A Formally-Proven Composable Architecture for
Real-Time Systems

Jan Richling Matthias Werner Louchka Popova-Zeugmann
Computer Architecture Group Communication and Operating Group “Logic in Computer Science”
Institute for Computer Science System Group Institute for Computer Science
Humboldt University of Berlin Institute for Telecommunication Systems Humboldt University of Berlin
richling@nformatik. hu-berlin.de Technical University Berlin popova@ nf ormati k. hu- berlin. de

maer ner @s. tu-berlin. de

Abstract— The Message Scheduled System (MSS) is a composto P iff all systems built in A have the propertyP. An
able real-time architecture that allows the extension of sstems at architectureA is reachable composable with respectRdff
runtime without compromising timing guarantees. In this paper, A allows to build at least one system that has the proprty

we introduce the MSS architecture and discuss its guaranteeas B binati f saf d habl bilit
well as the way of proving the holding of these guarantees for y combinafion of sale and reachable composabiliity, one can

any system that follows the MSS architecture. derive sub-architectures that include all desired progeriA
more in-depth discussion of this topic one may find in [9].
l. INTRODUCTION Following this approach, MSS is a safe composable archi-

Embedded real-time systems are widely used in cars, tdcture with respect to timeliness properties as formdlate
planes, automation in industry and buildings. They have fr&ection IV-B.
quently hard temporal requirements, i.e., violations cddie
lines may result in major inconvenience, cost or cataseeph

In this paper, we discuss the formal guarantees of a rea-tim Message Scheduled Syst¢MSS) [7] is a composable
architecture, calletlessage Scheduled SystgvtSS) [7] and architecture for distributed embedded real-time systems.
sketch the formal proof. MSS architecture dsmposableat Please note, that we focus on the nonfunctional timing
runtime, i.e., it is possible to add new components to exgendehavior. Composition of functional behavior is a well-kmo
system at runtime without invalidating certain propertiese area. Successful architectures that allow compositiorn wit
decisionwhethera component can be added or not is alstespect to functional behavior are, e.g., CORBA [5].
done at runtime, what distinguishes MSS from other systemsThe idea of MSS is to map all decisions about addition
such as TTA [2]. We are able to proof that systems of the MS$ components (composability decisions) onto scheduitgbil
architecture are safe composable with respect to theingmitests at different levels. The corresponding schedutgbili
behavior, i.e., following the composability decision itret decisions are based on known and established scheduling
possible to construct a MSS instance that compromisesgimiiechniques likerate monotonic algorithm(RMA) and ear-
guarantees. As a formalism for our proof we WRsoritized liest deadline first(EDF) [4]. These scheduling technigues
Timed Petrinet{PTPN) as introduced in [8]. condense scheduling information in more abstract metaiss,

The remainder of this paper is organized as follows: See-g.,load. Using such metrics, temporal behavior of a system
tion Il introduces shortly our understanding of “architget’. in MSS can be described without including all details: The
Section Il describes the actual MSS architecture. In Segarameters of three different scheduling levels are saffici
tion IV we describe the formal guarantees of MSS. Section ¥ allow a decision about addition of further componentse Th
gives a short overview about the correctness proof. Finaltgst whether the components are composable can be cattulate
Section VI concludes our paper and suggests future reseagssily (applying three schedulability tests) in lineardim

MSS is aware of three different types of components (Fig-
Il. ARCHITECTURE ANDPROPERTIES ure 1):

In our notion, an architecture is a set of rules how to buil@ihe first one is aask (Q?) which is in MSS an execution
systems, rather than a system built regarding certain rulasit that produces a set of outgoing messages from a set of
(organization). One has to distinguish between propedfesincoming messages or evehtConsidering such a task as
the architecture and properties of a system that is coristtuccomponent is useful with respect to composability because
within a certain architecture. in many relevant cases it is sufficient to add a new task to

Then, composability is a property of the architecture, not
of the system. We distinguish between safe composabilit 1V_/ithin the MSS context, a task_is a rather small exgcutiom. arius, t_he

o . restriction that it only has to deal with messages at begiheara of execution
and reachable composability, both with respect to a SySt%‘rj‘ustified. If communication is needed in between, a tasl b split into
propertyP. An architectured is safe composable with respecteveral parts.

