
Determining Worst-Case Times of Unknown

Paths in Time Petri Nets

Louchka Popova-Zeugmann1 and Matthias Werner2

1 Institut für Informatik, Humboldt-Universität zu Berlin,
popova@informatik.hu-berlin.de

2 Institut für Telekommunikationssysteme, TU Berlin,
mwerner@cs.tu-berlin.de

Abstract. In this paper, a method to determine best-case and worst-
case times between two arbitrary markings in a bounded TPN is pre-
sented. The method uses a discrete subset of the state space of the net
and achieves the results, which are integers, in polynomial time. As an
application of the method the solving of a scheduling problem is shown.

1 Introduction

1.1 Motivation

Time Petri nets (TPN), first introduced in [1] and also called Interval Petri
nets, IPN) provide a suitable method to model, to simulate, and to analyze the
behavior of time-dependent systems.

Frequently, objects of consideration in Time Petri nets are the very same
properties as for timeless Petri nets, namely reachability, liveliness, bounded-
ness etc. However, in many systems modeled with Time Petri nets the temporal
behavior needs to be verified. One of the most prevalent problems on this note
is the meeting of deadlines for a sequence of system processes, i.e., to compare
the longest duration of a transition sequence with a given limit. Such considera-
tions are an important part of scheduling studies, especially real-time scheduling.
As a base for schedulability analysis, determining of worst-case execution times
(WCET) and best-case execution times (BCET) is frequently needed. Comput-
ing the best-case time and the worst-case time between two states (i.e. between
at least two states) is solvable in exponential time, as shown in [2] and later also
in [3].

But, for the case of bounded TPN, and that are the most TPN modelling
real systems, we introduce a method using solutions from the graph theory which
computes the min/max time in polynomial time. This is possible because of the
adroit definition of a reachability graph for a TPN by picking out some essential
states from the whole state space.

The remainder of this paper is organized in the following way: The second
part of this section discusses related work. In Sect. 2 we introduce the basic
notions and definition. The following section sketches our analysis method using

a reachability graph defined by picking out only some states from the state space.
Section 4 discusses the application of graph theory on the gained reachability
graph. In Sect. 5 an example for a worst-case execution time analysis is given.
Finally, the paper concludes with a short summary.

1.2 Related work

Time Petri nets were introduce by Merlin in [1] in order to study recoverabil-
ity problems in computer systems and the design of communication protocols.
Berthomieu and Menasche in [4] res. Berthomieu and Diaz in [5] provide a
method for analysis the qualitative behavior of the net. They divide the state
space in state classes which are describe by a marking and time domain given
by inequalities. The reachability graph, that they define consists of these classes
as vertices and edges labeled by transitions. This graph has the pretty prop-
erty, that the graph is finite iff the TPN is bounded. A similar definition for a
reachability graph for a TPN delivers [6].

In order to study TPN we use the definition of a reachability graph given in
[7]. The property from above, that the graph is finite iff the TPN is bounded, is
also true here. In contrast to above, the time appears explicitly in this reacha-
bility graph as weights on some edges of the graph and the vertices contain no
information. Thus, our reachability graph is a usual directed weighted graph.
Therefore, now it is possible to use the graph theory in order to accomplish
quantitative analysis, too.

2 Basic Notations and Definitions

In this paper we use following notations: N is the set of natural numbers, N+

:= N \ {0}. Q+
0 res. R+

0 is the set of nonnegative rational numbers res. set of
nonnegative real numbers . Let g be a given function from A to B. T ∗ denotes
the language of all words over the alphabet T , including the empty word e; l(w)
is the length of the word w. P(C) denodes the power set of a set C. CD is the
cartesian product C × · · · × C

︸ ︷︷ ︸

card(D) times

.

