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Abstract— Ideally, a system’s design starts with a formal
model. However, in the real world, many systems are designed
without a formal model in mind. For these systems, it is hard
to show that a formal model meets the informal design.

In this paper, we demonstrate on the example of the com-
posable Message Scheduled System (MSS) architecture how to
bridge the gap between a rather informal description and a for-
mal Timed Petrinet model. We discuss, how modeling can be
done in a “natural” way, so that the mapping between system
and model components and the composition of model compo-
nents is rather obvious. Also, we introduce the tool MGen that
support the automatic generation of Petrinet models for the
MSS architecture.

I. Introduction

IT is an old idea to handle the complexity of systems
by composing them out of smaller components. We

are interested in systems with non-functional proper-
ties. Non-functional properties such as reliability, tem-
poral behavior or performance are much harder to deal
with than functional properties.

The Message Scheduled System (MSS) architecture
[1] is claimed to be a safely composable architecture
with respect to temporal behavior, i.e., real time. It
allows the composition of control systems, as used for
plant automation or traffic control. MSS components
are described by parameters that are close to imple-
mentation and rather informal, see Section II. Cur-
rently, we prove the composability of this architecture
as defined in [2], using Timed Petrinets. For a spec-
ification of an architecture such as MSS, we have the
following requirements:
R1 The specification should reflect the system and its
parts in a “natural” way.
R2 We need to express concurrency, priorities and
time dependence.
R3 The specification of a concrete MSS system should
be “composable” itself, meaning that it can be con-
structed out of specification pieces according to the
components inside the architecture
R4 It should be possible to generate (“compose”) the
specification of a concrete system automatically out of
a system description.
R5 Tool support for specifying and proofing to cope
with the complexity of large systems is essential.
Please note, that we have to deal with two kinds of
composition: At the system level, MSS is a composable
architecture that allow to decide at runtime whether or

not a new component can be introduced to the system.
On the other hand, we want to compose the model.
That allows us to bridge the gap between the infor-
mal but “obvious” description and the rather complex
formal model.

In this paper, we discuss the requirements R1, R4,
and R5. For a discussion of R2 and R3, see [2].

A. Modeling

To prove properties of a system one need to describe
the system in a formal way. However, there is always a
gap between the formal model and the real world. The
usually suggested way (e.g., [3])to overcome this gap
is to start the system’s design with the formal descrip-
tion. Thus, both can be archived, the formal reason-
ing within the formal description, and (if there are the
suitable tools) the derivation of an implementation.
The process of designing, checking and implementing,
we aim for, is shown in Figure 1.

Unfortunately, most systems (so the MSS architec-
ture) are designed without a formal specification in
mind. In this case, deriving a formal specification from
the system’s specification (modeling) is rather hard,
since there are no means to prove the correctness.

The proper way here is to make the model as close as
possible to the actual system description. Additional,
the model should reflect the system in a “natural” way.
Overall, the translation from the system’s actual de-
scription to the model should be “obvious”.

Even the easiest translation rules may lead to a com-
plex model, when the system is quite complex itself.
To keep the model obvious, we have to model small
parts, and compose these parts in an obvious way.
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Fig. 1. Formal derivation of system properties

There is no general way to derive a formal model (FM)
from an informal description (ID) and show its obvi-



ousness. This is especially true for modeling of non-
functional properties. However, on the base of the ex-
periences with modeling of functional properties, we
can identify some “rules of thumb”:
C1 Entities in the ID should also be separately iden-
tifiable in the FM.
C2 Properties of entities in the ID should be directly
mapped to attributes of entities in the FM.
C3 Composition in the FM should reflect composition
in the ID and vice versa.

B. Related Work

Almost every aspect of “real life” has been already
modeled, and a big range of models are based on
Petrinets. But still, creating FM from ID seems to
be rather an art than a well-understood process, and
often lots of loops and refinements are required during
the process of model creation.

However, there are some approaches to allow an au-
tomatic model generation. One approach is the use of
semantically complete implementation languages like
SDL or ALGOL. E.g., an automatic transformation
from SDL’92 into a certain class of Petrinets is stud-
ied in [4]. In fact, this transformation does not take
account of all features of the SDL’92 and therefore the
results of the analysis have to be proved on the original
(SDL) system.

There are lots of approaches in the object-oriented
area. Almost all of them focus on functional proper-
ties. An overview about object-oriented modeling one
can find, e.g., in [5].

Frequently, the opposite way is gone: A implemen-
tation is derived from a FM. Currently, workflow ap-
proaches are quite popular. In the area of design of
asynchronous circuits and systems exist tools, which
synthesize self-timed digital circuit specified in terms
of PN (comp. [6]). These tools can be consider as a
generator: PN → real system.