IIl. M ESSAGESCHEDULED SYSTEM ARCHITECTURE

| Loevent node wake-up set. This triggers task’s execution which requirés
time units of CPU cycles of node J7. Messages that are
not element of the WUS can be read during execution in

messages ST;'I their latest version — for these messages MSS does not give
. temporal guarantees. Once the execution is finished, te tas
- message interface Interface-| : i
mes- sends all messages from its output set. These again may be
scheduler received by other tasks and so on.
\ As for most real-time architectures, we assume a certain
communication system with known properties behavior for system stimuli, i.e., for external events. MSS

knows four different types of temporal behaviors that wil b

assumed for external events and guaranteed for internateve

(e.g., messages), respectively. Given an evente assign a

time parametep® that describes its periodicity in the following
ys:

Fig. 1. Message Scheduled System

get new functionality. A task is characterized by its messag
(input and output) and by its temporal behavior (worst ca
execution time if it runs on a certain node, and its peridgici
Please note, that if it is not yet assigned to (i.e., composed
with) a node, a task has no runtime. © . 4 I%mme of e"el’“ .

The next type of components atedes.J7). A node in MSS H H + ‘
is a machine capable of executing and scheduling tasks and
to send/receive the messages needed and produced by these
tasks. Other than #&ask a nodeis not pure software, it is
a combination of hardware (the processor, the memory, etcy 5 _occurence of event
and software (operating system, MSS-scheduler). Corisgler | ! ! !
such a “mixed” unit as an element allows unique view to the
system without distinguishing between hardware and soéwa (b) Sporadic behavior
Actually, this reflects the reality of an embedded real-time
system: Components in such a system often are devices tha{? occurence of event
are delivered together with their operating software witho L | | 1
the option of separation or modification.

The third type of components is tr@ommunication sys- (c) Periodic behavior with jitter
tem (CS) that is able to transfer messages between nodes.
Each MSS system has exactly one communication systemT occurence of event
The communication system has real-time behavior and offers— = 11 | | 1
priorities, i.e., a message is delivered within a fixed fime
and if more than one message is tried to be sent in parallel, (d) Sporadic behavior with jitter
only the message with the highest priority will be sent witho
delay. E.g., the CAN bus [1] may serve as an example for a Fig. 2. Possible timing behaviors
communication systems that incorporates both requiresnent

(a) Periodic behavior

IV. BEHAVIOR AND GUARANTEES OFMSS « Periodic behavior An evente that appears at timewill
reappear at time 4+ p* — see Figure 2(a).

) i . . e« Sporadic behaviorAn evente that appears at timemay
During runtime, a task may receive two kinds of events: reappear, but not before tinter p¢ (Figure 2(b)).

external events (e.g., sensor inputs) and messages asla resy perindic behavior with jitter Within all intervals I =
of a task’s computation (output messages of other tasks). (t,t+kp°], k= 1,2,..., at leastk — 1 instances, and at
Messages are transmitted by the communication system. o1+ 1 instances of event appear. (Figure '2(0))
They atrﬁ hancéle,d |rlc/lgspublr;sr:jerl-subscnbe(;_sen:arr:tlc bys(;a?::_ Sporadic behavior with jitter Within all intervals/ =
using the node’s -scheduler as a dispatcher an € (titkp, k=12, ..
communication system as a backbone. Each task has a set of (a
special events (called “wake-up set”, WUS) that can contain _)]
both messages or external events and is not allowed to Hgase note, that there is a half-order of the behaviors in
empty. the way that periodic behaviors are stricter than sporadic
At runtime, a MSS system behaves as follows: A tagk behaviors, and jitter-free behaviors are stricter thatergid

running at node/? receives an event that is element of th@&haviors.

A. Dynamic Behavior

., at mostk + 1 instances of event
e appear. (Figure 2(d))

2This implies an unique message size, which is frequentlyctise in the 3These CPU cycles are subject of scheduling at the node |eiuse
target domain of control systems. other tasks may also need CPU cycles.

