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1 Introduction

Biochemical networks are modelled at different abstraction levels. It is common
sense to differentiate between quantitative (kinetic) models and qualitative (stoi-
chiometric or even purely causal) models. The long-term objective of quantitative
models is to predict the systems’ dynamic behaviour. They are commonly used
as soon as the necessary kinetic parameters are known, such as substance concen-
trations, equilibrium constants, and reaction rates. Related evaluation methods
are typically based on solutions of systems of differential equations, see e. g.
[9]. Corresponding tools are e. g. GEPASI [15] and E-CELL [25]. But, available
evaluation packages for quantitative models do not support any model validation
techniques.

Contrary, qualitative models are generally used only, if kinetic parameters
are not available or incomplete. Therefore, they consider the steady state of a
biochemical network, where the kinetic parameters are supposed to be constant.
All these qualitative models are based on some graph-theoretical description
of the system topology, which is defined in case of stoichiometric models by
the known stoichiometric equations. Then, the system topology - or structure -
may be validated for self-consistency or sensible biochemical interpretation using
approved graph theory results.

In this paper, we bridge the gap between quantitative and qualitative models
and apply a timed version of bichromatic graphs, the time Petri nets [16], for
modelling and analysis of molecular biological systems. We demonstrate how to
develop quantitative models of biochemical networks in a systematic manner,
starting from the underlying qualitative one. For this purpose, we exploit the
well-established Petri net analysis technique of transition invariants, which may
be interpreted as a characterisation of the system’s steady state behaviour. For
the analysis of the derived quantitative model, given as time Petri net, we present
a structural technique to decide the time-dependent realisability of a transition



sequence, esp. of a transition invariant, given by its Parikh vector. Moreover,
the shortest and longest time length for a transition sequence can be calculated.
The crucial point of the presented approach is the total avoidance of any state
space construction. Therefore, it may be applied also to infinite systems, i. e.
unbounded Petri nets.

This extended abstract is organized as follows. The next two sections intro-
duce into qualitative and quantitative modelling of biochemical networks using
Petri nets, followed by a discussion of the quantitative analysis. Afterwards, the
proposed approach is demonstrated using a representative case study, the su-
crose breakdown pathway in the potato tuber [10]. Finally, we summarize some
related work.

2 Qualitative Modelling

Living organisms require a continuous influx of free energy to carry out their
various functions. The term metabolism alludes to the overall process, through
which living systems acquire and utilise the free energy they need. During this
process many chemical reactions take place, by which chemical compounds are
converted into other chemical compounds, often catalysed by special enzymes.
Refering to the processes’ purpose, these involved primary chemical compounds
are called metabolites. Additionally, there exist auxiliary compounds, which are
generally supposed to be ubiquitous ones. Despite of the complexity of their in-
ternal processes, living systems maintain - under normal conditions - a steady
state, where all primary and auxiliary compounds have reached a dynamic con-
centration equilibrium. With other words, the concentrations of all compounds
are constant.

Metabolic networks, often also called metabolic pathways, consist of numer-
ous consecutive enzymatic reactions, transforming input compounds, the sub-
strates, via several intermediate compounds into output compounds, the prod-
ucts. We have here an infinite continuous flux of chemical compounds. The steady
state is maintained by a sophisticated mesh of metabolic controls. In metabolic
pathways the chemical reactions of metabolites, given by their stoichiometric
equations, are usually known, whereas the metabolite concentrations and other
reaction constants are often unknown.

To derive a qualitative Petri net model of the biochemical network under
the steady state assumption, each biochemical compound (metabolites, auxil-
iary compounds) is assigned to a place. The relations between biochemical com-
pounds, established by chemical reactions, are represented by transitions, mod-
elling a biochemical atomic event. The corresponding arc multiplicities reflect
the given stoichiometric relations.

This straightforward modelling principle has been applied successfully to a
variety of biological pathways, see [26] for a bibliography of related papers, and
[6] for three representative case studies. The Petri net structure mirrors the
biochemical topology, and the incidence matrix of the Petri net is identical to
the stoichiometric matrix of the modelled metabolic system.



Following this line, we get place-bordered models, where the input com-
pounds appear as source nodes (no predecessors) and the output compounds
as sink nodes (no successors). To animate and analyse such a model, we need
a model component to describe the environment behaviour producing the input
compounds and consuming the output compounds. There are basically three
styles, how such an environment behaviour can be described, compare [6].