An interesting approach by modeling multi agent
systems with Reference Nets is shown in [7]. Refer-
ence Nets are timeless with nets as tokens (comp. [8]).
Further similar studies are referred in [7].

The approach that is probably the closest to our is
by [9]. The method proposed their is possible language
independent. The paper introduced among other
things a Petrinet generator which derives a (Timed)
Petrinet from a program automatically. The net in-
volves the time consumption of any action and the data
dependencies among conflict decisions. Using Petrinet
analysis these problems are studied.

The remainder of the paper is organized as followed:
Section II describes the composable MSS architecture.
Section III discusses, how MSS components can be
modeled by Timed Petrinets and how this components

can be composed in such a way, that that it allows a
easy derivation from the informal description. In Sec-
tion IV, we describe the MGen tool. It automatically
generates TPN models of systems within the MSS ar-
chitecture. Finally, in Section V we introduce a new
class of Petrinets that allow to describe systems such
as MSS systems in an even more “natural” way, fol-
lowing requirement R1.

II. Casestudy of an Architecture: Message

Scheduled System (MSS)

Our proposed architecture is called Message Sched-
uled System (MSS) [1] and is targeted to the domain
of distributed embedded real-time systems. Such sys-
tems are widely used in cars, air planes, automation
in industry and buildings. They have hard temporal
requirements (violations may result in catastrophes)
and profit in practice from the advantages of compos-
ability. E.g., an extension of an intelligent building or
a car’s computer system with components whose prop-
erties are unknown at design time is a very important
issue.

In today’s systems such an extension would require
an expensive reconfiguration of the whole system. Es-
pecially, that includes components that not interact
directly with the additional component. The result of
that expensive process may be that an extension is not
possible at all. The composability approach introduces
cost reduction and predictability: The composition is
done during runtime without any need to redesign any
part of the system and even without influencing exist-
ing system parts. Especially, this process also allows
decisions whether the composition is possible or not
without actually starting a redesign process. E.g., the
addition of a new kind of navigation system to a cars
computer systems does not influence the brake control.

Here we only present few details on MSS, its descrip-
tion can be found in [10], [1], [2].

A. The Basic Idea of MSS

The idea of MSS is to map all decisions about ad-
dition of components (composability decisions) onto
schedulability tests at different levels. The correspond-
ing schedulability decisions are based on known and es-
tablished scheduling techniques like RMA or EDF [11].

Based on the temporal behavior of a component
or a system in MSS which can be described without
including all details, it is sufficient to use the infor-
mation about these three scheduling levels and hide
parameters of composed components inside systems
parameters such as overall load. It is clear that not
each node of the distributed system needs detailed
knowledge about the whole system with all its nodes
— the summarized parameters such as load are suffi-
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Fig. 2. Message Scheduled System

cient. The nonfunctional compatibility of two compo-
nents — which means the test whether the components
or “parts” are composable — can be calculated very
easy (three schedulability tests) in polynomial or linear
time. The functional compatibility is not an issue be-
cause this is well researched over many year (concepts
such as object orientation, modularization, component
systems such as CORBA [12]).

MSS is aware of three different types of components
(Figure 2): The smallest one is a task which is in MSS
an execution unit that produces a set of outgoing mes-
sages from a set of incoming messages. Considering
such a task as component is useful with respect to
composability because in many cases it is sufficient to
add a new task to get new functionality.

The next type of components are nodes with tasks
running at them. A node in MSS is a machine that
is able to execute tasks and to manage the message
traffic of that tasks. From the composability viewpoint
a node with its tasks is composed from an empty node
and the tasks.

The third type of components in MSS are systems
consisting of nodes connected via a network (specified
by MSS). Such a system is built by composition from
node-components or from other systems or both.

The “glue” between all that are messages that are
sent and received in a publisher-subscriber semantic
by tasks using the node’s MSS-scheduler as dispatch-
ers and the communication system as backbone. Each
task has a special message (called “wake up message”),
and the arrival of a message of that type triggers the
execution of the task. Minimal interarrival times of
messages of a type are known and part of composabil-
ity decisions (this restricts the bandwidth usage).

B. MSS and Composability

MSS uses scheduling techniques at three different
levels to guarantee deadlines. The scheduling parame-
ters are derived from component descriptions (e.g., ex-
ecutions times, minimal interarrival times). Based on
a set of component descriptions the calculation of the
three schedules makes it possible to decide whether the
components are composable or not. The complexity of

that calculation is linear with the number of interfaces
— that means linear with the number of components
because the number of interfaces per component is lim-
ited in practice.

