
Quantitative Evaluation of Time Petri Nets and

Applications to Technical and Biochemical Networks

Louchka Popova-Zeugmann
Department of Computer Science

Humboldt University, Berlin, Germany

popova@informatik.hu-berlin.de

Monika Heiner
INRIA Rocquencourt, Projet Contraintes

BP 105, 78153 Le Chesnay Cedex - France

monika.heiner@inria.fr

on sabbatical leave from BTU Cottbus

Extended Abstract

1 Introduction

Among those methods, which aim at model-based system analysis, different kinds of Petri net
based frameworks have attracted a lot of attention in the last three decades. At the beginning,
only qualitative (i. e. time-free) models have been discussed. But because of the crucial impact
of timing issues on concurrent systems, special emphasis has been laid more and more on the
incorporation of time-dependent criteria, resulting into the consideration of quantitative models.
Typical claims in a time-dependent system are meeting of deadlines, ensuring of response times,
minimizing total execution times, or feasibility of a certain sequence of actions under given time
constraints. If the evaluation of a model of a given system reveals undesirable behaviour, then it
might be of interest to deeper understand the influence of time; to be more exact: Is it possible to
change some time restrictions to avoid the undesirable behaviour, and if so, what are the new time
restrictions. Obviously, answers to all of these questions above are important for the application
of time-dependent models.

One of the standard concepts of time-dependent Petri nets is the one, where each transition gets
a continuous time interval, specifying the range of the transition’s reaction time. This extension
of classical Petri nets is well-known under the term Time Petri nets. Its popularity might also be
caused by the easiness to incorporate working times. In this paper we present algorithms allowing
quantitative analyses of this kind of time-dependent system models.

The crucial point of any exhaustive analysis is an adequate state space representation. For this
purpose we exploit basically two ideas of state space reduction: parametric state description and
discretisation of the state space. Hereby, we consider algorithms which work for arbitrary systems,
i.e., bounded as well as unbounded ones, and algorithms, which are suitable for bounded systems
only. The first class of algorithms exploits the parametric description of the state space. The
solutions of the problems are traced back to solutions of systems of linear inequalities or of linear
programs, respectively. The second class takes advantage of the discretely reduced state space - the
set of all reachable integer states. If this set of essential states is finite, then the reachability graph
can be constructed. This allows to re-use efficient graph algorithms, which have been developed
for directed weighted graphs.

Altogether, we introduce eight problems, which are characterised by their input/output relation,
among them the ones mentioned above. To the best of our knowledge, these problems have not
been solved anywhere else in this general setting. This paper is meant to give an overview of
quantitative evaluation approaches. Therefore we restrict ourselves to a sketch of the solution
ideas. To illustrate possible applications of the introduced solvable problems, we refer to special
analysis questions, arising during the evaluation of technical as well as biochemical systems. The
mentioned application scenarios are not supposed to be exhaustive.

This paper is organised as follows. At first we recall the concept of Time Petri nets and
introduce some basic notions and fundamental properties of our state space reduction principles.
Afterwards we sketch the type of time-dependent models we get, when applying Timed Petri nets
for modelling technical or biochemical systems, respectively. Having that, we present in the next
and main section eight problems and demonstrate how to solve them. We conclude with a summary
of our contributions.

2 Basic Concepts

2.1 Basics

Time Petri Nets (TPN) are derived from classical Petri nets by assigning to each transition t a
(continuous) time interval [at, bt]. Here at and bt are relative to the time, when t was enabled most
recently. When t becomes enabled, it can not fire before at time units have elapsed, and it has to
fire not later than bt time units, unless t got disabled in between by the firing of another transition.
The firing itself of a transition does not consume time. So, the given time intervals specify reaction
times for the transition firings. The time intervals are designed by non-negative real numbers, but
the interval bounds are given as nonnegative rational numbers. Rational numbers are sufficient to
reflect any measuring accuracy required by a given application domain. Moreover, to support the
normalisation of different time scales within a model, zero and ∞ are allowed as interval bounds,
and it holds for obvious reasons at ≤ bt or bt = ∞.

Definition 1 (Time Petri net) The structure Z = (P, T, F, V, mo, I) is called a Time Petri net
(TPN), if:

• S(Z) := (P, T, F, V, mo) is a Petri nets, i.e.
P, T, F are finite sets with P ∩ T = ∅, P ∪ T 6= ∅, F ⊆ (P × T) ∪ (T × P),
V : F −→ N+ (weight of the arcs), mo : P −→ N (initial marking).

• I : T −→ Q+
0 × (Q+

0 ∪ {∞}) and I1(t) ≤ I2(t) for each t ∈ T , where I(t) = (I1(t), I2(t)).

The Petri net S(Z) is referred to as the skeleton of Z. I is the interval function of Z, I1(t) and
I2(t) are the earliest firing time of t (eft(t)) and the latest firing time of t (lft(t)), respectively.
A transition t is called immediate, if eft(t) = lft(t) = 0. A TPN is called strong, if there does
not exist an infinite latest firing time in the net, i.e., I : T −→ Q+

0 × Q+
0 . In a strong TPN, each

transition is forced to fire within a finite time interval.
It is not difficult to see (cf. [Pop99]) that considering TPNs with I : T −→ N × (N ∪ {∞})

will not result in a loss of generality. Therefore, only such time functions I will be considered
subsequently. Furthermore, two transitions are said to be in a (structural) conflict, if they share a
pre-place.

Example 1 (An arbitrary Time Petri net)

2

2

[2, 4]

[2, 3][1, 5]

t1 t4

t3

[0, 3]

t2 p3p2

p1

Figure 1: Z1 - a Time Petri net. The transitions t2 and t3 are in conflict.

