
A Formally-Proven Composable Architecture for
Real-Time Systems

Jan Richling
Computer Architecture Group
Institute for Computer Science
Humboldt University of Berlin

richling@informatik.hu-berlin.de

Matthias Werner
Communication and Operating

System Group
Institute for Telecommunication Systems

Technical University Berlin
mwerner@cs.tu-berlin.de

Louchka Popova-Zeugmann
Group “Logic in Computer Science”

Institute for Computer Science
Humboldt University of Berlin

popova@informatik.hu-berlin.de

Abstract— The Message Scheduled System (MSS) is a compos-
able real-time architecture that allows the extension of systems at
runtime without compromising timing guarantees. In this paper,
we introduce the MSS architecture and discuss its guarantees as
well as the way of proving the holding of these guarantees for
any system that follows the MSS architecture.

I. I NTRODUCTION

Embedded real-time systems are widely used in cars, air
planes, automation in industry and buildings. They have fre-
quently hard temporal requirements, i.e., violations of dead-
lines may result in major inconvenience, cost or catastrophes.

In this paper, we discuss the formal guarantees of a real-time
architecture, calledMessage Scheduled System(MSS) [7] and
sketch the formal proof. MSS architecture iscomposableat
runtime, i.e., it is possible to add new components to extenda
system at runtime without invalidating certain properties. The
decisionwhethera component can be added or not is also
done at runtime, what distinguishes MSS from other systems
such as TTA [2]. We are able to proof that systems of the MSS
architecture are safe composable with respect to their timing
behavior, i.e., following the composability decision it isnot
possible to construct a MSS instance that compromises timing
guarantees. As a formalism for our proof we usePrioritized
Timed Petrinets(PTPN) as introduced in [8].

The remainder of this paper is organized as follows: Sec-
tion II introduces shortly our understanding of “architecture”.
Section III describes the actual MSS architecture. In Sec-
tion IV we describe the formal guarantees of MSS. Section V
gives a short overview about the correctness proof. Finally,
Section VI concludes our paper and suggests future research.

II. A RCHITECTURE ANDPROPERTIES

In our notion, an architecture is a set of rules how to build
systems, rather than a system built regarding certain rules
(organization). One has to distinguish between propertiesof
the architecture and properties of a system that is constructed
within a certain architecture.

Then, composability is a property of the architecture, not
of the system. We distinguish between safe composability
and reachable composability, both with respect to a system
propertyP . An architectureA is safe composable with respect

to P iff all systems built in A have the propertyP . An
architectureA is reachable composable with respect toP iff
A allows to build at least one system that has the propertyP .
By combination of safe and reachable composability, one can
derive sub-architectures that include all desired properties. A
more in-depth discussion of this topic one may find in [9].

Following this approach, MSS is a safe composable archi-
tecture with respect to timeliness properties as formulated in
Section IV-B.

III. M ESSAGESCHEDULED SYSTEM ARCHITECTURE

Message Scheduled System(MSS) [7] is a composable
architecture for distributed embedded real-time systems.

Please note, that we focus on the nonfunctional timing
behavior. Composition of functional behavior is a well-known
area. Successful architectures that allow composition with
respect to functional behavior are, e.g., CORBA [5].

The idea of MSS is to map all decisions about addition
of components (composability decisions) onto schedulability
tests at different levels. The corresponding schedulability
decisions are based on known and established scheduling
techniques likerate monotonic algorithm(RMA) and ear-
liest deadline first(EDF) [4]. These scheduling techniques
condense scheduling information in more abstract metrics,as
e.g.,load. Using such metrics, temporal behavior of a system
in MSS can be described without including all details: The
parameters of three different scheduling levels are sufficient
to allow a decision about addition of further components. The
test whether the components are composable can be calculated
easily (applying three schedulability tests) in linear time.

MSS is aware of three different types of components (Fig-
ure 1):
The first one is atask (Qi) which is in MSS an execution
unit that produces a set of outgoing messages from a set of
incoming messages or events1. Considering such a task as
component is useful with respect to composability because
in many relevant cases it is sufficient to add a new task to

1Within the MSS context, a task is a rather small execution unit. Thus, the
restriction that it only has to deal with messages at begin and end of execution
is justified. If communication is needed in between, a task may be split into
several parts.

node node

communication system with known properties

task

task

task

task

task

task

mss-
scheduler

mss-
scheduler

Interface

timer timer

event

timer
event

message interface

messages

Fig. 1. Message Scheduled System

get new functionality. A task is characterized by its messages
(input and output) and by its temporal behavior (worst case
execution time if it runs on a certain node, and its periodicity.
Please note, that if it is not yet assigned to (i.e., composed
with) a node, a task has no runtime.