Definition 1 (Petri net). The structure N = (P, T, F, V, mo) is called a Petri
net (PN) iff

(a) P, T, F are finite sets with
P ∩T = ∅, P ∪T 6= ∅, F ⊆ (P ×T)∪ (T ×P) and dom(F)∪ cod(F) = P ∪T

(b) V : F −→ N+ (weight of the arcs)
(c) mo : P −→N (initial marking)

A marking of a PN is a function m : P −→ N, such that m(p) denotes the
number of tokens at the place p. The pre-sets and post-sets of a transition t are
given by Ft := {p | p ∈ P ∧ pFt} and tF := {p | p ∈ P ∧ tFp}, respectively.
Each transition t ∈ T induces the marking t− and t+, defined as follows:

t−(p) =

{
V (p, t) ,iff (p, t) ∈ F

0 ,iff (p, t) 6∈ F
t+(p) =

{
V (t, p) ,iff (t, p) ∈ F

0 ,iff (t, p) 6∈ F

Moreover, ∆t denotes t+ − t−. A transition t ∈ T is enabled (may fire) at a
marking m iff t− ≤ m (e.g. t−(p) ≤ m(p) for every place p ∈ P). When an
enabled transition t at a marking m fires, this yields a new marking m′ given by

m′(p) := m′(p) + ∆t(p) and denoted by m
t

−→ m′.

Definition 2 (Time Petri net). The structure Z = (P, T, F, V, mo, I) is called
a Time Petri net (TPN) iff:

(a) S(Z) := (P, T, F, V, mo) is a PN.
(b) I : T −→ Q+

0 × (Q+
0 ∪ {∞}) and I1(t) ≤ I2(t) for each t ∈ T , where

I(t) = (I1(t), I2(t)).

A TPN is called finite Time Petri net (FTPN) iff I : T −→ Q+
0 × Q+

0 .

I is the interval function of Z, I1(t) and I2(t) the earliest firing time of t (eft(t))
and the latest firing time of t (lft(t)), respectively. It is not difficult to see (cf. [7])
that considering TPNs with I : T −→ N × (N ∪ {∞}) will not result in a loss of
generality. Therefore only such time functions I will be considered subsequently.
Furthermore, conflict is used in the strong sense: two transitions t1 and t2 are
in conflict iff Ft1 ∩ Ft2 6= ∅. The PN S(Z) referred to as the skeleton of Z.

Within this approach, the definition of a state is of fundamental importance
for the ensuing theory. A state is characterized by a marking together with
the momentary local time for enabled transitions or the sign] for the disabled
transitions.

Definition 3 (state). Let Z = (P, T, F, V, mo, I) be a TPN and h : T −→
R+

0 ∪ {#}. z = (m, h) is called a state in Z iff:

(a) m is a reachable marking in S(Z).
(b) ∀t ((t ∈ T ∧ t− ≤ m) −→ h(t) ≤ lft(t)).
(c) ∀t ((t ∈ T ∧ t− 6≤ m) −→ h(t) = #).

Interpretation of the notion “state” is as follows: within the net, each transition
t has a clock h(t). If t is enabled at a marking m, the clock of t h(t) shows the
time elapsed since t became most recently enabled. If t is disabled at m, the
clock does not work (indicated by h(t) = #).

Now the dynamic aspects of TPNs – changing from one state into another

– can be introduced: The state zo := (mo, ho) with ho(t) :=

{
0 iff t ≤ m0

iff t 6≤ m0

is set as the initial state of the TPN Z. A transition t is ready to fire in the

state z = (m, h), denoted by z
t

−→ , iff t− ≤ m and eft(t) ≤ h(t). A transition
t̂, which is ready to fire in the state z = (m, h), may fire yielding a new state
z′ = (m′, h′), defined by m′ = m + ∆t̂ and

h′(t) =:

iff t− 6≤ m

h(t) iff t− ≤ m ∧ t− ≤ m′ ∧ Ft ∩ F t̂ = ∅
0 otherwise

.