Every possible situation in a given TPN can be described completely by a state z = (m, h),
consisting of a (place) marking m and a transition marking h. The (place) marking (p-marking),
which is a place vector (i.e., the vector has as many components as places in the considered TPN),
is defined as the standard marking notion in classical Petri nets, cf. Definition 1. The time marking
(t-marking), which is a transition vector (i.e., the vector has as many components as transitions
in the considered TPN), describes the current time circumstances in a certain situation. More
exactly, each component of the time marking is either a real number or the sign ♯. The real
number indicates that the corresponding transition is enabled and gives the time elapsed since the
latest enabling, whereas ♯ means that the corresponding transition is disabled.

A transition t is enabled, if all its pre-places carry sufficiently many tokens. This can conve-
niently be tested, using the place vector t− with t−(p) := V (p, t), if (p, t) ∈ F , and 0 else, for each
place p.

Definition 2 (state) Let Z = (P, T, F, V, mo, I) be a TPN and h : T −→ R+
0 ∪{#}. z = (m, h) is

called a state in Z, if m is a reachable marking in S(Z), ∀t ((t ∈ T ∧ t− ≤ m) −→ h(t) ≤ lft(t))
and ∀t ((t ∈ T ∧ t− 6≤ m) −→ h(t) = #).

The state zo := (mo, ho) with ho(t) :=

{
0 iff t− ≤ m0

iff t− 6≤ m0
is set as the initial state of the

TPN Z.

Thus, the initial state in Z1 , compare Fig. 1, is z0 = ((0, 1, 1)
︸ ︷︷ ︸

p−marking

, (0, ♯, ♯, 0)
︸ ︷︷ ︸

t−marking

).

The interpretation of the notion “state” is as follows: within the net, each transition t has a
clock h(t). If t is enabled at a marking m, its clock h(t) shows the time elapsed since t became
most recently enabled. If t is disabled at m, the clock is switched off (indicated by h(t) = #). The
state z = (m, h) is called an integer state, if h(t) is an integer for each enabled transition t in m.

The behaviour of a TPN is defined by changing from one state into another by firing a transition
or by time elapsing. A formal definition can be found, e.g., in [Pop89], [Pop99], [Pop07a]. The
consideration of all possible state changes leads to the following definition.

Definition 3 (reachable state, state space) Let Z = (P, T, F, V, mo, I) be a TPN.

(a) The state z = (m, h) is called reachable in Z (starting at z0), if there exist states z1, z
′
1, ..., zn, z′n,

transitions t1, ..., tn and times τi ∈ R+
0 , i = 0, 1, ..., n and it holds

z0
τ0−→ z1

t1−→ z′1
τ1−→ z2

t2−→ z′2
τ2−→ . . . zn

tn−→ z′n
τn−→ z.

(b) The set RSZ of all reachable states in Z (with the given initial state) is called the state space
of Z. The set of states, reachable in Z starting at a given state z′, is denoted by RSZ(z′).

The sequence of transitions σ = t1 . . . tn can fire in Z starting at z0, because there is a sequence
σ(τ) = τ0t1τ1 . . . tnτn. We call such a transition sequence σ a feasible one (or a firing sequence for
short). The sequence σ(τ), which is a concrete execution of σ in Z, is called a (feasible) run of
σ. It is clear that in a given TPN the state changes generally consist of alternating series of time
elapsing and transition firing. Obviously, for a given run the transition sequence is well defined,
and for a given transition sequence there are infinitely many runs in general.

It is easy to see that the set of all reachable p-markings in a TPN Z (i.e., the p-marking space)
is the set {m | (m, h) ∈ RSZ}, which will be denoted by RZ . The p-marking space of Z is a
(not necessarily proper) subset of the reachable markings of the skeleton S(Z). Therefore, a firing
sequence in the skeleton S(Z) is not necessarily a firing sequence in Z. The set of p-markings,
reachable in Z starting at a given p-marking m′, is denoted by RZ(m′). A TPN is called bounded,
if its set of reachable p-markings is finite, otherwise unbounded.

It is clear that the state space of a TPN is in general infinite and dense in terms of the time.
On the one hand the set of reachable p-markings can be infinite. On the other hand, for a fixed
p-marking the set of corresponding t-markings can be infinite. In the next subsection we consider
two approaches for concise state space representations.

2.2 State Space Reduction

The central problem for the analysis of a given TPN is the adequate knowledge of its state space.
We apply two approaches to get a finite description of infinite state spaces.

It can be shown that - despite the continuous nature of the time intervals - it is sufficient to
pick up some “essential” states only to determine the entire behaviour of the net at any point in
time so that qualitative and quantitative analyses remain possible. These essential states are the
integer states. While the calculation of a single integer state is easy, cf. subsection 4.3, the proof
that the knowledge of the integer states is sufficient for analysing a TPN is much more difficult.
This problem is divided into a finite number of problems, which are solved recursively in a manner
typical for the methodology of dynamic programming, see [Pop89] and [Pop99].

The state space can also be characterised parametrically, which has been introduced for strong
TPN in [Pop99], and for arbitrary TPN in [Pop07a]. We sketch here the key ideas.

Let Z be an arbitrary TPN with the initial state z0 = (m0, h0). Let σ = t1 . . . tn be a feasible
transition sequence in Z and let σ(τ) = τ1t1 . . . τntn be a corresponding run. Obviously, after
firing σ(τ) a certain reachable state zσ(τ) is obtained. When the times τ = τ1 . . . τn are given
parametrically by X = x1 . . . xn, then the reached state zσ(X) = (mσ(X), hσ(X)) is a parametric
one. It is easy to see that the p-marking mσ(X) does not depend on X , it depends only on σ.
However, the t-marking hσ(X) depends on σ as well as on the parameter X . Furthermore, it is
clear that for a concrete value of X with the additional condition that the corresponding run is
feasible, the t-marking hσ(X) is well-defined. Hence, an unique parametric state zσ := zσ(X) can be
assigned to each transition sequence σ, i.e., we can consider a function from the set of all transition
sequences in Z into the set of all parametric states, syntactically appropriate to Z. In order to
describe the feasibility of σ, we consider the parametric state zσ together with a set of conditions
Bσ for the values of X . Actually, Bσ is a system of linear inequalities. If Bσ is solvable then σ is
feasible in Z.