The next type of components arenodes(Jj). A node in MSS
is a machine capable of executing and scheduling tasks and
to send/receive the messages needed and produced by these
tasks. Other than atask, a node is not pure software, it is
a combination of hardware (the processor, the memory, etc.)
and software (operating system, MSS-scheduler). Considering
such a “mixed” unit as an element allows unique view to the
system without distinguishing between hardware and software.
Actually, this reflects the reality of an embedded real-time
system: Components in such a system often are devices that
are delivered together with their operating software without
the option of separation or modification.

The third type of components is thecommunication sys-
tem (CS) that is able to transfer messages between nodes.
Each MSS system has exactly one communication system.
The communication system has real-time behavior and offers
priorities, i.e., a message is delivered within a fixed time2,
and if more than one message is tried to be sent in parallel,
only the message with the highest priority will be sent without
delay. E.g., the CAN bus [1] may serve as an example for a
communication systems that incorporates both requirements.

IV. B EHAVIOR AND GUARANTEES OFMSS

A. Dynamic Behavior

During runtime, a task may receive two kinds of events:
external events (e.g., sensor inputs) and messages as a result
of a task’s computation (output messages of other tasks).

Messages are transmitted by the communication system.
They are handled in a publisher-subscriber semantic by tasks
using the node’s MSS-scheduler as a dispatcher and the
communication system as a backbone. Each task has a set of
special events (called “wake-up set”, WUS) that can contain
both messages or external events and is not allowed to be
empty.

At runtime, a MSS system behaves as follows: A taskQi

running at nodeJj receives an event that is element of the

2This implies an unique message size, which is frequently thecase in the
target domain of control systems.

wake-up set. This triggers task’s execution which requireswi

time units of CPU cycles3 of node Jj . Messages that are
not element of the WUS can be read during execution in
their latest version — for these messages MSS does not give
temporal guarantees. Once the execution is finished, the task
sends all messages from its output set. These again may be
received by other tasks and so on.

As for most real-time architectures, we assume a certain
behavior for system stimuli, i.e., for external events. MSS
knows four different types of temporal behaviors that will be
assumed for external events and guaranteed for internal events
(e.g., messages), respectively. Given an evente, we assign a
time parameterpe that describes its periodicity in the following
ways:

pe
pe

occurence of event

(a) Periodic behavior

occurence of event
>pe_

(b) Sporadic behavior

pe occurence of event

(c) Periodic behavior with jitter

occurence of event
>pe_

(d) Sporadic behavior with jitter

Fig. 2. Possible timing behaviors

• Periodic behavior An evente that appears at timet will
reappear at timet + pe — see Figure 2(a).

• Sporadic behaviorAn evente that appears at timet may
reappear, but not before timet + pe (Figure 2(b)).

• Periodic behavior with jitter Within all intervalsI =
(t, t + kpe], k = 1, 2, . . ., at leastk − 1 instances, and at
mostk + 1 instances of evente appear. (Figure 2(c))

• Sporadic behavior with jitter Within all intervalsI =
(t, t+kpe], k = 1, 2, . . ., at mostk+1 instances of event
e appear. (Figure 2(d))

Please note, that there is a half-order of the behaviors in
the way that periodic behaviors are stricter than sporadic
behaviors, and jitter-free behaviors are stricter than jittered
behaviors.

3These CPU cycles are subject of scheduling at the node level because
other tasks may also need CPU cycles.

MSS is able to deal with sporadic behavior with jitter which
implies that all the other behaviors from Figure 2 (which are
often used in control systems) are also supported.

B. Model and Guarantees

In addition to the introduced notation for different MSS
components, we denote the following definitions:

• Jj(Qi) = 1 if task Qi runs at nodeJj , and0 else.4

• Yi,j = 1 if task Qi broadcasts a message that is element
of the wake-up set of taskQj , and0 else5.

• Hi = 1 if task Qi gets input from an external source and
0 else.

• Y is the set of messages,Y k is a message
• H is the set of external events,Hk is an external event

Also, in order to perform the proof of MSS’ correctness the
following assumptions are made:

• Transmitting a message using the communication system
costs one time unit.

• All nodes are identical.6

• For all tasksQi the worst-case execution timewi is
known.

• External events have at least sporadic behavior with jitter,
as described in Section IV-A, and for each evente, pe is
known.