Existing knowledge from preceding composability
decisions can be re-used because of the possibility to
calculate a new schedule based on the old one with
less expense. The existing description of a schedule
can be summarized into a smaller set of system pa-
rameters (e.g., load at nodes) which is a real subset of
the system configuration information.

The description of the composed system does also
contain information about the structure of composi-
tion (e.g., which components are connected and how)
so that system-wide properties (that are not known at
subsystem level) like end-to-end-times can be calcu-
lated in linear time.

Based on the assumption that all the schedules (at
three levels) are independent this ensures that the new
(composed) system has the property of correct tempo-
ral behavior, meaning that all deadlines are met. This
implies that MSS is composable with respect to tem-
poral behavior.

C. Component Descriptions

From the composability viewpoint a small set of pa-
rameters describes the (functional and nonfunctional)
behavior of a component. These parameters include
(for a task component) the types of messages the com-
ponent uses, the minimal interarrival times for them,
the execution time for local execution, the minimal in-
terarrival time for local execution and the priorities
both for messages and execution.

It is also possible to express such a parameter set in
a language similar to IDL [12] as introduced in [10], or
in an XML-based approach.

According to Section I this (parameter set, language
representation) introduces an rather informal descrip-
tion of a component, or, if we look at a composed
system, an informal description of the system.

What we need now is a technique to specify the
behavior of MSS formally, and a method to compose
complex system descriptions out of that informal pa-
rameter set in a “natural” way because modeling be-
comes very complex if system size grows.

III. The Specification of MSS Using Timed

Petrinets

We have decided to specify our architecture using
Timed Petrinets (TPN) [13], because they allow us to
specify time durations and priorities which both are
needed for MSS.

For more information on that kind of Petrinets and
considerations about other techniques applicable to
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Fig. 3. TPN description of a single-node MSS

MSS refer to [2].
Figure 3 shows the specification introduced in [2].

Here we concentrate on the composability issues of
that specification and explain only few introducing de-
tails of the specification itself — for the whole expla-
nation refer again to [2].

A. Specification of MSS Tasks

The basic building block in MSS is the task, so we
start specifying a tasks behavior:

The execution of a task is triggered by the arrival
of a wake up message (or a message from an external
source such as sensors or buttons) that is delivered to
the task via the MSS scheduler. This arrival triggers
the execution of the task which can be interrupted by
the execution of other tasks (preemptive scheduling).
The execution itself lasts for the worst case execution
time (WCET) of the task, meaning that the task occu-
pies the node’s processor for no longer than that time.
The time slice of scheduling (shortest interval between
two task switches) is the quantum which can be seen as
an atomic time interval in the system. Once the exe-
cution is finished the task produces an output message
that is send by the MSS scheduler via the communi-
cation medium (and can trigger the execution of other
tasks).

In Section II we introduced the concept of three
scheduling levels which represent three different points

of resource sharing. Here we focus on two of them that
are explained above — the processors of nodes and the
communication medium. The model of a task must in-
clude both resources and must represent the resource
sharing between different tasks.

Therefore, we use places for the medium and the
nodes, with a capacity of one and one token at the
initial marking.

Besides tasks and the mentioned resources the speci-
fication needs another building block called generator.
Generators address the startup problem: Because of
MSS’s structure a task can only be started if a mes-
sage arrives, and a message can only arrive if it was
sent, and it can only be send if there was a task that
needed to be started before. Therefor we introduce
generators as a principle to generate messages. In the
real world this maps to the mentioned external mes-
sage sources such as sensors or buttons. More specific,
with the generators we want to produce messages with
given minimal interarrival time (that is a fundamental
requirement of MSS — see also [10]).

The following explanation of the specification refers
to Figure 3. This figure shows a system with n tasks
running at a single node. As one can easy see, the
usage of multiple node places (marked Node in the
figure) introduces multiple nodes in a natural way.

The generators are modeled by the part of the net
shaded middle grey in the upper left of the figure. This



generates token with a given minimal interarrival time
and therefor specifies a behavior described above.

The box right from the generator models a task that
shares the places “node” and “medium” (light-grey in
the bottom) with other task. One of the main ideas
behind that specification is that tokens are generated
if one of the temporal requirements is not fulfilled.
These tokens trigger the dark-grey shaded part of the
net (call “instrumentation”) that brings the whole net
into a dead state (by “stealing” token from the initial
generator places). That mechanism allows to check
the specification for “dead reachable states” to prove
the correctness of the specified system (if the system is
correct, no dead state is ever reached). Therefor this
specification is not only a specification, but allows also
the analysis of behavior.