The formal definitions can be found in [Pop99]. Here we restrict ourselves to an example for a
parametric state reached in a TPN after firing a certain transition sequence.

Example 2 (parametric state description)
We consider Z1 again (cf. Fig. 1) with the parametric run x1t4x2t3x3t4x4. The parametric
state zσ, which is reached after firing the transition sequence σ := t4t3t4 with the time variables
X = x1x2x3x4, is:

zσ = { ((1, 1, 0)
︸ ︷︷ ︸

mσ(X)

, (x1 + x2 + x3 + x4, ♯, x4, ♯)
︸ ︷︷ ︸

hσ(X)

) |
2 ≤ x1 ≤ 3, 2 ≤ x2 ≤ 4, 0 ≤ x1 + x2 ≤ 5,

2 ≤ x3 ≤ 3, 0 ≤ x1 + x2 + x3 ≤ 5,

0 ≤ x4 ≤ 4, 0 ≤ x1 + x2 + x3 + x4 ≤ 5
︸ ︷︷ ︸

Bσ

}.

3 Applications

In this section we motivate the application of Time Petri nets and sketch the type of time-dependent
models we get, when applying them for modelling technical or biochemical systems, respectively.

Please note, our time model provides immediate transitions, although in reality nothing hap-
pens without consuming time. However, immediate transitions help to keep interval boundaries
small. Often, system activities may be classified into activities with significant time consumption
and those with non-significant (much less) time consumption. Without immediate transitions, such
a difference had to be modelled by an appropriate absolute difference of time values. With imme-
diate transitions, all time values can be scaled down relatively to a suitable time axis. Moreover,
immediate transitions allow a straightforward incorporation of the working time concept.

3.1 Technical Systems

Technical systems are modelled at various abstraction levels, ranging from very fine-grained models,
where transitions correspond to machine instructions, up to coarse-grained models, where transi-
tions may represent subtasks in a production process plan (e.g., given as precedence graph). While
fine-grained models are more popular for dependability engineering of safety-oriented systems (e.g.,
reactive manufacturing systems), see e.g. [Hei97b], coarse-grained models are commonly deployed
for task scheduling under given resource constraints, see e.g. [Pop05b].

Dependability engineering of software-based systems needs to combine qualitative as well as
quantitative analyses. As example let us consider the safety analysis of a software controller for
pushing machines moving pieces within a production line [Hei97a]. At first, safety properties ex-
pressible in terms of legal local states have to be analysed, e.g., mutually exclusive use of shared
regions by two adjacent pushing machines, which can be done using qualitative Petri nets. After-
wards, safety properties in terms of explicit error states and explicit error transitions into them
might be of interest, e.g., if we want to show that a machine motion is stopped fast enough, before
the machine has been moved beyond a given limit. Obviously, we need now a suitable notion of
time in order to reason whether something happens fast enough. To describe and analyse the
unreachability of such explicit error states (or equally - that the explicit error transitions are dead
at the initial marking), we need the reaction time model.

Independently of the chosen abstraction level, the firing of a transition usually corresponds
to the execution of the modelled actual system part, best expressed by the working time model.
However, such an execution can be interrupted after being initiated by timers or exceptions, which
calls again for the reaction time model.

Generally, execution times cannot be characterised adequately by constant time values because
of data dependencies, operating systems influences or measurement variations. Therefore, these
quantitative parameters are time intervals of the minimal and maximal duration to execute a given
(sequential) part without resource limitations (no processor sharing, no communication delays,
etc.). Of course, the interval may collapse to a constant duration in case of purely linear, non-
interrupted control statement sequences. These execution time intervals can be measured by
monitoring tools of the development environment, or - in special cases - calculated from machine
instruction sequences. Occasionally, they are given by the system’s requirement specification,
sometimes they have to be assessed.

3.2 Biochemical Systems

Biochemical systems can be considered as networks of biochemical reactions, transforming input
compounds via several intermediate compounds into output compounds. We have here an infinite

flux of chemical compounds realised by permanently occurring reactions. To derive a qualitative
Petri net model of the biochemical network behaviour, each compound is assigned to a place, and
each reaction to a transition. The arc multiplicities reflect the given stoichiometric numbers of the
reactions’ stoichiometric equations, if known. This straightforward modelling principle has been
applied to a variety of biological networks. The Petri net structure mirrors the biochemical network
topology, and the incidence matrix of the Petri net coincides with the stoichiometric matrix of the
modelled biochemical system.

Following this construction principle, we get place-bordered models, where the input compounds
appear as source nodes and the output compounds as sink nodes. To animate them, we transform
the place-bordered models into transition-bordered ones by adding input transitions, generating the
input compounds, and output transitions, consuming the output compounds. All input and output
transitions work independently. Now, the Petri net behaviour reflects all partial order sequences
of chemical reactions from the input to the output compounds respecting the given stoichiometric
relations under any timing conditions. Transitions without pre-places may fire infinitely often;
they are obviously live and all their immediate post-places are unbounded. Generally, the whole
Petri net model is expected to be live and simultaneously unbounded in all places. Consequently,
no analysis methods can be applied, which rely on exhaustive state space construction.

