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Extended Abstract
Petri nets have been used to describe and study concurrent systems for more

than forty-five years. At first glance, time and concurrence do not seem to have
much in common. But if one looks closer, the opposite is the case. There are
endless examples from different areas showing this. For this reason, a large variety
of time dependent Petri nets have been introduced and well studied. One of the
first such nets is the Time Petri net (TPN), introduced in [9].

Time Petri nets (TPN) are derived from classical Petri nets. Additionally,
each transition t is associated with a time interval [at, bt]. Here at and bt are
relative to the time, when t was enabled last. When t becomes enabled, it can
not fire before at time units have elapsed, and it has to fire not later than bt time
units unless t was disabled in between by the firing of another transition. The
firing of a transition itself takes no time. The time interval is designed by real
numbers, but the interval bounds are nonnegative rational numbers. It is easy to
see (cf. [3]) that w.l.o.g. the interval bounds can be considered as integers only.
Thus, the interval bounds at and bt of any transition t are natural numbers,
including zero and at ≤ bt or bt = ∞. at is called earliest firing time of the
transition t (short: eft(t)) and bt, the latest firing time of t (short: lft(t)) .

Every possible situation in a given TPN can be described completely by a
state z = (m, h), consisting of a (place-) marking m and a transition marking
h. The (place-) marking, which is a place vector (i.e. the vector has as many
components as places in the considered TPN), is defined as the marking notion
in classical Petri nets. The time marking, which is a transition vector (i.e. the
vector has as many components as transitions in the considered TPN), describes
the time circumstances in the considered situation. In general, each TPN has
an infinite number of states. Thus the central problem for analysis of a certain
TPN is knowledge about its state space.

In [7]it is shown that the state space can be characterized parametrically
and that knowledge about the reachable integer-states, i.e. states whose time
markings are (nonnegative) integers, is sufficient to determine the entire behavior
of the net at any point in time. In the case that some lfts = ∞, then a subset of
all reachable integer-states, the so-called set of the essential-states, expresses the
net behaviour (cf. [5]). A reachability graph RG(Z) for a TPN Z can be defined
in such a way that its vertices are the reachable integer-states or the reachable
essential-states, respectively. The edges are defined by the triples (z, t, z′) and



(z, τ, z′), τ ∈ N, where z
t

−→ z′ and z
τ

−→ z′, respectively. This graph is finite if
and only if the set of the reachable markings of the net is finite. The calculation
of a single integer-state is very easy.

Actually a reachability graph for TPN was first introduced by Berthomieu
and Menasche in [2] res. Berthomieu and Diaz in [1]. They provide a method for
analyzing the qualitative behavior of the net based on the computing of certain
subsets of reachable states, called state classes. However, the essential-states
method is exponentially better in worst case, but in the case that in a TPN
the concurrence is rather low, then the state-classes method compute a smaller
reachability graph.

A further way to analyze a TPN is the translation into a timed automaton
and then to apply the analyzing algorithms used there (cf. [8]).

The liveness definition for TPNs is a consistent expansion of the liveness
definition for classical PNs.

Definition 1. Let Z be a TPN with initial marking m0. Furthermore let m be
a reachable (place-) marking and t be a transition in Z. Then

(1) t is live in m iff for each (place-) marking m′ which is reachable in Z from
m there exists a further (place-) marking m′′ reachable in Z from m′ and t

is enabled in m′′.
(2) m is live in Z iff all transitions in the TPN are live in m.
(3) Z is live iff m0 is live in Z.

In [3] it is shown that there is no correlation between the livenes behaviour
of a TPN and its skeleton (timeless PN), in general. However, a structurally
restricted class of TPNs such that each TPN of this class is live iff its skeleton
is live can be given. The class is introduced in [4] and a sketch of the proof can
be found there. The complete proof is given in [6].

The class contains four restrictions: A TPN Z belongs to this class iff

(1) the skeleton of Z is a Free-Choice PN,
(2) the skeleton of Z is homogeneous one,
(3) for each place p in Z it holds: Min(p) ≤ Max(p), where Min(p) is the

greatest eft of all post-transitions of p and Max(p) is the smallest lft of all
post-transitions of p,

(4) all lfts are greater (and not equal) than zero.

The skip of every one of the restriction (2), (3) or (4) leads to the violation of
the liveness behaviour equivalence between the TPN and its skeleton. The same
is true when (1) is skipped and the skeleton is an arbitrary PN, but not at least
Extanded Simple net

In this paper we prove, that the restriction (1) can be replaced by a more
weakly restriction (1′), namely:
(1′) the skeleton of Z is an ES net.

1 Every Free-Choice PN is an Extended Simple net, as well. The reverse does not hold
in general.



Unfortunately, the old proof cannot be generelised for (1′) and, thus, the new
proof bases on new results. First, all places are classified dependend on their sets
of shared post-transitions. It is shown that this classification is unique for ES
nets. Afterwards, all transitions are classified using the classification of their
pre-places. Furthermore, the relation conflict between two transitions defines an
equivalence relation in the set of all transition in an ES net. In a natural way a
relation dominant can be also introduced in each set of the transitions of every
TPN. All these make the structure of an ES net more transparent. Eventually
the notion a place is live/dead is defined. Then, after proving six lemmata the
proof is done by contradiction.
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