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Extended Abstract

In this paper we present a Petri net with time restrictions at the places and compare these time
dependent Petri nets with classical (timeless) Petri nets.

Petri nets with time windows (tP-PN) are derived from classical Petri nets. Additionally, each
place p is associated with a time interval [lp, up]. When a token arrives in a place p, it can not
leave p before lp time units have elapsed. During the time interval (window) [lp, up] the token
can leave p. At the end of the interval there is not a force for leaving. When the token remains
longer in the place p as up time units then the current time of the token in the place p is reset
modulo up. When t becomes enabled, it can fire when enough tokens in its input places can leave
them. In other words: t can fire if t is enabled and all time windows of enough tokens in all input
places of t are “open”. The firing itself of a transition takes no time. The time is designed by real
numbers, but the interval bounds are nonnegative rational numbers. It is easy to see that w.l.o.g.
the interval bounds can be considered as integers only. Thus, the interval bounds lp and up of any
place p are natural numbers, including zero and lp ≤ up or up = ∞.

Every possible situation in a given tP-PN can be described completely by a time marking M

with M(p) ∈ (R+
0 )∗ for each place p. In general, each tP-PN has infinite number of time markings.

Thus the central problem for analysis of a certain tP-PN is the knowing of its state space.

1 Introduction

1.1 Basic Notations

As usual, we use the following notations in this paper: N is the set of natural numbers, N+ :=
N\{0}. Q+

0 , respectively R+
0 , is the set of nonnegative rational numbers, and respectively the set

of nonnegative real numbers. T ∗ denotes the language of all words over the alphabet T , including
the empty word ε ; l(ω) is the length of the word ω.

1.2 Statics

Definition 1. The pair P = (N , I) is called Petri net with time windows (short: tP-PN) if

• N = (P, T, F, V, m0) is a classical Petri net (short: PN)

• I : P → Q+
0 × (Q+

0 ∪ {∞}) with I(p) = (lp, up) and lp ≤ up for all places p ∈ P .



The Petri net S(P) := N is called the skeleton of P.

Example 1. In figure 1 we can see an example of a tP-PN P1.
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Figure 1: Example for a tP-PN.

Definition 2. Let P be a tP-PN. The function M : P → (R+
0 )∗ is called a time marking of P.

Definition 3. Let P be a tP-PN and let m0 be the initial marking of S(P). Then M0 is the initial

marking of P with

M0 :=

{

ε , iff m0(p) = 0

0m0(p) , otherwise
.

Remark 1. A token can only have the time 0 after initialization and, as shown below, after a
transition has fired.

Example 2. The initial marking M0 for P1 (see Example 1) is M0 = (0, 0; 0; ε; ε; ε).

Let P be a tP-PN and M a time marking of P . Furthermore let P be the set of places in P .
Then obviously, the marking mM := (l(M(p1), . . . , l(M(p|P |)))) is a marking in S(P).

1.3 Dynamics

Definition 4. Let M be a time marking and let t be a transition in the tP net P. Furthermore let
M(p) = a

p
1 . . . ap

n be the time marking for the place p with a
p
1 ≥ a

p
2 ≥ . . . ≥ ap

n. Then t is ready to

fire in M if

• t is enabled at M , i.e. t− ≤ mM

• ∀p(p ∈ •t −→ ∀j(j ∈ {1, . . . , t−(p)} −→ lp ≤ a
p
j ≤ up)).

Definition 5. Let P be a tP-PN and let T be the set of transitions and M a time marking in P.
A transition t can fire at the marking M if t is ready to fire at M . After firing t the tP-PN P is
in the marking M ′:

Let M(p) = a
p
1 . . . ap

n and t−(p) = k and t+(p) = r. Then we have

M ′(p) :=

{

a
p
k+1 . . . ap

n0r , iff k < n

0r , iff k = n
.

We denote this with M
t
−→ M ′.



Definition 6. Let P be a tP-PN and M its time marking. Let τ ≥ 0 be a real number. Then time
τ can elapse in P in the marking M . The net is then in the time marking M ′:

Let M(p) = a
p
1 . . . ap

n. Let be j ∈ N with 1 ≤ j ≤ n with up < aj + τ but aj+1 + τ ≤ up. Then
we have M ′(p) = b

p
1 . . . bp

n with

b
p
j :=

{

a
p
j+k + τ , iff j + k ≤ n

(ap
j+k + τ) m̂od up , otherwise

.