Living systems maintain - under normal conditions - a steady state, where all compounds
have reached a dynamic concentration equilibrium, i.e. the concentrations of all compounds are
permanently reproduced in a constant amount due to the constant reaction rates. The steady
state and the steady state behaviour are fundamental characteristics of any network. Therefore,
network evaluation typically starts with the steady state assumption, before taking into account
also transient state behaviour, which might be caused, e.g., by a change of the living conditions.

In [Pop05a] it has been demonstrated, how to derive automatically quantitative steady state
models of biochemical networks, starting from the underlying qualitative one. For this purpose
the well-established structural Petri net analysis technique of transition invariants is exploited.
Transition invariants may be interpreted as a characterisation of the system’s steady state be-
haviour. By reading the entries of the transition invariants as relative firing rates and representing
them by correspondingly adjusted transition working times, we get a quantitative model of the net
behaviour in the steady state. The imposed time restrictions should make the model bounded.

4 Quantitative Evaluation

In this section we present algorithms supporting quantitative analyses of TPNs. Here, we con-
sider algorithms which work for arbitrary systems, i.e., bounded as well as unbounded ones, and
algorithms, which are suitable for bounded systems only. The first class of algorithms exploits the
parametric description of state classes. The second class takes advantage of the discretely reduced
state space - the set of all reachable integer states.

4.1 Preliminaries

First we formalise the notions shortest/longest time path between two states and between two
p-markings.

Definition 4 (length of a run) Let Z = (P, T, F, V, m0, I) be a TPN and let σ(τ) be a run of
the transition sequence σ in Z. The length of the run l

(
σ(τ)

)
is the sum of all times while executing

the run σ(τ), formally: l
(
σ(τ)

)
:=

n∑

i=0

τi, whereby n = l(σ) and τ = τ0τ1 . . . τn.

Definition 5 (minimal run) Let Z be a TPN and let σ be a transition sequence in Z. The
feasible run σ(τ∗) of σ is the run of minimal length (for short: minimal run of σ), iff there is no
further feasible run of σ, which length is shorter than the length of σ(τ∗).

Evidently, for the minimal run σ(τ∗) of σ holds:

l
(
σ(τ∗)

)
:= min

τ
{ l

(
σ(τ)

)
| σ(τ) is a feasible run of σ in Z }.

The notion maximal run can be introduced analogously, if the set of all feasible runs of σ is
bounded above w.r.t. the length of the runs.

Definition 6 (maximal run) Let Z be a TPN and let σ be a sequence of transitions in Z. The
feasible run σ(τ∗) of σ is the run of maximal length (for short: maximal run of σ), iff

the set { l
(
σ(τ)

)
| σ(τ) is a feasible run of σ in Z } is bounded above and

l
(
σ(τ∗)

)
:= sup

τ

{ l
(
σ(τ)

)
| σ(τ) is a feasible run of σ in Z }.

Definition 7 (minimal time distance between two states) Let Z be a TPN and let z1 and
z2 be two reachable states in Z with z2 ∈ RSZ(z1). The minimal time distance dmin(z1, z2) from
z1 to z2 is the length of a minimal run of a firing sequence σ, which length is the shortest between
all minimal runs from z1 to z2 in Z, formally:

dmin(z1, z2) : = min
σ

{ l(σ(τ)) | σ ∈ T ∗, σ(τ) is a minimal run of σ and z1
σ(τ)
−→ z2 in Z }.

The notion maximal time distance between two states needs to consider the special situation
where - starting at z1 - we run into a cycle before reaching z2. In this case we define the maximal
time distance between the two states to be infinite.

Definition 8 (maximal time distance between two states) Let Z be a TPN and let z1 and
z2 be two reachable states in Z with z2 ∈ RSZ(z1). The maximal time distance dmax(z1, z2) from
z1 to z2 is defined by:

dmax(z1, z2) :=







∞ , if a cycle is reachable starting at z1

before reaching z2

max
σ,

z1
σ(τ)
−→ z2

l(τ)∑

i=0

τi , else.

Here, the symbol ∞ means that - starting at the state z1 - it is possible not to reach the state
z2, because of remaining in a cycle. In this case a run of arbitrary length exists, even if all edges
of the cycle are weighted by zero.

In order to introduce the notion distance between two p-markings we define two sets of states,
whereby the states of each set share the same p-marking. Let m1 and m2 be two p-markings with
m1 ∈ RZ and m2 ∈ RZ(m1). Than M1 and M2 are defined as follows:

M1 := { z | z ∈ RSZ ∧ z = (m1, h)}

M2 := { z | ∃z∗
(
z∗ ∈ M1 ∧ z ∈ RSZ(z∗) ∧ z = (m2, h)

)
}

Definition 9 (minimal time distance between two p-markings) Let Z be a TPN and let
m1 and m2 be two reachable p-markings in Z with m2 ∈ RZ(m1). The minimal time distance
dmin(m1, m2) between m1 and m2 is dmin(m1, m2) = min{ dmin(z1, z2) | z1 ∈ M1 ∧ z2 ∈ M2 }.

Definition 10 (maximal time distance between two p-markings) Let Z be a TPN and let
m1 and m2 be two reachable p-markings in Z with m2 ∈ RZ(m1). The maximal time distance
dmax(m1, m2) between m1 and m2 is dmax(m1, m2) = max{ dmax(z1, z2) | z1 ∈ M1 ∧ z2 ∈ M2 }.

Remark 1 In each TPN Z it holds:

(1) For each firing sequence σ in Z is
l
(
σ(τ∗)

)
∈ N for the minimal run σ(τ∗), and

l
(
σ(τ∗)

)
∈ N for the maximal run σ(τ∗), if it exists.