To a running MSS instance, new task and nodes may be added
at runtime. However, such a composition may only take place,
if all of the following preconditions hold for the resulting
system:

∑

∀i:Jj(Qi)=1

wi

pi ≤ ln(2) (C.1)

∑

∀k

1

pY k ≤ ln(2) (C.2)

∀i, j, ei ∈ WUS(Qj), ∃ti ∈ [0, pei] ⇒ td(ti) ≤ ti (C.3)

with tdi(t) = 2 · pQj

+
i−1
∑

k=1

pQj

·

⌈

t

pek

⌉

These preconditions can be tested without really composing
the new system. The calculations are simple since it is possible
to use results from previous composition decisions as basis
and to distribute the calculation among the nodes (each node
calculates only its part of the conditions). If preconditions (C.1
- C.3) are fulfilled, MSS guarantees the following temporal
behavior after composition:

G.1 Each taskQi will start execution after its node receives
the corresponding wake-up eventY i at time t and will
finish beforet + 2pY i

+ pQi

.

4Please note, that several tasks can run on one node, but a taskcan run
only on exactly one node.

5Please note, that we do not consider messages here that are not element
of WUSs because these messages have no impact onto the temporal behavior
of the task.

6This is for sake of shortness. In reality, MSS can deal with different types
of nodes, which especially leads to different runtimes at different nodes.

G.2 For each chain of tasksQ1,Q2, . . . , Qn with Y i is WUE
of Qi and Yi,i+1 = 1 for all n = 1, 2, . . . , n − 1, the
following is true: IfY 1 is delivered at timet, all messages
by Qn will be delivered at timet + 2

∑

i

(pY i

)

These guarantees are invariant during follow-up composi-
tions or decompositions, i.e., they remain unchanged as long
as all participating elements are present in the system.

Based on G.1 and G.2 all end-to-end times in a MSS
instance are predictable.

V. PROVING THE CORRECTNESS OFMSS

Although the conditions C.1 - C.3 are based on established
results of scheduling theory (cf., e.g., [3]), it is necessary to
prove the correctness of the MSS architecture: The classical
results hold only if certain preconditions (e.g., independence of
tasks) are fulfilled. In MSS, not all of these preconditions hold
(e.g., the execution of a task triggers a message that in turn
triggers the execution of another task), and thus it is unclear
if the scheduling conditions are valid.

For the sake of brevity, we provide only the outline of our
correctness proof. The full proof is part of the dissertation of
Jan Richling, which is yet unpublished.

In order to prove that MSS is composable with respect to
temporal behavior we have to show thateachinstance of MSS,
i.e., each system that can be composed using the components
and rules of MSS, fulfills the guarantees G.1 and G.2, as long
as the conditions C.1-C.3 are met.

For a single instance (actual systemS) this can be done
using the following steps:

• Create a formal specification ofS
• Map violations of G.1 and G.2 onto error conditionE

within the specification
• Show that for each behavior ofS error conditionE

cannot occur

MSS as an architecture allows infinite number of concrete
systems so this approach cannot be used for all possible
instances. Instead, we have to use the concept of composability
not only for the architecture, but also for its correctness proof
in a way that we can specify the MSS architecture, not only
concrete instances.

We use Prioritized Timed Petrinets (PTPN) [8] for speci-
fying MSS components and systems in a way that we create
a mapping between a MSS component (e.g., a task) and the
PTPN that specifies the temporal behavior of this component.
Furthermore, we define rules how to compose these component
specifications according to a composition in MSS.

Using this approach, we are able to construct (or compose)
the formal specification of each MSS instance out of the
specification of components. For this purpose, we wrote a
program that automatically generates the overall specification
out of specification blocks specifying components of MSS,
following a simple composition language [6]. Figure 4 shows
an example of a resulting (i.e., composed) PTPN model of a
single MSS instance.

MSS system architecture
formalism
(PTPN)

formalism
(PTPN)

MSS−instance concrete system

composition

of MSS elements
composition
of specification

elements

system architecture

concrete specification of a

of MSS specifications

Fig. 3. Composable specification of MSS

Applying the ideas from Section II, we now have an
architecture for specification (consisting of elements andrules
for composition) where each element specifies a concrete MSS
instance. This architecture of PTPN specifications can be seen
now as the specification of the MSS architecture. Figure 3
shows the relation between these two architectures and their
elements.

The architecture of MSS specifications defines a subclass
of all possible PTPNs. In order to prove the composability of
MSS we now have to show that within this architecture an
error conditionE cannot occur. In our PTPN specification,E

means that states representing violations of guarantees G.1 or
G.2) are not reachable within the subclass of PTPN defined by
our architecture. Currently, we use instrumentation within the
PTPN (cf. place labeled “error” in Figure 4) to express these
undesired states. We hope we can eliminate this construct in
future and prove within the “pure” specification.