MSS is able to deal with sporadic behavior with jitter whicls.2 For each chain of task3!,Q?, ..., Q" with Y is WUE
implies that all the other behaviors from Figure 2 (which are of Q* andY; ;1 = 1 foralln = 1,2,...,n — 1, the
often used in control systems) are also supported. following is true: If Y is delivered at time, all messages

by Q" will be delivered at timet + 2 Y*
B. Model and Guarantees yQ %:(p)

In addition to the introduced notation for different MSS These guarantees are invariant during follow-up composi-
components, we denote the following definitions: tlonsnor d¢C_0mPOS'“|0n& i.e., they remain ur;}changed ag lon
. JI(Q') =1 if task Q' runs at node/’, ando else? as all participating elements are present in t_ e sys_tem.
. Yi; = 1if task Q' broadcasts a message that is eIementBased on G.l_and G.2 all end-to-end times in a MSS
of the wake-up set of tas’, and0 elsé. Instance are predictable.
o H; =1 iftask Q' gets input from an external source and
0 else.
« Y is the set of messages,” is a message Although the conditions C.1 - C.3 are based on established
« H is the set of external event&]* is an external event results of scheduling theory (cf., e.g., [3]), it is necegda
Also, in order to perform the proof of MSS’ correctness thgrove the correctness of the MSS architecture: The cldssica

V. PROVING THE CORRECTNESS ORMMSS

following assumptions are made: results hold only if certain preconditions (e.g., indepamek of
. Transmitting a message using the communication systéﬁ?ks) are fulfilled. In MSS, not all of these preconditiondh
costs one time unit. (e.g., the execution of a task triggers a message that in turn
. All nodes are identicd. triggers the execution of another task), and thus it is wncle
. For all tasksQ' the worst-case execution timei is If the scheduling conditions are valid. _
known. For the sake of brevity, we provide only the outline of our

. External events have at least sporadic behavior with jitt&orrectness proof. The full proof is part of the dissertaiod

as described in Section IV-A, and for each evenpe is Jan Richling, which is yet unpublished. _
known. In order to prove that MSS is composable with respect to

To a running MSS instance, new task and nodes may be ad&%aaporat!beh?V|ort\r/]vethave;o show tlemzhms_,tan;:; of MSS, N
at runtime. However, such a composition may only take pladee" each system that can be composed using the components

if all of the following preconditions hold for the resultingalnd rules Of.MSS’ fulfills the guarantees G.1 and G.2, as long
system: as the conditions C.1-C.3 are met.

For a single instance (actual syste$i this can be done
using the following steps:

> =<in(2) (C.1) . create a formal specification o

' « Map violations of G.1 and G.2 onto error conditidn
within the specification

o Show that for each behavior o error condition £
cannot occur

L_< In(2) (C.2)

Vi, j,e; € WUS(Q?),3t; €[0,p%] = td(t;) <t; (C.3)

—1
with ¢d; (t) = 2 ,ij+§ :pQJ' . { t -‘ MSS as an architecture allows infinite number of concrete
3 - . .
1 ek systems so this approach cannot be used for all possible

instances. Instead, we have to use the concept of compibgabil
These preconditions can be tested without really Composinot only for the architecture, but also for its correctnesmp

o - i

. . . L .Ir°a way that we can specify the MSS architecture, not onl

the new system. The calculations are simple since it is plessi Y pecify y
concrete instances.

to use r(_asu_lts from previous composition decisions as basi e use Prioritized Timed Petrinets (PTPN) [8] for speci-
and to distribute the calculation among the nodes (each n%(;e

. - o Ing MSS components and systems in a way that we create
calculates only its part of the conditions). If precondisqC.1 .
- C.3) are fulfilled, MSS guarantees the following tempor Trg?\]pﬁ']n? betvx{?en t?] NLSS comlpé)nr(]ant. (e.gf.’tr? task) and tr;e
behavior after composition: at specifies the temporal behavior of this component.

o)) . Furthermore, we define rules how to compose these component
G.1 Each taskQ® will start execution after its node rece'vesspecifications according to a composition in MSS
;E.he. (r:]ol;refspondlggy\ivakeélgp everit at timet and will Using this approach, we are able to construct (or compose)
inish beforet + 2p™ +p= . the formal specification of each MSS instance out of the
4Please note, that several tasks can run on one node, but @aastun speC|f|cat|on of comp_onents. For this purpose, we yyrote a
only on exactly one node. program that automatically generates the overall spetidita
SPlease note, that we do not consider messages here thattaetement out of specification blocks specifying components of MSS,

of WUSs because these messages have no impact onto the &bigloavior foIIowing a simple composition |anguage [6] Figure 4 shows
of the task.