(2) dmin(z1, z2), dmin(m1, m2) ∈ N and
dmax(m1, m2), dmax(z1, z2) ∈

(
N ∪ {∞}

)
.

Even more it holds: each time elapsing τi in a minimal as well as in a maximal run is also a
natural number. The proof of this remark can be done by contraposition, see [Pop99].

4.2 Arbitrary Time Petri Nets

In this section we consider arbitrary Time Petri Nets. Hence, the state space can be infinite
or far too huge to be managed within the given resource constraints. Therefore, any approach
enumerating explicitly the state space is not useful here.

The next four problems deal with the time-dependent feasibility of transition sequences. The
solutions of the problems are traced back to the solution of systems of linear inequalities or of linear
programs, respectively. In particular, we always consider inequalities, the coefficients of which are
natural numbers. We look for solutions, which are rational or real numbers, respectively. Due to
the given inequalities, these solutions are always nonnegative ones. Real solutions can be found

in polynomial runtime (cf. [Pap98], [GLS93]), using the Chatchiyan algorithm. Finding rational
solutions in polynomial runtime follows from the result by Tardos (1986) and a related corollary
for rational polyhedrons (cf. [GLS93]).

Problem 1

Input: • A transition sequence σ in an arbitrary TPN Z.

Output: (1) Is σ a firing sequence in Z?

(2) A feasible run σ(τ) of σ, if the answer to (1) is yes.

Idea of the solution: The output requires to solve the linear inequality system Bσ in R. The run-
time of the solution of the inequality system is polynomial in the length of the transition sequence.
(Here it holds: The number of the variables in Bσ is l(σ) + 1. The number of the inequalities in
Bσ is not greater than 2 · (l(σ) · |T | − 1). �

Applications: Even if a transition sequence is feasible in the time-free model, this has not to be
true anymore under certain timing constraints. Hereby, the transition sequence can stand for a
certain wanted/unwanted behaviour or it can be derived from a computed transition invariant, as
it is the case in the context of modelling and analysis of biochemical networks, see [Pop05a].

Problem 1 allows to decide the time-dependent feasibility of a given transition sequence. The
interval function is assumed to be completely known, i.e. totally defined. This is assumption is not
always fulfilled, or the analysis objective actually consists in exploring the possible timing scope.
Problem 3 provides a relaxation of problem 1 to support this kind of reasoning.

In the next problem we consider w.o.l.g. firing sequences: We are already able to check whether
an arbitrary sequence is a feasible one, and the notion minimal/maximal run makes only sense for
feasible transition sequences.

Problem 2

Input: • A firing sequence σ in an arbitrary TPN Z.

Output: (1) A minimal run of σ.

(2) A maximal run of σ, if it exists.

Idea of the solution: We consider the linear inequality system Bσ and the parametric run σ(x).
A solution of the linear program (P1) and respectively a solution of the linear program (P2)

defines a minimal run of σ and respectively defines a maximal run of σ, if it exists. Thereby is

(P1) = min {
l(σ)∑

i=0

xi | Bσ } and (P2) = max {
l(σ)∑

i=0

xi | Bσ }. If the linear program (P2) has no

solution, then the maximal run is ∞ (the set Bσ is not empty because σ is a firing sequence in Z).
Both linear programs are solvable in polynomial time w.r.t l(σ)(cf. [Pap98]). �

Applications: The precise knowledge of the total time range to execute a given firing sequence,
i.e., its minimal and maximal duration, helps to design technical systems which predictable timing
behaviour. The firing sequence σ may stand for a subtask of some significance, e.g., the atomic
steps, a server has to fulfill to provide a certain service; the actions, a controller has to go through,
to react to an observed signal; or the transaction sequence, a data base system has to perform to
respond to a received query. In all these cases, a typical non-functional system requirement will
specify the expected timing behaviour of the critical system parts. Problem 2 helps to prove this
type of requirements.

In a biochemical network, the firing sequence may stand for a subnetwork of chemical reactions
to transform the input compound(s) into output compound(s), or – likewise – to propagate the
input signal(s) into output signal(s). Problem 2 allows a model-based prediction of the network’s
reaction time, which might trigger new experiments to validate the prediction power of the model.

In cases, where the firing sequence is not explicitly known or hard to be specified, a critical
system part might be better characterised by the initial and final system states or p-markings,
respectively. To determine the time distance between two states or p-markings, see problems 5-8.

If the evaluation of a model of a given system reveals certain wanted or unwanted behaviour,
then it might be of interest to deeper understand the influence of time; more exactly: Is it possible
to change some time restrictions to keep the wanted behaviour or to avoid the unwanted behaviour,

respectively, and if so, what are the new time restrictions. Obviously, answers to these questions
facilitate the application of TPNs. The following two problems deal with this kind of reasoning.

Problem 3

Input: • A TPN Z with an only partially defined interval function I.

• A transition sequence σ and a number λ ∈ R+
0 .

Output: (1) Is it possible to complete I to a total function such that σ is a firing
sequence in Z and l

(
σ(τ)

)
≤ λ?

(2) A completed, totally defined function I, if the answer to (1) is yes.

(3) Is it possible to complete I to a total function such that σ is a firing
sequence in Z and l

(
σ(τ)

)
≥ λ?

(4) A completed, total defined function I, if the answer to (3) is yes.

