2 0.5 1.4 1.9 1.4 4.2
β1 0.7 0.0 0.4 1.2 0.5 2 2.5 2.0 4.8
β2 0.7 0.0 0.4 1.2 0 2 2.0 4.3
β3 0.7 0.0 0.4 2 0 2 5.1
β4 0.7 0.0 0 2 0 2 4.7
β5 0.7 0 0 2 0 2 4.7

β∗ = β6 1 0 0 2 0 2 5.0

Hence, the runs

σ(τ∗
1) := z0

1
−→

t1−→
0

−→
t3−→

1
−→

t4−→
1

−→
t2−→

0
−→

t3−→
1

−→ z

and

σ(τ∗
2) := z0

1
−→

t1−→
0

−→
t3−→

0
−→

t4−→
2

−→
t2−→

0
−→

t3−→
2

−→ z

are feasible in Z2, too.

Furthermore, it is easy to see that z = (mσ, h), res. z = (mσ, h) where h =
(1, 1, 1, 1, 4,]) and h) = (2, 2, 2, 2, 5,]).

Obviously, both sequences of every six integers 1, 0, 1, 1, 0, 1 and 1, 0, 0, 2, 0, 2
belong to the solution set z0 of the problem P ∗. It can be easily shown that the
set z0 contains more solutions in general.

3.3 Reachability graph of a TPN

In the previous subsection we saw that the integer-states are “girders” of the
net. Obviously, (it immediately follows from theorem 1) all feasible transition
sequences in a certain TPN and all reachable p-markings of the net are well
known when all integer-states are known. The set of all integer-states (IS(Z))
can be computed considering only state changes by firing and by integer time
elapsing. However, this set can be finite as well as infinite.

Though, when the TPN is bounded (i.e. the set of reachable p-markings is
finite) and finite (i.e. the lft’s for all transitions are finite) the set IS(Z) is finite,
too. Then almost all properties of such TPNs can be proved using this set. In
this case a reachability graph RG(Z) for a TPN Z can be defined in such a way
that its vertices are the reachable integer-states. The edges are defined by the

triples (z, t, z′) and (z, 1, z′), where z
t

−→ z′ and z
1

−→ z′, respectively. This
graph is finite if and only if the set of the reachable markings of the net is finite.

An enumeration procedure for computing the reachable graph of a given TPN
can be constructed easily: Starting at the initial state all integer-state successors
of a reached integer-state can be derived in a successive way (i.e. breadth-first
search):

Basis)
z0 ∈ RG(Z)

Step)
Let z be in RG(Z) already.
1. for i=1 to n do

if z
ti−→ z′ possible in Z (cf. def 4) then z′ ∈ RG(Z) end

2. if z
1

−→ z′ possible in Z (cf. def 4) then z′ ∈ RG(Z)

The reachability graph defined above can be reduced: 1st stage – all vertices
that have input and output edges labeled with time only can be ignored. Their
input edges are merged with their output edges (each input edge with each
output one) and labeled with the sum of both labels. A further reduction can
be accomplished as follow: 2nd stage – all vertices which have input edges with
time only can be ignored, too. Their input edges are merged with their output
edges labeled with the both labels (from the input and from the output edges).
However the second reduction decreases the number of vertices but the labels of
the merged edges are more complex then the remained labels. For more see e.g.
[2] or [9]. From now on we are going to use the notion reachability graph in the
sense of (double) reduced reachability graph.

Unfortunately, the reachability graph defined above is not finite if there is a
transition t with lft(t) = ∞, even though the net is bounded. Nonetheless, the
time after reaching the eft(t) is not important for t actually. Thus, when the
clock h(t) reaches the eft, i.e. h(t) = eft(t) than it is not necessary to increment
the time for this transition anymore (even though the time is going on). That is
why we modify the definition 4(c)(iii) as follows:

(iii)′ ∀t (t ∈ T −→ h′(t) :=







h(t) + τ iff t− ≤ m′ ∧ eft(t) ≥ h(t) + τ

eft(t) iff t− ≤ m′ ∧ eft(t) < h(t) + τ

iff t− 6≤ m′
).

It can be proved by induction that in a TPN a transition sequence is feasible
according to definition 4(c)(iii) if and only if it is feasible according to definition
4′. The crucial advantage of the modified reachable graph which is obtained by
using the modified definition 4′ is the property from above: it is finite if and only
if the TPN is bounded.

Furthermore, it is easy to see that in the case of a finite TPN both definitions
deliver the same set of reachable integer-states, i.e. the modified definition 4′ is
a consistent extension of definition 4 if the class of considered TPNs is extended.

The enumeration procedure for computing the reachable graph of a given
TPN defined above can be performed using the modified definition 4′. The result
is the modified reachability graph. This graph can be reduced in the same manner
as RG(Z), too.

Example 3.

Let us consider the finite TPN Z2. The full reachability graph RG(1)(Z2) as
well as the reduced reachability graphs RG(2)(Z2) (1st stage of reduction) and
RG(Z2) (2nd stage of reduction) are illustrated below:

[0,1]

[0,1]

[2,3]

t1

t

t

2

3

P

P

1 P

P3

2

4

Z :2

z zz
0

z
5

z
6

1 z2 z
3 4

t 1

t
1 t

t

2

3

3

2
1

1t

t

1 1

z
7

1

Fig. 5. Z2 and its full reachability graph RG(1)(Z2)

z zz
0

z
5

z
6

1 z2 z
3 4

t 1

t
1 t

t

2

3

3

2
1

1t

t

1

2

zz
0 1 z

3

1t

3

1 , t 1

1 , t

2

2

3 , t

2 , t

Fig. 6. The reduced reachability graphs RG(2)(Z2) and RG(Z2)

m0 = (1, 0, 1, 0) h1 = (], 0,])T h5 = (1, 1,])T z1 = (m1, h1) z4 = (m2, h4)
m1 = (0, 1, 1, 0) h2 = (], 2,])T h6 = (],], 3)T z2 = (m1, h2) z5 = (m0, h5)
m2 = (0, 1, 0, 1) h3 = (],], 0)T z0 = (m0, h0) z3 = (m2, h3) z6 = (m1, h6)
h0 = (0, 0,])T h4 = (],], 1)T