The state z = (m, h) is changed into the state z′ = (m′, h′) by the time

duration τ ∈ Q+
0 , denoted by z

τ
−→ z′, iff m′ = m and the time duration

τ is possible (formally: ∀t ((t ∈ T ∧ h(t) 6= #) −→ h(t) + τ ≤ lft(t) and

h′(t) :=

{
h(t) + τ iff t ≤ m

iff t 6≤ m
). z = (m, h) is called an integer-state iff h(t) is

an integer for each enabled transition t in m.

3 Analysis

The state space of an arbitrary Time Petri net is the set of all reachable states
of the net, starting from z0. Of course, this set is in general infinite: On the one
hand, because of the markings, reachable in the net – this set is discrete, and
it can be infinitely. On the other hand, because of the time of the transitions.
Already, the set of all reachable states for a fix marking is infinitely (and dense)
in general. Never the less, it is possible to pick up some “essential” states only,
so that qualitative and quantitative analysis is possible. In [7] is shown, that the
essential states are the integer-states.

The graph RGZ(zo) is called the reachability graph of the TPN Z iff its
vertices are the reachable integer-states and its edges are defined by the triples

(z, t, z′) and (z, τ, z′), where z
t

−→ z′ and z
τ

−→ z′, respectively. This graph is
finite iff the set of the reachable markings of the net is finite. And, this set is
finite, if the set of reachable markings of the skeleton – the timeless net – is
finite. The other direction is not true in general.

Using the parametric description of transition sequences (cf. [8]) minimal and
maximal length of time of the sequence can be evaluated. For this reason the
construction of the reachable graph is not necessarily. The minimal and maximal
length of time is an integer and it can be reached by firing in integer-states. Thus,
when the TPN is bounded, a sequence with minimal/maximal length of time can
be find for given source-state and sink-state.

3.1 Parametric description of transition sequences

The state space of a given TPN Z can be defined recursively as follow:

Basis: C0 := {z | ∃τ(τ ∈ R+
0 ∧ z0

τ
−→ z)}

Step: Let C be already defined. Then C′ is derived from C by firing t̂

(formally C
t̂

−→ C′), iff

C′ := {z | ∃z1∃z2∃τ(z1 ∈ C ∧ τ ∈ R+
0 ∧ z1

t̂
−→ z2

τ
−→ z)}.

Obviously, the state space of the net is the union of all sets C. In [7] a
parametric Al description for each set C is defined. The Example 1 demonstrates
this description.

Let consider the TPN Z1. The parametric description of the set C0 in Z1 is
Ke with

Example 1.

[1,2]

[4,5]

[1,4] [3,6]
[0,5]

t
[0,2]

t t t

P

P1

3

P2

5

P

P4

3

t

t2 64 1

5

Fig. 1. Z1 - a TPN

Ke = { ((1, 2, 1, 0, 0),

x0

x0

x0

]

x0

x0

) |
0 ≤ x0

x0 ≤ 2
}.

And let C1, C2, C3 be the sets of all reachable states obtained from C0 by firing
the transition sequence t1, res. t1t3, res. t1t3t4. The parametric description of
C1,res. C2,res. C3 is Kt1

,res. Kt1t3
,res. Kt1t3t4

with

Kt1
= { ((0, 2, 2, 2, 0),

]

]

x0 + x1

]

x0 + x1

]

)
0 ≤ x0, 0 ≤ x1

x0 ≤ 2
x0 + x1 ≤ 5

},

Kt1t3
= { ((0, 3, 2, 2, 1),

]

]

x2

x2

x0 + x1 + x2

x2

)

0 ≤ x0, 0 ≤ x1, 0 ≤ x2

x0 ≤ 2
x0 + x1 ≤ 5
x0 + x1 + x2 ≤ 5
x2 ≤ 2

},

Kt1t3t4
= { ((1, 3, 2, 2, 0),

x3

x3

x2 + x3

]

x0 + x1 + x2 + x3

x2 + x3

)