Idea of the solution: First, we consider the interval function I for each t ∈ T : If eft(t) is not
defined, then assign to eft(t) the parametric value at. Analogously, if lft(t) is not defined, then let
be lft(t) := bt. Thus, I is defined for each t ∈ T . Now, we consider the parametric state (zσ, Bσ)
and the linear inequality system Bσ. The variables of Bσ are the parameters xi defined by the
parametric run σ(x) and all the new parameters ati

and bti
. Now we consider the linear inequality

system Bσ. For solving (1) we solve the linear inequality system B′
σ, which we get from Bσ by

adding the linear inequality l
(
σ(x)

)
≤ λ. The variables are x0, . . . , xl(σ), and all ati

and btj
. The

values of variables ati
and btj

complete the function I to a total one, if B′
σ has a solution. The

output for (3) is analogue to (1), but B′
σ is now an extension of Bσ by l

(
σ(τ)

)
≥ λ. The output

of (4) is analogue to (2). �

Applications: Problem 3 may be read as a relaxation of problem 2. It not only requires less
pre-knowledge of the given timing conditions (the interval function may be partially defined only),
but allows also to specify some lower and upper limits for the expected timing behaviour (by two
numbers λ) of a given subtask (represented by the transition sequence σ).

This is especially helpful for a systematic construction of technical systems with strong timing
constraints. As soon as parts of the system under development have been implemented (in hardware
or software), their timing behaviour (interval bounds) can be determined. For the other parts of
system, not implemented yet, it is interesting to learn the time scope they have to follow, so that
the total system has still a chance to fulfill the given timing requirements (specified by the two
numbers λ). In the worst-case it will turn out that the implemented parts already contradict the
given constraints. In such a model-guided step-wise system development, contradictions to timing
requirements will be discovered early, i.e., in a development phase, where wrong design decisions
can be corrected at a reasonable prize.

In biochemical networks, problem 3 supports a model-based drug prescription. Here, the un-
defined parts in the interval function correspond to disturbed reactions (accelerated, slowed down
or totally switched off), causing too high/slow throughput of the network (characterised by the
execution times λ of the subnetworks, transforming the input compounds into output compounds).
The knowledge of a possible completion of the interval function to guarantee a certain throughput
may be translated into the required drug amount to re-adjust the timing behaviour of the disturbed
reactions.

Problem 4

Input: • A TPN Z with an only partially defined interval function I.

• A transition sequence σ1 = σt1, where σ is a transition sequence and t1
is a transition in Z.

• A further transition sequence σ2 = σt2, where t2 is a transition in Z such
that t1 6= t2.

Output: (1) Is it possible to complete I to a total function such that σ1 is a firing
sequence in Z and σ2 is not a firing sequence Z?

(2) A completed, totally defined function I, if the answer to (1) is yes.

Idea of the solution: We complete the function I as in the solution of the problem 3. Then
we consider the linear inequality system Bσ. Afterwards we obtain the parametric states zσ1 =
(σ1(x), B1) and zσ2 = (σ2(y), B2). In order to solve the problem 4 we have to find values for the
variables ati

, btj
, x0, . . . , xl(σ1) and y0, . . . , yl(σ2) such that the following inequality holds:

max {

l(σ1)
∑

i=0

xi | B1 }

︸ ︷︷ ︸

(P1)

< min {

l(σ2)
∑

i=0

yi | B2 }

︸ ︷︷ ︸

(P2)

.

Thereby, the values for the variables ati
, btj

have to be rational numbers. The values for
x0, . . . , xl(σ1) and y0, . . . , yl(σ2) can be arbitrary nonnegative real numbers. The complete proof
can be found in [Pop07b].

Problem 4 gives an answer to the question ”Is it possible to restrict the behaviour of a Petri
net by the influence of time?”, but only for the special case of branching behaviour. This special
question is easy to answer, if the transitions t1 and t2 share an input place (i.e., they are in conflict):
we define the lft of the transition, which should fire, as smaller than the eft of the transition,
which is expected not to fire. If the transitions do not share an input place, then the solution is
more complicated, as we have just seen.

Applications: Problem 4 deals with the phenomenon of time-dependent feasibility of transitions.
In technical systems, this is generally not an expected behaviour. So the knowledge of the non-
feasibility of a given transition under certain timing conditions might help to find a better suitable
design. In biochemical systems, problem 4 supports, similar to problem 3, a model-based drug
prescription. The here given scenario helps to find timing constraints in order to downgrade
unwanted reactions.

4.3 Bounded Time Petri Nets

This section deals with bounded TPNs only. If the TPN is bounded (i.e., the set of reachable
p-markings is finite) and strong (i.e., the lft’s for all transitions are finite), then the set of all
reachable integer states is finite, too. Therefore, properties of such TPNs can be proved using this
finite set of integer states. For this purpose we define step-wise a suitable reachability graph RGZ

of a TPN Z. We start with RGZ := (W, E, L). The vertices W are the reachable integer states.

The labelled edges E are defined by triples (z, t, z′) and (z, 1, z′), with z
t

−→ z′ and z
1

−→ z′,
respectively. L is a function, defining the edge labels, i.e., cod(L) = T ∪ {1}. This graph is finite
for a strong TPN, iff the set of the reachable p-markings of the net is finite. The construction
of RGZ is straightforward. Starting at the initial state all integer state successors of a reached
integer state are derived successively. The formal definition can be found in [Pop07b].

Instead of L we often give directly the set cod(L), i.e., we write RGZ := (W, E, T ∪ {1}). The
reachability graph defined as far can be reduced. (1) Removal of all (transient) vertices, having
only time-labelled input and output edges. Each input edge is merged with each output edge,
labelled by the sum of both labels. (2) Removal of all vertices, having only time-labelled input
edges. Each input edge is merged with each output edge, labelled by both labels (of the input
and of the output edge). The second reduction decreases the number of vertices, but increases the
complexity of the labels of the new edges. We get RGZ = (W, E, T ∪ T ×N). For more details see
e.g. [Pop91] or [Pop07a].