B. Composition of a System Specification

The specification parts introduced so far are the ba-
sic building blocks of each MSS specification. Gener-
ator, task, the places for medium and node and the
instrumentation are simple combined to specify a sin-
gle task running at a single node (this becomes an-
other kind of building block). It is clear that the fur-
ther composition of a system specification is done in a
way that all tasks that run on the same node share a
node-place, and all tasks of the system share the single
medium-place. Such a composed system specification
may look like the whole net shown by Figure 3. But,
composition of a system needs more, because so far
only generated messages can be represented and mes-
sages are only send but not received.

The second part of composition combines outputs
and inputs, meaning that there may be tasks without
a generator, they begin with place P i

2 and have a direct
arc from the mediumj-transition of another task —
this models the arriving of messages. It is clear that
MSS’s publisher-subscriber semantic can be modeled
that way and that the remaining task specification is
not influenced by dropping the generator.

IV. Tool Support

The composition rules allow to build a net specify-
ing a concrete MSS configuration. This is possible be-
cause of the composable structure of the model — the
“parts” are clear distinguished in function and have
simple interfaces (shared places or arcs between one
parts transition and others part place or vice versa).

The resulting net (specifying a large MSS instance)
can be analyzed using the tool INA [14] in a very easy
way: It is only necessary to search for dead reachable
states in the net because those represent missed dead-
lines (see “instrumentation” above). If no such state
exists the system specified by that net will fulfill all

temporal requirements.
The composition rules for a Timed Petrinet model of

a concrete MSS-instance are simple and the interfaces
between the different building blocks of the complex
specification are simple — only single arcs with no
further places or transitions. Therefore such a specifi-
cation can be build automatically based on an abstract
system description following the ideas from [10] (intro-
duced in Section II). We have developed such a tool,
MGen, and are able to automatically build MSS mod-
els represented by Timed Petrinets. Those, this tool
implements a rule-set to specify each possible config-
uration of MSS. With other words, we compose the
system specification out of basic building blocks using
the informal (or parametric) description as composi-
tion control. This is possible because of the “natural”
modeling and its composable structure — according
to Figure 1 we compose a model.

Moreover, we have expanded this technique into an
automatic model checker for MSS: MGen composes
the net specification out of the (informal) description
and a version of INA slightly modified by us is used to
analyze this net for dead reachable states. Thus, our
technique allows us to have an automation not only for
the modeling, but also for model checking based on an
parametric and rather informal description.

V. Next Steps

We have shown, how to compose a formal Timed
Petrinet model from an informal description in a “nat-
ural” way. However, some components like the gener-
ator could be modeled even more “naturally” if we
could use time intervals instead of durations.

There is a class of Petrinets that utilize time in-
terval: Time Petrinet (also called interval Petrinets,
IPNs). Time Petrinets have no notion of priorities,
which is needed to model state-of-the art real-time
systems. One can model priorities with IPNs, but de-
scribing priorities with Time Petrinets consumes time
and this leads to a time discrepancy between the real
protocol and its model.

In order to overcome this disadvantage, we have de-
fined a new class of Petrinet. It is a Time Petrinet
where priority functions can be assigned. This func-
tion associates a priority, a natural number, to each
transition. The dynamic behavior of the net is defined
similar to the dynamic behavior of the Time Petrinet.
Changes from a state into another by elapsing time are
done in this new kind of time dependent nets in the
same way as in the net without priorities. A transition
can fire, when it can fire in the net without priorities
and additional, the transition has the highest priori-
ties between all fire-able transitions. We call this new
kind of Petrinet Priority Interval Petrinets, or π-PNs



for short.
We have got already an implementation of π-PNs

for INA. It allows us to model MSS in a even more
“natural” way. Currently, we adapt the MGen tool to
generate models on the base of π-PNs.

VI. Conclusions

Within this paper, we have discussed, how to derive
a formal Timed Petrinet model from a rather infor-
mal description. On the example of the MSS architec-
ture we have shown, that a proper architecture design
supports the automatic generation of a formal model,
even if the architecture is not developed with a formal
model in mind.

We have introduced our tool MGen which allows an
automatic model creation that can be used as an input
for a checker such as INA. Using MGen, we closed the
tool chain that allow us to reason about implementa-
tion properties from an informal description.

In addition, we have suggested π-PNs, that allow
us an even more “natural” way of modeling real-time
systems.

Although we have demonstrated how a formal model
can be derived from an informal description by an “ob-
vious” mapping, the concept of obviousness in proofs
is rather weak. If possible, the preferable way is to
start with the formal model.
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