0 ≤ x0, 0 ≤ x1, 0 ≤ x2, 0 ≤ x3

x0 ≤ 2
x0 + x1 ≤ 5
x0 + x1 + x2 ≤ 5
x2 ≤ 2
1 ≤ x2

x3 ≤ 2
x2 + x3 ≤ 5
x0 + x1 + x2 + x3 ≤ 5
x2 + x3 ≤ 6

}

Of course,Kt1
is derived from Ke, Kt1t2

from Kt1
and Kt1t2t3

from Kt1t2
. Let

as consider Kt1t2t3
more detailed. After firing the transition sequence (t1t3t4)

transitions t1, t2, t3, t5 and t6 are enabled. The clocks of the transitions t1 and t2
show the time x3, the clocks of transitions t3 and t6 show the time x2 + x3 and
the clock of transition t5 shows the time x0 +x1 +x2 +x3 since they become last
enabled. The inequalities describe the conditions given by the interval limits: the
parametric time of each enabled transition is bounded above by its lft and sum
of parameters which are the time of enabled transitions in previous K ′s and fired
are bounded below by their eft. Because of the firing of t4 here is the inequality
1 ≤ x2. The Transitions t1 and t3 have as eft′s 0.

3.2 Essential states

Now it is clear, that for given transition sequence σ a parametric description
Kσ is defined. Evidently, the sequence σ can fire iff the system of inequalities is
solvable. In [7] is shown, that if the system is solvable, then there is an integer
solution (“near” the old one), too. That means, we can pick out those states
from the state space, which clocks (of enabled transitions) show integers only.
As already set, the set of all integer states of a TPN is finite iff the net is
bounded. As a reachability graph for a TPN we use the graph which vertices are
the reachable integer-states and its edges are defined by the triples (z, t, z′) and

(z, τ, z′), where z
t

−→ z′ and z
τ

−→ z′, respectively. The Example 2 illustrates
this. This graph is finite iff the set of the reachable markings of the net is finite.
And, this set is finite, if the set of reachable markings of the skeleton - the
timeless net - is finite. The other direction is not true.
Of course, the so defined reachability graph can be reduced: all vertices, which
have input edges labeled with time only can be ignored. Their input edges are
merged with their output edges and labeled with the both labels (from the input
and from the output edges).

Using the parametric description of transition sequences (cf. [8]) minimal and
maximal length of time of the sequence can be evaluated. For this reason the
construction of the reachable graph is not necessary. The minimal and maximal
length of time is an integer and it can be reached by firing in integer-states.
Thus, when the TPN is bounded, a sequence with minimal/maximal length of
time can be find for given source-state and sink-state without solving a linear

Example 2.

[0,1]

[0,1]

[2,3]

t1

t

t

2

3

P

P

1 P

P3

2

4

z zz
0

z
5

z
6

1 z2 z
3 4

t 1

t
1 t

t

2

3

3

2
1

1t

t

1

2

Fig. 2. Z2 - a TPN and their reachability graph RGZ2

m0 = (1, 0, 1, 0) h1 = (], 0,])T h5 = (1, 1,])T z1 = (m1, h1) z4 = (m2, h4)
m1 = (0, 1, 1, 0) h2 = (], 2,])T h6 = (],], 3)T z2 = (m1, h2) z5 = (m0, h5)
m2 = (0, 1, 0, 1) h3 = (],], 0)T z0 = (m0, h0) z3 = (m2, h3) z6 = (m1, h6)
h0 = (0, 0,])T h4 = (],], 1)T

programming. In this case the minimal and maximal duration of a sequence can
be computed on the reachable graph.

4 Determining BCET and WCET

Constructing the reachability graph as described in Sect. 3, methods from graph
theory may be applied to determine best-case and worst-case execution times.

Determining the best-case execution leads directly to the well-known problem
of the shortest path. Since our reachability graph has nonnegative times only,
all common shortest path algorithms are applicable, e.g., Dijkstra’s algorithm
or Bellman-Ford algorithm. For an overview and discussion of these algorithms
see, e.g., [9].

