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Extended Abstract

In this study we consider a model of the relationship between cdc2 and cyclin in the cell cycle,
considered by [Tys91]. It is a “first approximation“ of the cell cycle as a hypergraph:
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Figure 1: In step 1, cyclin is synthesized de novo. Newly synthesized cyclin may be unstable (step 2). Cyclin

combines with cdc2-P (step 3) to form pre-maturation promoting factor (preMPF). At some point after heterodimer

formation, the cyclin subunit is phosphorylated. ... The cdc2 subunit is then dephosphorylated (step 4) to form

active MPF. In principle, the activation of MPF may be opposed by protein kinase (step 5). Assuming that

active MPF enhances the catalytic activity of the phosphatase, I arrange that MPF activation is switched on in

an autocatalytic fashion. Nuclear division is triggered when a sufficient quantity of MPF has been activated, but

concurrently active MPF is destroyed by step 6. Breakdown of the MPF complex releases phosphorylated cyclin,

which is subject to rapid proteolysis (step 7). Finally, the cdc2 subunit is phosphorylated (step 8, possibly reversed

by step 9), and the cycle repeats itself. (Tyson, J.J.)

In Fig. 3 we describe the model, given by Tyson as a hypergraph, as a DI-PN. The table in
Fig. 2 shows the derivation of the minimal and the maximal durations for each transition for the
initial p-marking m0 with: m0(aa) = 12, m0(C2) = 12, and the remaining places do not contain
tokens in m0. This initial marking was chosen so that the skeleton is live and bounded.



ti ki min rate max rate min dur. max dur. [ ⌈min dur.⌉, ⌈max dur.⌉ ]

r1 0.015 0.015 0.18 100

18

200

3
[6, 67]

r3 200 200 28800 1

28800

1

200
[0, 0]1

r4 10 5

18

2560

144

144

2560

18

5
[0, 4]2

r′4 0.018 9

500

27

125

125

27

500

9
[5, 56]

r6 0.1 0.1 1.2 5

6
10 [1, 10]

r7 0.6 0.6 7.2 5

36

5

3
[1, 2]

r8 10 10 1200 1

120

1

10
[01, 1]

r9 0.1 0.1 1.2 5

6
10 [1, 10]

Figure 2: Table: Evaluation of the lower and the upper bound for the duration of each transition with

the initial p-marking m0 with: m0(aa) = 12, m0(C2) = 12 in the DI-PN given in Fig. 3

Why we did chose this initial place-marking? In order to keep the net live adding time each
transition has to be live. Transition r4 can fire if the place M contains at least 2 tokens. For that
it is necessarily that holds:

2 · min dur.(r′4) ≤ max dur.(r6).

From this it follows that
2 ·

(

1/max rate(r′
4
)
)

≤ 1/min rate(r6)

. Hence, it have to be true
2 · min rate(r6) ≤ max rate(r′

4
).

Consequently, the minimal number of tokens [M ]min of the place M and the maximal number of
tokens [pM ]max of place pM have to fulfill the inequation

2 · k6 · [M ]min ≤ k′

4[pM ]max,

i.e.
2 · 0.1 · 1 ≤ 0.018 · [pM ]max.

At least, we obtain [pM ]max ≤ 11.111, i.e. if [pM ]max ≥ 12 then the transition r4 cannot fire and
the net is not live. Thus, an initial marking m0 with m0(aa) = 12, m0(C2) = 12 is a minimal one
so that the derived DI-PN is also live.

Furthermore, there are two P-invariants, covering the skeleton. Thus the skeleton is bounded.
The total token sum of both P-invariants is 12 ; and we consider all places to be 12-bounded.

According to the transformation rule, introduced in [Pop07] we transform the Duration-Interval-
Petri net (short: DI-PN) into a Time Petri net (short: TPN). This TPN can be reduced. (1) The
transitions r2 and r5 can be removed, they will never fire. (2) The transformation can be simplified
for the transitions r1, r7 and r8, because none of them is involved in a conflict, and they all have
minimal duration greater than zero (for more cf. [Pop07]). (3) Finally, the transformation for t3
can be simplified because the maximal bound for its duration in the D-TPN is zero. Thus, we
obtain the TPN given in Fig. 4, which models the cell division cycle described in [Tys91].