5This is for sake of shortness. In reality, MSS can deal wiffedént types a_n example _Of a reSUItmg ("e" Composed) PTPN model of a
of nodes, which especially leads to different runtimes &edint nodes. single MSS instance.

<> Task
h

Generator
system architecture
of MSS specifications

MSS system architecture

(PTPN)

formalism ‘

composition composition
of MSS elements of specification
elements
concrete ‘ ‘ specification of a

MSS-instance formalism concrete system
(PTPN)

Fig. 3. Composable specification of MSS

Applying the ideas from Section Il, we now have a
architecture for specification (consisting of elements anes

now as the specification of the MSS architecture. Figure 8
shows the relation between these two architectures and thei .-~~~
elements. i hZ

error conditionE cannot occur. In our PTPN specificatiaf,
means that states representing violations of guarantelesiG.
G.2) are not reachable within the subclass of PTPN defined
our architecture. Currently, we use instrumentation wwitihie

undesired states. We hope we can eliminate this construct in
future and prove within the “pure” specification. FR——

In order to prove this, we use the technique presented in [8]umberof vansiion
facilitating state equation and firing inequalities for RI.P R

Muiltiplicity of arc J J

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced the MSS architecture that is Fig. 4. PTPN model of a MSS instance
composable with respect to real-time properties. We ptegen
the formal conditions and guarantees of the MSS architectur
The derived formulae are similar to well known equationg] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic sciiag

from Time Demand Analys(é'DA) [3] However. since the re- algorithm: Exact characterization and average case bmhaun 10th
) ! IEEE Real-Time Systems Symposipages 66—171, 1989.

qmrements of TDA d0 not meet MSS requirements (especialliy ¢ . Lui and J. W. Layland. Scheduling algorithms for fiwiogram-
independence condition), a formal proof of MSS correctness ming in a hard-real-time enviromendACM, 20(1):46-61, January 1973.

is needed. A sketch of this proof has been presented as W@]LOMG. The Common Object Request Broker: Architecture and Specific
P P tion. Object Management Group, Inc., Framingham, MA, USA, 1995.

In future we plan to remove some in_strumentation fromg) 3. Richling, M.Werner, and L. Popova-Zeugmann. Autdmebmposition
our PTPN model to gain a more easier proof of MSS’ oftimed petrinet specifications for a real-time architeetun Proceedings
composability property. of 20_02 IEEE International Conference on Robotics and Aat@n,

P y prop .y . Washington DC, May 2002.
Also, we Woulld like to apply our concept of Proving7) Jan Richling. Message Scheduled System - A Composalibitacture
composability using PTPN to other composable architesture for Embedded Real-Time-Systems. Rmooceedings of 2000 Int. Confer-
; ; ence on Parallel and Distributed Processing techniques Apglications
such as TTA [2] or composable service architectures [9]. (PDPTA 2000) volume 4, pages 21432150, Jun 2000
[8] M. Werner, L. Popova-Zeugmann, and J. Richling. A method
prove non-reachability in prioritized duration petrinet§-undamentae

[1] CAN Specification Version 2.Robert Bosch GmbH, Stuttgart, 1991. Informatica 61(3,4):351-368, 2004.

[2] H. Kopetz, M. Braun, C. Ebner, A. Krueger, D. Millinger, Rossal, and (9] M. Werner, J. Richling, N. Milanovic, and V. Stantchev. pplying
A. Schedl. The design of large real-ime systems: The tiigeitred composability to dependable embedded systemsPréceedings of the

) ; International Workshop on Dependable Embedded Systentea?2nd
h. InlEEE Real-Ti Syst S yva 182-189,) . L
?/iriepnrr?:CAustr?a 1995, ea-lime Sysiems Symposiymges Symposium on Reliable Distributed Systems (SRDS 2013)2003.

REFERENCES