We use here a quite simple one, where the tokens for all input compounds are
generated by supplemental input transitions (which are now the source nodes of
the net), while the tokens of all output compounds are consumed by supplemen-
tal output transitions (becoming the new sink nodes). We get transition-bordered
net models. Doing so, no assumptions about the quantitative relations between
input/input, input/output, and output/output compounds are made. The ex-
pected Petri net behaviour consists of all partial order sequences of chemical
reactions from the input to the output compounds respecting the given stoichio-
metric relations.

Transitions without preplaces, i. e. without preconditions, may fire infinitely
often. So, they are obviously live and all their immediate postplaces are un-
bounded. Generally, the whole net is expected to be live and simultaneously
unbounded in all places. Consequently, no analysis methods can be applied,
which rely on a state space construction. Sometimes, the expected properties
can be deduced by property-preserving structural reduction rules.

In the following section we demonstrate how to derive systematically timing
parameters from a structural property of the qualitative model, which reflect the
steady state. The imposed time restrictions might make the model bounded.

3 Quantitative Modelling

To transform a qualitative model into a quantitative one, still representing the
steady state behaviour, we exploit a fundamental behavioural Petri net property
- the transition invariants, which are called in the following T-invariants for short.

T-invariants, introduced 1973 in [12], are multi-sets of transitions, able to
reproduce a given marking, i. e. in the context of metabolic Petri nets - sets
of chemical reactions, able to reproduce a given distribution of chemical com-
pounds. Due to the fact of state reproduction, an observed behaviour, estab-
lishing a T-invariant, may happen infinitely often, resulting into cyclic system
behaviour.

To describe all possible behaviour in a given cyclic system, it would be ob-
viously of great help to have all system’s basic (cyclic) behaviour, the so-called
minimal T-invariants. In [24] they are called elementary modes. We get all min-
imal T-invariants by determining a generating system for all solutions of the
following system of inequalities:







C · x = 0
x ≥ 0
x 6= 0

,



whereby C is the incidence matrix – a (card(P ) × card(T )) - matrix with P for
the set of places and T for the set of transitions – and x is the Parikh-vector of
a transition sequence in the net. Then, any system behaviour may be described
by a non-negative integer linear combination of minimal T-invariants.

Moreover, due to the steady state assumption, the components of a minimal
T-invariant correspond to the relative firing rates of the involved transitions to
maintain – while firing continuously – the given state. Relative firing rates may
be simulated, using a timed transition model, by adjusting the transition times
appropriately.

The calculation of T-invariants requires only structural reasoning, the state
space does not have to be generated. Therefore, the danger of the famous state
space explosion problem does not apply here. However, solving the integer linear
programming problem, as given above, is known to be NP-complete.

4 Quantitative Analysis

Time Petri Nets (TPN) are classical Petri nets (PN), where a time interval [at, bt]
is associated to each transition t, whereby at and bt are relative to the time, when
t was last enabled. When t becomes enabled, it can not fire until at time units
have elapsed, and it must fire not later than bt time units, unless t is disabled
by the firing of another transition. Firing a transition takes no time. The time
is designed by real numbers, but the interval bounds are rational numbers. It
is easy to see (cf. [20]) that w. l. o. g. the interval bounds can be considered as
integers only.

Every possible situation in a given TPN can be described completely by a
state z = (m, h) consisting of a (place) marking m and a time marking h. The
(place) marking, which is a place vector, is defined like the marking notion in
classical PN. Thus, m(p) gives the number of tokens in the place p in the net. The
time marking, which is a transition vector, describes the time circumstance in the
considered situation: the value h(t) shows the time elapsed since the transition
t became most recently enabled, if t is enabled at the marking m, and h(t) = ]

otherwise.
Of special interest are the so-called integer states. A state z = (m, h) is an

”integer” one, iff h(t) is an integer or ] for each t.
The set of all reachable states for a certain TPN, i.e. the state space of the

net, is in general infinite (and dense), of course. However, in [21] it is shown that
the state space can be given parametrically and that the knowledge of the net
behaviour in the reachable ”integer” states is sufficient to determine the entire
behaviour of the net at every time. The set of the integer states is finite, if
and only if the time net is bounded. Thus, when a TPN is bounded, qualitative
and quantitative analyses can be done using the integer states only. In case
of unbounded TPN, a lot of properties can be studied using the parametrical
description.