The more important case is the WCET. Determining the worst-case execution
is similar to the critical path problem, sometimes called longest path problem.

For our purpose, the problem has to be formulated as followed:

For a given directed weighted graph RGZ = (Z, E), find the length l of
a longest path from a source vertex zs to a goal vertex zd such that zd is
contained at most once as a last vertex.

Actually we mean, that the length l is infinitely, if a cycle is reachable starting
on zs before passing zd and otherwise l is the sum of the weights of the longest
path.

To solve our modified critical path problem, we use the following algorithm
A1:

1. Remove from the graph RGZ all edges (vd, vi) ∀i, i.e., all edges that are
directed from vd

2. Assign each edge (zi, zj) ∈ G with the weight wi a new weight w−

i = −wi.
Edges, labeled by transition names obtain the weight 0.

3. Run the Bellman-Ford algorithm.

If Bellman-Ford algorithm returns false then l is infinite. Otherwise, l = −d(vd).
The complexity of this algorithm is dominated by the complexity of the

Bellman-Ford algorithm, i.e., it is O(|Z| · |E|).
The correctness of A1 is easy to be seen: After the removal of all output

edges from zd no path is possible, which contains zd at another position than
as final vertex. And obviously, the shortest path in the negative weighted graph
corresponds to the longest path in the initial graph.

Computing a shortest path and a longest path is implemented in the latest
version of INA, a Time Petri net analysis tool [10]. In the next section, we
demonstrate the use of INA to determine worst-case execution time for a certain
scheduling problem, modelled as a TPN.

5 Application in scheduling

In this section we discuss the application of our approach in task scheduling.
Time Petri nets allow for modeling of multiple processors and other resources,

communication and other dependencies and a wide range of scheduling policies.
Whereas optimal solutions exist for simple systems with well-defined condi-

tions (e.g., [11]), there are rarely optimal methods for more complex scenarios.
Furthermore, it is a well-known fact that the behavior of multiprocessor sys-
tems is sometimes counterintuitive. This fact is expressed in Graham’s anomaly
theorem:

Theorem 1 (Graham’s anomalies, [12]). In multiprocessor systems, chang-
ing the priorities, increasing the number of processors, reducing execution times,
or weakening the precedence constrains can increase the scheduling length.

We selected an example for the practical demonstration of our method, that
shows the impact of a Graham anomaly. Please consider Fig. 3.

mutual exclusion

task 1

task 3

task 4

task 5

task 2

Fig. 3. An example for Graham’s anomalies (from [13])

It shows the dependencies between some task in a certain service. The service
should run in a two processor environment. Both processors are assumed as

Table 1. Minimal and maximal task execution times

task tmini
tmaxi

task 1 8 10
task 2 5 7
task 3 10 12
task 4 9 13
task 5 11 12

equally fast. For every task, the longest and the shortest executions times are
known, see Table 1.

We assume an instantaneous scheduling policy. I.e., each task is scheduled, if
all preconditions are met and if all needed resources are available. No task has
an affectation for a certain processor.

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[t ,]min1 tmax1

[t ,]min2 tmax2

[t ,]min3 tmax3

[t ,]min4 tmax4

[t ,]min5 tmax5

[0,0]

task 1 in
execution

task 2 in
execution

task 3 in
execution

task 4 in
execution

task 5 in
execution

all tasks
finished

finish task 1

finish task 2

finish task 3

finish task 4

finish task 5

start task 1

start task 2

start task 4

start task 3

start task 5

precondition
of task 3

precondition
of task 4

precondition
of task 5

precondition
of task 2

precondition
of task 1

2

2

2

shared resource CPUs

Fig. 4. Interval Petri net model

Figure 4 shows the time Petri net model of the example. Each task’s execution is
characterized by two events: the start of task execution an its end. These events
are modeled by the firing of two transitions.

We assume, that the service will be restarted once it is finished. Thus, our
net is connected.