Where

a m̂od b :=

{

a mod b , iff a mod b 6= 0

b , iff a mod b = 0
.

A token can only have the time zero after its “new arriving” in a place. It is easy to see that

the time zero of a token is equivalent to the time up by the definition of m̂od in an arbitrary
tP-PN.

2 Properties

In this section we compare tP-PNs and classical Petri nets with respect to reachability and liveness.
The reachability behaviour of a tP-PN is the same as of its skeleton. It is easy to see, that

the power of the tP-PNs is the same as the power of the classical PN and therefore they are not
equivalent to the Turing machines.

The liveness behaviour of an arbitrary tP-PN differs from the liveness behaviour of its skeleton.

2.1 Reachability

Let N = (P, T, F, V, m0) be a Petri net. A transition sequence is called an arbitrary word
σ ∈T ∗.

A firing sequence σ = t1t2 . . . tn in N is a feasible transition sequence, i.e. there is a marking
m′ so that m0

σ
−→ m′ in N .

A sequence σ = t1t2 . . . tn is called firing sequence in a tP-PN P if there exists a time marking

M ′ such that M0

τ1t1τ2t2...τntn

−−−−−−−−−−→ M ′. In this case the sequence σ(τ) = τ1t1τ2t2 . . . τntn is called a
feasible run in S(P).

Theorem 1. Let P be a tP net and S(P) its skeleton. Then the firing sequence σ is a firing
sequence in S(P) if and only if σ is a firing sequence in P.

2.2 Liveness

Remark 2. When a tP-PN P net is live then S(P) is live as well. The opposite does not hold in
general.

Proof. This small example shows the tP-PN P2. It is obvious that S(P2) is live. If we assume the
sequence t1 5.0 t1 then it is pretty easy to see that t2 can not become ready to fire.

Remark 3. Let P be a tP-PN with V (f) = 1 for each f ∈ F and 1 ≤ |•t|. Then it is true: P is
live iff S(P) is live.

Remark 4. Note that restricting the net by 1 ≤ |•t| is essential as figure 3 shows.



P2
[9,10]

[0,1]

t12t

P1

2

2

Figure 2: The timeless net is live but in the tP net the transition t2 may not be able to fire.
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Figure 3: The timeless net is live but the tP-PN may not.

Lemma 1. Let P be a tP-PN and M a time marking in P, t an arbitrary transition in P and
t enabled in M . Furthermore, let 1 ≤ |•t| and let the following estimate hold for each p with
(p, t) ∈ F :

lp ≤ up



1 −
max
t∈T

V (p, t) − 1

|M(p)|



 .

Then t can become ready to fire in M .

Theorem 2. Let P be a tP-PN and let S(P) be its skeleton so that 1 ≤ |•t| for every t ∈ T and
so that S(P) is live. Furthermore let the following estimate hold for all places p ∈ P :

lp ≤
up

max
t∈T

V (p, t)
.

Then P is live.

Remark 5. Theorem 2 gives us a sufficient condition only. It is easy to find an example for a net
that violates the conditions in the theorem but still is live.

Corollary 1. Let P be a tP-PN and let S(P) be live. Let 1 ≤ |•t| for every t ∈ T . Furthermore
let for each place p ∈ P one of the following conditions be true

i) lp = 0

ii) up = ∞

Then P is live too.



3 Conclusion

In this paper we have presented a PN with time restrictions at the places. Usually time dependent
PN are equivalent to the Turing machins. However, we have shown that the power of this class
of time dependent PNs is equivalent to the power of the classical PNs (and therefore, it is not
equivalent to the Turing machine) and the reachability is the same it has a different liveness
behaviour.

For a restricted class of nets we could show that the liveness behaviour can be the same. The
examples in this paper also show that without the restriction given in theorem 2 further research
has to be done.

Furthermere we surmise, that the following property is true: Let P be an arbitrary tp-PN and
let S(P) be live and let the following estimate be true for all places p ∈ P :

lp ≤
up

∑

t∈p•
V (p, t)

.

Then P is live.