The skeleton of this net is bounded (the state space contains 101,840 markings) and live. Hence,
the TPN is also bounded. However, the state space contains more than 20 millions essential states.

1These values are very small in relation to the rest. Therefore they are rounded to zero.
2These values are obtained using the mass-action equation, given in [Tys91]: F ([M ]) = k′

4
+ k4 · ([M ]/[CT ])2,

where [CT ] = [pM ] + [M ] + [C2] + [CP ] (a P-invariance).Than the rate equation is: k4 · [pM ]([M ]/[CT ])2. Please,
notice that the notation [X] used by Tyson means a p-marking of a place X. We consider two p-markings – one with
minimal number of tokens and one with maximal number such that the transition is enabled. These are [pM ] = 1,
[M ] = 2 and [CT ] = 12 in the minimal p-marking and [pM ] = 4, [M ] = 8 and [CT ] = 12 in the maximal p-marking.
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Figure 3: Modeling the cell division cycle: cdc2 and cyclin interactions (Tyson, 1991, 6 variables). r1 :

aa → Y, r2 : Y → aa, r3 : CP + Y → pM, r′4 : pM → M, r4 : pM + 2M → 3M, r5 : M → pM, r6 : M →

C2 + Y P, r7 : C2 → CP, r8 : CP → C2, r9 : Y P → aa. The rates are: k1 = 0.015, k2 = 0, k3 = 200, k4 =

10 − 1000 (adjustable), k′

4 = 0.018, k5 = 0, k6 = 0.1 − 10 (adjustable), k7 = 0.6, k8 >> k9, k9 >> k6. In

this Petri net model k4 >> k′

4, k4 models autocatalysis.

In order to have a TPN with a smaller state space we use a new initial p-marking: m0 with
m0(aa) = 4, m0(C2) = 4 and we modify some intervals slightly:

r1 r3 r4 r′4 r6 r7 r8 r9

[ min dur. , max dur. ] [17, 67] [0, 0] [2, 30] [19, 56] [34, 60] [1, 2] [1, 1] [4, 10]
.

The skeleton of this net is bounded (the state space contains 477 markings) and live. The TPN
is also bounded and live and the state space contains 1,053,509 essential states and 8,571,845 arcs
although there are 303 p-markings 3 only. In the following we call this TPN Tyson net for short.

The minimal time for starting the dephosphorylation of the cdc2 in order to form active MPF
modelled with r4 is not less than 74 minutes.

Please note, that decreasing the number of tokens in the place C2 to 3 in the initial state leads
to a difference in the liveness behavior of the net and its skeleton: the skeleton is live, but the net
has a dead transition.

Please note, our time models provide also immediate transitions, although in reality nothing
happens without consuming time. However, immediate transitions help to keep interval boundaries
small, as we have just seen. Often, system activities may be classified into activities with signif-
icant time consumption and those with non-significant (much less) time consumption. Without
immediate transitions, such a difference had to be modelled by an appropriate absolute difference
of time values. With immediate transitions, all time values can be scaled down relatively to a
suitable time axis. Moreover, immediate transitions allow a straightforward incorporation of the
working time concept.

Finally, we would like to mention another approach to obtain a time-dependent Petri net from
a timeless one which is a model of a considered biochemical network. It based on the relationship
between steady states in the network and the T-invariants in the model. However, the derived
time constraints are relative time values, and thus not suitable for the computation of absolute
time bounds as considered in this paper. For more see [Pop05].

3The reachability graph was computed with INA (cf. [Sta03])



Using the transformation introduced in [Pop07] we obtain the following TPN:
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Figure 4: TPN-model for the cell division cycle: cdc2 and cyclin interactions. The interval bounds

(minimal and maximal durations) are rounded up.
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