Our algorithm, executed with help of the INA tool, identified 25 relevant
states. The worst case execution time of the service is 32.

Source node nr.> 1

Counting times

Target node nr.> 11

maximal distance = 32

A maximal path:

1 ==> 2 ==> 3 ==> 22 ==> 23 ==> 24 ==> 7 ==> 8 ==> 9 ==> 10 ==> 11

Fig. 5. INA log for maximal path of the example

Graham’s anomaly becomes visible, if one relaxes the the timing restriction of
task 1. We did a second evaluation of our example with the identical parameters,
except for the minimal execution time of task 1, which was set to 6 instead of 8.

With the relaxed restriction, INA now calculated a WCET of 44. The reason
is obvious, if one look at Fig. 6: Case (b), that consumes because of the mutual
exclusion and the instantaneous scheduling policy much more time than case
(a), was excluded by the more restrict time settings.

task 1

task 4 task 5task 2

task 3

t

Processor 1

Processor 2

(a) Task 2 finishes before task 1

task 1

task 4 task 5task 2

task 3Processor 1

Processor 2

t

(b) Task 1 finishes before task 2

Fig. 6. Two possible executions

Such kind of anomalies are rather simple to detect in uncomplex situation as our
example is. However, since the appearance of anomalies is hardly foreseeable,
more sophisticated application need urgently systematic analysis to detect the
critical cases. Our method is a further contribution to such analysis.

6 Conclusions

Within this paper, we introduced a new approach to determine worst-case and
best-case times between two states in a TPN in polynomial time and demon-
strated the application of our method for a task scheduling problem, facilitating
the INA tool.

References

1. Merlin, P.: A Study of the Recoverability of Communikation Protocols. PhD thesis,
University of California, Computer Science Dept., Irvine (1974)

2. Heiner, M., Popova-Zeugmann, L.: Worst-case analysis of concurent systems with
Duration Interval Petri Nets. In Schnieder, E., Abel, D., eds.: Entwurf komplexer
Automatisierungssysteme, TU Braunschweig, IfRA (1997)

3. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Timed State Space Analysis of Real-
Time Preemptive Systems. IEEE Transactions on Software Engineering 30 (2004)
97–111

4. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time petri
nets. In Masom (ed.), R.E.A., ed.: Proceedings IFIP. Volume 17, No. 3 of IEEE
Trans. on Software Eng., North-Holland (1983) 41–67

5. Berthomieu, B., Diaz, M.: Modeling and Verification of Time Dependent Systems
Using Time Petri Nets. In: Advances in Petri Nets 1984. Volume 17, No. 3 of IEEE
Trans. on Software Eng. (1991) 259–273

6. Boucheneb, H., Berthelot, G.: Towards a simplified building of time petri net
reachability graphs. In: Proceedings of Petri Nets and Performance Models PNPM
93, Toulouse France, IEEE Computer Society Press (1993)

7. Popova-Zeugmann, L., Schlatter, D.: Analyzing Path in Time Petri Nets. Funda-
menta Informaticae 37, IOS Press (1999) 311–327

8. Popova-Zeugmann, L.: On Parametrical Sequences in Time Petri Nets. In
Burkhard, H.D., Czaja, L., Starke, P., eds.: Proceedings of the CS&P’97 Work-
shop, Warsaw (1997) 105–111

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
second edn. MIT Press (2001)

10. Starke, P.H.: INA - Integrated Net Analyzer, Berlin (1997) Manual.
11. Lui, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-

real-time enviroment. JACM 20 (1973) 46–61
12. Graham, R.: Bounds on the performance of scheduling algorithms. In Coffman,

E., ed.: Computer and job scheduling theory. John Wiley and Sons (1976) 165–227
13. Stankovic, J.A., Spuri, M., Natale, M.D., Buttazzo, G.C.: Implications of classical

scheduling results for real-time systems. IEEE Computer 28 (1995) 16–25