Finally, we modify the finite TPN Z2 to Z3. The TPN Z3 arises from Z2 by changing
the lft(t2) to ∞. Thus, the net Z3 is not finite. Its reduced reachability graph RG(Z3)
according to def. 4′ is to be seen bellow:

zz
0 1 z

3

1t

3

1 , t 1

3 , t

2
2 , t

Fig. 7. The reachability graph RG(Z3)

And as a last remark here note that the set of all reachable integer-states
of a certain TPN is finite, if the set of reachable markings of its skeleton – the
timeless net – is finite. The other direction is not true in general.

4 Related

Time Petri nets were introduced in the early seventies as already mentioned.
Berthomieu and Menasche in [10] res. Berthomieu and Diaz in [11] provide a
method for analyzing the qualitative behavior of the net. They divide the state
space in state classes which are described by a marking and time domain given by
inequalities. The reachability graph that they defined consists of these classes as
vertices and edges labeled by transitions. Thus, the edges of this graph contain
essential time information (systems of inequalities). This is in contrast to the
reachability graph used in this paper, which is an usual weighted digraph, and
the time appears explicitly as weights on some edges. The reachability graph
defined in [11] has also the property that the graph is finite iff the TPN is
bounded. A similar definition for a reachability graph for a TPN delivers [12].

A new direction of investigation was started at the beginning of the nineties
with the deployment of timed automata. Several authors, i.e. recently in [13],
[14] etc., translate a given TPN into a timed automata and then analyse the
timed automata in order to gain knowledge about the TPN. In this case well
proved algorithms in the area of timed automata (mainly for model checking)
can be used.

Only few papers are published connecting the theory of Petri Nets and dy-
namic programming. Mostly, they consider quantitative properties of systems,
e.g. [15].

5 Conclusions

In this paper a methodology that deploys dynamic programming in order to
reduce the state space of a TPN is used. Thus, an enumeration procedure can
compute a reachability graph for a given TPN. While the graph is a usual di-
rected weighted graph, the behaviour of the net can be studied by means of
prevalent methods of graph theory. This is especially fruitful if the considered
TPN is bounded. Now in order to accomplish quantitative analysis effective al-
gorithms can be used, e.g., for computing minimal and maximal time length of
runs, existence of a certain run with a given time length, etc.

The author would like to thank Doratha Drake for many discussions in
preparing this paper.

References

1. Merlin, P.M.: A Study of the Recoverability of Computing Systems. PhD thesis,
University of California, Computer Science Dept., Irvine (1974)

2. Popova, L.: On Time Petri Nets. J. Inform. Process. Cybern. EIK 27(1991)4 (1991)
227–244

3. Popova-Zeugmann, L., Schlatter, D.: Analyzing Path in Time Petri Nets. Funda-
menta Informaticae (FI) 37, IOS Press, Amsterdam (1999) 311–327

4. Bellman, R.: Dynamic programming. Princeton University Press, Princeton, New
Jersey (1957)

5. Sniedovich, M.: Dynamic programming. Marcel Dekker, New York (1992)
6. Bertsekas, D.: Dynamic programming and optimal control, Vol. I, 2nd edition.

Athena Scient., Belmont, Mass. (2000)
7. Popova-Zeugmann, L.: Zeit-Petri-Netze. PhD thesis, Humboldt-Universität zu

Berlin (1989)
8. Ebbinghaus, H.D., Flumm, J., Thomas, W.: Mathematical Logic. Springer-

Verlag, New York-Berlin-Heidelberg-London-Paris-Tokyo- Hong Kong-Barcelona-
Budapest (1994)

9. Popova-Zeugmann, L., Werner, M.: Extreme runtimes of schedules modelled by
time petri nets. Fundamenta Informaticae (FI) 67, IOS Press, Amsterdam (2005)
163–174

10. Berthomieu, B., Menasche, M.: An Enumerative Approach for Analyzing Time
Petri Nets. In: Proceedings IFIP Congress. (1983)

11. Berthomieu, B., Diaz, M.: Modeling and Verification of Time Dependent Systems
Using Time Petri Nets. In: Advances in Petri Nets 1984. Volume 17, No. 3 of IEEE
Trans. on Software Eng. (1991) 259–273

12. Boucheneb, H., Berthelot, G.: Towards a simplified building of time petri net
reachability graphs. In: Proceedings of Petri Nets and Performance Models PNPM
93, Toulouse France, IEEE Computer Society Press (1993)

13. Cassez, F., Roux, O.H.: Structural translation from time Petri nets to timed au-
tomata. In: Fourth International Workshop on Automated Verification of Critical
Systems (AVoCS’04). Electronic Notes in Theoretical Computer Science, London
(UK), Elsevier (2004)

14. Penczek, W.: Partial order reductions for checking branching properties of time
petri nets. Proc. of the Int. Workshop on CS&P’00 Workshop, Informatik-Berichte
Nr.140(2) (2000) 189–202

15. Yee, S., Ventura, J.: A dynamic programming algorithm to determine optimal as-
sembly sequences using petri nets. International Journal of Industrial Engineering
- Theory, Applications and Practice, Vol.6, No.1 (1999) 27–37