This reachability graph is not finite, if there is a transition t with lft(t) = ∞, even if the
net is bounded. Therefore, we modify consistently the notion reachability graph in the following
way. The time after reaching the eft(t) is actually not important for t. Thus, when the clock
h(t) reaches the eft, i.e. h(t) = eft(t), it is not necessary anymore to increment the time for this
transition (even though the time is going on). For the modified reachability graph it holds now: It
is finite for an arbitrary TPN, iff the set of the reachable p-markings of the net is finite. A formal
proof can be found in [Pop07a].

Let Z = (P, T, F, V, m0, I) be a TPN and RGZ = (W, E, T ∪ T × N) its reduced reachability
graph. This is a directed labelled graph, where each edge k ∈ E is labelled by κk = t or by
κk = t, n. Using the labels of RGZ we derive weights for the edges as follows:

w(k) :=

{
0 , if κk = t

n , if κk = t, n
for each k ∈ E.

Using these weights, we finally transform the reachability graph RGZ = (W, E, T ∪T ×N) into
the directed weighted graph RGw

Z := (W, E, w). Hence, to solve our problems we are now able

to use various efficient graph algorithms, valid for directed weighted graphs. We use the graph
RGw

Z to compute the minimal and the maximal distance between two integer states or between
two p-markings, respectively. The path, which realises the minimal (maximal) distance specifies a
minimal (maximal) run in the TPN.

The algorithms used for studying the directed weighted graphs have linear or polynomial run-
time w.r.t. the size of the graph RGw

Z and therefore w.r.t. the size of RGZ . Nevertheless, it has not
to be forgotten that the construction of the reachability graph needs at least exponential runtime
w.r.t. the size of the TPN (cf. [Pri03]). See [Cor01] for the notions and basic algorithms, applied
here without further explanation.

Problem 5

Input: • Two integer states z1 and z2, reachable in an arbitrary TPN Z.

Output: (1) Is z2 ∈ RSZ(z1)?

(2) The minimal time distance from z1 to z2 as well as the corresponding minimal
run, if the answer to (1) is yes.

Idea of the solution: Question (1) asks for a path from z1 to z2 in the graph RGw
Z . Question

(2) asks for the shortest path from a vertex to a second one in a weighted directed graph (under
the condition that there is a path). This is immediately following from Remark 1. Both questions
can be answered using the well-known Dijkstra algorithm, because all weights are nonnegative
numbers. The algorithm terminates in polynomial time and yields the shortest path, if there is a
path from z1 to z2, or the answer is given that there is no path from z1 to z2 (cf. shortest-path
algorithm in [Cor01]). The minimal distance is the sum of the weights of the shortest path. �

Applications: See the discussion of applications for problem 6.

Problem 6

Input: • Two integer states z1 and z2, reachable in an arbitrary TPN Z.

Output: (1) Is z2 ∈ RSZ(z1)?

(2) The maximal time distance from z1 to z2 as well as the corresponding maximal
run, if the answer to (1) is yes.

Idea of the solution: Let the graph GZ := (W ′, E′, w′) be derived from the graph RGw
Z as follows:

W ′ := W, E′ := E \ { (z2, z) | (z2, z) ∈ E }, w′ := −w|E′ .

The graph GZ is derived from the graph RGw
Z by eliminating all output edges of z2 and by multi-

plying all weights by −1. The elimination ensures that each path, which passes z2 (in RGw
Z) ends

in z2 (in GZ). Now, a maximal path from z1 to z2 in RGw
Z is a minimal path in GZ . That is true

because it holts: max { f(x) | x ∈ L } = − min {−f(x) | x ∈ L }. In this case we cannot use the
fast Dijkstra algorithm because of the negative weights. Nevertheless, the Bellman-Ford algorithm
finds a minimal path in a graph with arbitrary weights. This algorithm is slower as the Dijkstra
algorithm, but finds a minimal path still in polynomial time w.r.t. the size of the graph. However,
the problem 6 can be solved in linear time w.r.t. the size of the graph GZ , see [Pop07b].

Applications: Similarly to problem 2, the precise knowledge of the minimal and maximal time
distance between two arbitrary system states supports the systematic construction of technical
systems with predictable timing behaviour. But complementary to problem 2, problem 5 and 6
help in those situations, where time-critical system parts are best specified by their initial and final
system state. However, often we will only know the p-markings of these two states, which calls for
the problems 7 and 8.

Problem 7

Input: • Two p-markings m1 and m2, reachable in an arbitrary TPN Z.

Output: (1) Is m2 ∈ RZ(m1)?

(2) The minimal time distance from m1 to m2 as well as the corresponding
minimal run, if the answer to (1) is yes.

Idea of the solution: We consider the graph RGw
Z and define two sets of vertices M1 and M2:

Mi := { z | z = (mi, h), z ∈ RSZ , z − integer state}

for i = 1, 2. The questions (1) and (2) are equivalent to the questions, asking for the existence
of a path or a minimal path, respectively, from the set M1 to the set M2 in the graph RGw

Z .
The existence is decidable in polynomial time w.r.t. the size of the graph (cf. all-pairs shortest
paths algorithm in [Cor01]). Using the all-pairs shortest paths algorithm we get the values dij ,
i, j = 1, . . . , |RISZ | and

dij =

{
dmin(zi, zj) , if z2 ∈ RSZ(z1)
∞ , else

.

The value dmin(m1, m2) is the minimal number of a finite set of numbers:

dmin(m1, m2) = min { dij | zi ∈ M1 ∧ z2 ∈ M2 }.