In this work, metabolic systems are modelled by TPNs. In order to give time
windows for the recurrent processes the shortest and longest time length have to



be computed. As already introduced in [8] we use the parametric description of
a given transition sequence in two ways: first, in order to decide if the sequence
can fire in the TPN; and second, applying linear optimisation, to verify deadlines
by computing the longest time length of the sequence. In [8] it is shown that the
shortest and the longest time length between two markings m and m′ (exactly,
between two states, the place markings of which are m and m′) is (if finite) an
integer one.

5 Case Study - Central Carbon Metabolism in the Potato

Tuber

The accumulation of starch in the Solanum tuberosum (potato tuber) is a crucial
point in biotechnology. The major flux in the potato tuber carbon metabolism
is the conversion of sucrose through hexose phosphates. Nearly all genes, be-
lieved to be directly involved in the sucrose breakdown transformation, have
been cloned by transgenic approaches. However, some fundamental questions
are still open. A deeper understanding of the network behaviour, underlaying
the whole metabolism, might be obviously of help.

Sucrose delivered to the tuber can be cleaved in the cytosol by invertase to
yield glucose and fructose, or by sucrose synthase to yield fructose and UDP-
glucose. By hexokinase, fructokinase, and UDPglucose pyrophosphorylase hex-
osephosphates are produced, which are equilibrated by the action of phospho-
glucose isomerase and phosphoglucomutase, and could lead either to starch syn-
thesis, to glycolysis, or to sucrose synthesis through sucrose phospahate synthase
and sucrose phosphate phosphatase.

Altogether, this pathway is characterised by 16 chemical stoichiometric equa-
tions, seven of them are reversible ones. For more details see [10]. The correspond-
ing Petri net, see Figure 1, consists of 17 places (10 primary compounds, among
them one input compound eSuc, and one output compound starch, and 7 ubiq-
uitous substances) and 25 transitions (9 for the non-reversible reactions, 2·7 for
the reversible reactions, one input transition g eSuc, and one output transition
r starch). There are 19 minimal T-invariants covering the net. Seven of them
are trivial ones, corresponding to the reversible reactions. The remaining twelve
non-trivial T-invariants are exploited for the calculation of the transitions firing
rates, as sketched in section 3.

Using the parametric description approach, as sketched in section 4, it can be
shown that all minimal T-invariants are still realizable in the steady state of the
derived time Petri net model. Moreover, the time windows for the T-invariants’
duration can be calculated.

6 Related Work

The idea to represent chemical systems, consisting of chemical compounds and
chemical reactions, by net models has already been mentioned 1976 by C. A.
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Fig. 1. The hierarchical Petri net model of the sucrose-to-starch pathway in the potato
tuber. The macro transitions, given as two centered squares, hide each the two com-
plementary transitions modelling reversible reactions. The flat transitions depict the
generating input or consuming output transitions, respectively. Shadowed nodes stand
for fusion nodes, modelling ubiquitous auxiliary substances. The given marking reflects
a state, where all transitions are enabled.

Petri in his paper on interpretations of net theory [19]. The first paper, really
demonstrating the modelling of metabolic processes by Petri nets, appeared 1993



[23]. In the meantime, several research groups followed this line. But a closer
look on the literature (see [26] for a bibliography) reveals that the majority of
papers, applying Petri nets for modelling and analysis of biological systems, con-
centrate on quantitative aspects. Typical examples of used Petri net extensions
are stochastic Petri nets [17], [18] and hybrid Petri nets [4], [13], [14], but also
coloured Petri nets [5] as well as discrete time extensions [11] have been em-
ployed for that purpose. Contrary, qualitative aspects are discussed only in a
few papers, see e.g. [23], [22], [6], [7]. No paper is known to discuss and present
an approach how to derive the quantitative model in a systematic manner from
the qualitative one.

Computations, similar to the ones discussed in section 4, have also been made
for a slightly modified TPN in [3]. The proofs there are based on the analysis
method of TPN, introduced in [2] and further considered in [1].
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