In order to prove this, we use the technique presented in [8],
facilitating state equation and firing inequalities for PTPN.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced the MSS architecture that is
composable with respect to real-time properties. We presented
the formal conditions and guarantees of the MSS architecture.
The derived formulae are similar to well known equations
from Time Demand Analysis(TDA) [3]. However, since the re-
quirements of TDA do not meet MSS requirements (especially
independence condition), a formal proof of MSS correctness
is needed. A sketch of this proof has been presented as well.

In future we plan to remove some instrumentation from
our PTPN model to gain a more easier proof of MSS’
composability property.

Also, we would like to apply our concept of proving
composability using PTPN to other composable architectures
such as TTA [2] or composable service architectures [9].

REFERENCES

[1] CAN Specification Version 2.0. Robert Bosch GmbH, Stuttgart, 1991.
[2] H. Kopetz, M. Braun, C. Ebner, A. Krueger, D. Millinger, R. Nossal, and

A. Schedl. The design of large real-time systems: The time-triggered
approach. InIEEE Real-Time Systems Symposium, pages 182–189,
Vienna, Austria, 1995.

<0> <1> <0>

<1>

<1>

<1>

<1>

<1>

<1>

<0><1><0>

CS
Number of place

Number of transition

<duration of transition>

Multiplicity of arc

error

<1>

<1>

<0>

<0>

<0>

<0>

<1>

<1>

<0>

<0>

<0>

<0>

Q
1
8

H
1
1

H
1
2

H
1
3

H
1
4

Q
1
1 Q

1
2

Q
1
3

Q
1
4

Q
1
5 Q

1
6

Q
1
7

w 1

h
1
1

h
1
2

h
1
4h

1
3

h
1
5

h
1
7

h
1
6

q
1
1

q
1
2

q
1
3

q
1
4 q

1
5

q
1
6

q
1
7

q
1
8

<g >1 <p >1 <p >1

w 1

Q
2
8

H
2
1

H
2
2

H
2
3

H
2
4

Q
2
1 Q

2
2

Q
2
3

Q
2
4

Q
2
5

Q
2
6

Q
2
7

w 2

h
2
1

h
2
2

h
2
4h

2
3

h
2
5

h
2
7

h
2
6

q
2
1

q
2
2

q
2
3

q
2
4 q

2
5

q
2
6

q
2
7

q
2
8

<g >2 <p >2 <p >2

w 2

<0> <1> <0>

<1>

<1>

<1>

<1>

<1>

<0>

<0>

<0>

<0>

Q
m
8

H
m
1

H
m
2

H
m
3

H
m
4

Q
m
1 Q

m
2

Q
m
3

Q
m
4

Q
m
5

Q
m
6

Q
m
7

w m

h
m
1

h
m
2

h
m
4h

m
3

h
m
5

h
m
7

h
m
6

q
m
1

q
m
2

q
m
3

q
m
4 q

m
5

q
m
6

q
m
7

q
m
8

<g >m <p >m <p >m

w m

...
J

1
J

n

O=priority

O=1

O=m+1

O=1

O=1

O=1

O=m+1

O=m+1

O=m+1

O=m-1
O=m-1

O=m+1O=m+1

O=1

O=m

O=m

Generator
Task

Fig. 4. PTPN model of a MSS instance

[3] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In 10th
IEEE Real-Time Systems Symposium, pages 66–171, 1989.

[4] C. L. Lui and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time enviroment.JACM, 20(1):46–61, January 1973.

[5] OMG. The Common Object Request Broker: Architecture and Specifica-
tion. Object Management Group, Inc., Framingham, MA, USA, 1995.

[6] J. Richling, M.Werner, and L. Popova-Zeugmann. Automatic composition
of timed petrinet specifications for a real-time architecture. InProceedings
of 2002 IEEE International Conference on Robotics and Automation,
Washington DC, May 2002.

[7] Jan Richling. Message Scheduled System - A Composable Architecture
for Embedded Real-Time-Systems. InProoceedings of 2000 Int. Confer-
ence on Parallel and Distributed Processing techniques andApplications
(PDPTA 2000), volume 4, pages 2143–2150, Jun 2000.

[8] M. Werner, L. Popova-Zeugmann, and J. Richling. A methodto
prove non-reachability in prioritized duration petrinets. Fundamentae
Informatica, 61(3,4):351–368, 2004.

[9] M. Werner, J. Richling, N. Milanovic, and V. Stantchev. Applying
composability to dependable embedded systems. InProceedings of the
International Workshop on Dependable Embedded Systems at the 22nd
Symposium on Reliable Distributed Systems (SRDS 2003), Oct 2003.