Thus, the question (2) is solvable in polynomial time w.r.t. the size of the graph, too. �

Applications: Complementing the application scenario of problem 5, problem 7 allows to charac-
terise the critical system parts of interest by their initial and final p-marking, while the t-marking
can be arbitrarily chosen. The exact determination of the minimal time distance between two ar-
bitrary p-markings supports the best-case prediction of the timing behaviour of technical systems
[Hei97b] as well as of biochemical systems. Similarly, task scheduling according a given precedence
graph is supported by finding the best-case execution time of all possible schedules [Pop05b]. See
also problem 8.

Problem 8

Input: • Two p-markings m1 and m2, reachable in an arbitrary TPN Z.

Output: (1) Is m2 ∈ RZ(m1)?

(2) The maximal time distance from m1 to m2 as well as the corresponding
maximal run, if the answer to (1) is yes.

Idea of the solution: Analogue to the idea of solution of problem 7 we consider again the sets
Mi, i = 1, 2. Then, an all-pairs shortest-paths algorithm, applied to the weighted directed graph
GZ , yields the solution. �

Applications: Complementing the application scenario of problem 6, problem 8 allows to charac-
terise the critical system parts of interest by their initial and final p-marking, while the t-marking
can be arbitrarily chosen. The exact determination of the maximal time distance between two ar-
bitrary p-markings supports the worst-case prediction of the timing behaviour of technical systems
[Hei97b] as well as of biochemical systems, which is necessary to ensure given deadlines or reaction
times. Similarly, task scheduling according a given precedence graph is supported by finding the
worst-case execution time of all possible schedules [Pop05b]. See also problem 7.

Finally, a straightforward generalisation of the last four problems allows also a graph-based
solution of the notions minimal time distance and maximal time distance from an integer state to
a p-marking as well as from a p-marking to an integer state. All these four problems are solvable
in polynomial or linear runtime, respectively. The problem to search for a minimal/maximal
time distance from an integer state to a p-marking is equivalent to the single-source shortest-path
problem, while the problem to search for a minimal/maximal time distance from a p-marking to
an integer state is equivalent to the single-destination shortest-path problem.

Problems 5-8 require the specification of complete p-markings. However, often we only know
p-submarkings, leading to a further generalisation of path search between two sets of states.

5 Conclusions

In this paper we have presented algorithms to analyse quantitatively a well-known extension of
standard Petri nets, the Time Petri nets, where each transition gets a continuous time interval,

specifying the range of the transition’s reaction time. The crucial point in any exhaustive analysis
is an adequate state space reduction. Our approaches exploit basically two ideas: parametric state
description and discretisation of the state space.

The first class of considered algorithms relies on a parametric description of the state space.
We have shown that the solutions of the problems can be traced back to solutions of systems
of linear inequalities or of linear programs, respectively. The total avoidance of any state space
construction in this approach allows their application even to unbounded systems. The second
class of considered algorithms takes advantage of the discretely reduced state space - the set of all
reachable integer states. For this purpose, we have introduced the reachability graph of a bounded
Time Petri net, which allows to re-use efficient algorithms of directed weighted graphs.

We have presented eight problems, characterised by their input/output relation, and we have
shown how these problems can be solved using the proposed state space reduction techniques.
Suggested application scenarios cover technical as well as biochemical systems.

References

[Cor01] Cormen, T.H. and Leiserson, Ch.E. and Rivest, R.L. and Stein, C. Introduction to
Algorithms. MIT Press, second edition, 2001.

[GLS93] Grötschel, M., Lovász, L., and Schrijver, A. Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, second corrected edition, 1993.

[Hei97a] Heiner, M. On Exploiting the Analysis Power of Petri nets for the Validation of Discrete
Event Systems. In Proc. 2nd IMACS Symposium on Mathematical Modelling (MATH-
MOD VIENNA ’97), Wien, Feb. 1997, pages 171–176, 1997.

[Hei97b] Heiner, M. and Popova-Zeugmann, L. Worst-case Analysis of Concurrent Systems with
Duration Interval Petri Nets. In Tagungsband zur 5. Fachtagung ”‘Entwurf komplexer
Automatisierungssysteme”’, 1997.

[Pap98] Papadimitriou, Ch. and Steiglitz, K. Combinatorial Optimization: Algorithms and Com-
plexity. Dover Publications, Inc., Mineola, New York, 1998.

[Pop89] Popova-Zeugmann, L. Time Petri Nets (in German). Ph.D.Thesis, Humboldt University
at Berlin, 1989.

[Pop91] Popova, L. On Time Petri Nets. J. Inform. Process. Cybern. EIK 27(1991)4, pages
227–244, 1991.

[Pop99] Popova-Zeugmann,L. and Schlatter, D. Analyzing Path in Time Petri Nets. Fundamenta
Informaticae (FI) 37, IOS Press, Amsterdam, pages 311–327, 1999.

[Pop05a] Popova-Zeugmann, L. and Heiner, M. and Koch, I. Time Petri Nets for Modelling
and Analysis of Biochemical Networks. Fundamenta Informaticae (FI) 67, IOS Press,
Amsterdam, pages 149–162, 2005.

[Pop05b] Popova-Zeugmann, L. and Werner, M. Extreme Runtimes of Schedules Modelled by Time
Petri Nets. Fundamenta Informaticae (FI) 67, IOS Press, Amsterdam, pages 163–174,
2005.

[Pop07a] Popova-Zeugmann, L. Time Petri Nets State Space Reduction Using Dynamic Program-
ming. Journal of Control and Cybernetics, 35(3):721–748, 2007.

[Pop07b] Popova-Zeugmann,L. Time and Petri Nets (in German). Habilitation Thesis, Humboldt
University at Berlin, 2007.

[Pri03] Priese, L. and Wimmel, H. Theoretical Informatics, Petri Nets (in German). Springer-
Verlag, Berlin Heidelberg New York, 2003.

Remark: The full version of this extended abstract contains a related work section.

