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Abstract. In this paper we study how it is possible to control Petri net behavior using time
constrains. Controlling here means forcing a process to behave in a stable way by associating
time intervals to transitions and hence transforming a classic Petri net into a Time Petri
net.
For Petri net models stability is often ensured by liveness and boundedness. These properties
are crucial in many application areas, e.g. workflow modeling, embedded systems design,
and bioinformatics. This paper deals with the problem of transforming a given live, but
unbounded Petri net into a live and bounded one by adding time constraints. We specify
necessary conditions for the solvability of this problem and present an algorithm for adding
time intervals to net transitions in such a way that the resulting net becomes bounded while
staying live.

1 Introduction

Distributed systems range in almost all areas: from technical systems to biological systems or to
systems of business processes. Although such systems are very different in their subject matter
they all have common properties, such as reiteration of all subprocesses or returning to some
initialization in the system, or containing finitely or infinitely many different states etc. Petri nets
are widely used for modeling and analysis of distributed systems. The first two properties concern
the liveness of the model, the second two are the subject of boundedness studies. In most of the
practical systems the infiniteness of all reachable states is an undesired property.

A typical example is a business process model, represented by a workflow net — a special kind of
a Petri net. The essential property for workflow nets is soundness, also called proper termination
[1]. Soundness is intensively studied in the literature [1, 2, 7, 11, 13, 16]. Checking soundness of
workflow nets can be reduced to checking liveness and boundedness for the extended net obtained
by connecting the source place with the sink place through a new transition in the initial workflow
net. Thus ensuring liveness and boundedness of a model can be applied for asserting soundness
of workflow nets. In biological systems liveness and boundedness ensure system stability [8, 9]. In
embedded systems scheduling is often necessary due to the resource limitations [10].

In practice it may often happen that a given live Petri net is not bounded. Then it would be
helpful to ”repair” the model by adding priorities or time to transitions so, that the net becomes
bounded staying live. In other words, the question is whether we can ”repair” the model with the
help of priority or time constrains. In [5] J. Desel proposed an approach for a brute-force-scheduling
to ensure bounded behavior, employing transitions of a given subset infinitely often. Here we study
when and how time constraints can ensure boundedness of a given live Petri net, retaining its
liveness. In contrast to brute-force approach, time constraints allow local and more flexible control
— not just forcing one ’good’ execution.

In [12] we have considered a way to add priorities in order to transform a live and unbounded
model, represented by a Petri nets, into a live and bounded one. For this reason we have defined
a sub-tree of the reachability tree, the so-called ”spine tree”. The spine tree contains all minimal
cyclic runs together with prefixes leading to the cycles. In this paper we use the spine-based
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coverability tree, derived from the spine tree, in order to add time intervals to the transitions in
such a way that the resulting Time Petri net is live and bounded. Of course, this is not always
possible.

Priority scheduling is an appropriate solution for workflow systems. For biological systems
it is not so good, since there is no mechanism to assign priorities to events in biological systems.
Scheduling biological systems with the help of time constraints would provide a much more natural
solution [18].

In this work we show how to associate time constrains to a given live and unbounded Petri net
in such a way that the resulting time-dependent net is live and bounded. Thereby we want to fully
preserve the structure of the given net. For that we use the spine tree and the spine-coverability
tree, introduced in [12] and compute a parametrical state space for a Time Petri net, for which the
underlying timeless Petri net is the given one.

The paper is organized as follows. In Section 2 we first give a more detailed motivation for
this work and then recall some basic definitions in the theory of Petri nets. Section 3 presents the
main contributions of the paper: a sufficient condition for transforming a live and unbounded Petri
net into a live and bounded one by adding time intervals and an algorithm for computing these
intervals, as well as, an example illustrating the algorithm. Section 5 contains some conclusions.

2 Preliminaries

2.1 Motivation

Liveness in bounded Petri nets is considered in numerous works. In [19] Ridder and Lautenbach
considered the relationship between liveness in bounded nets and T-invariants. For marked graph
Petri nets characterization of liveness and boundedness in terms of reachability graphs was done
in [3]. Scedulability analysis of Petri nets, aimed at ensuring infinitely repeated firing sequences
within a bounded stated space, was studied in [10].

In [9] and [8] M. Heiner considered the problem of transforming live and unbounded Petri nets
into live and bounded nets by adding time durations to transitions. It is shown in these works, that
when a Petri net is covered by T-invariants (i.e. each transition enters into at least one T-invariant
with a non-zero component), T-invariants can be used for computing time durations for transitions,
making the net bounded. In other words, this method allows to transform a live and unbounded
Petri net, covered by T-invariants, into a live and bounded Timed Petri net [18] with the same
structure. Unfortunately this method does not always work, as it was shown in [9].

Furthermore, as it is shown in [12], a possibility to transform a live and unbounded net into a
bounded one can depend not only on T-invariants, but on initial markings as well. So, the algorithm
for making a live Petri net also unbounded with the help of transition priorities, which we presented
in [12], essentially takes into account initial states. This is the case also for the algorithm assigning
time intervals to the transitions and represented in this article.

Live and unbounded Petri nets were considered also in [6]. The notion of weak boundedness
was introduced there. A Petri net N is called weakly bounded, iff it is unbounded, but for every
reachable marking m in N a bounded run is enabled in m, i.e. from every reachable marking we
can find a way to continue the execution in such a way, that the number of tokens in each place
will be not greater that some fixed value. The distinction between bounded, weakly bounded and
not weakly bounded Petri nets is very important for applications. However, till now, there is no
algorithm for distinguishing weakly bounded and not weakly bounded Petri nets. There is a reason
to believe that these notions are connected with a possibility to transform an unbounded Petri net
into a bounded one by adding some time, or priority constraints.

2.2 Basics

Let N denote the set of natural numbers (including zero) and let Q+
0 be the set of all non-negative

rational numbers including zero. All notions and notations used here are generally known and can
be found in [4].



Let P and T be disjoint sets of places and transitions with P ∪ T 6= ∅ and let F ⊆ (P × T ) ∪
(T × P ) → N be a flow relation. Then N = (P, T, F ) is a (unmarked) Petri net. A marking in a
Petri net is a function m : P → N, mapping each place to some natural number (possibly zero). A
(marked) Petri net (N ,m0) is an unmarked Petri net N with its initial marking m0. Further we
call marked Petri nets just Petri nets and use vector notation for marking by fixing some ordering
of places in a Petri net.

Pictorially, P -elements are represented by circles, T -elements by boxes, and the flow relation
F by directed arcs. Places may carry tokens represented by filled circles. A current marking m is
designated by putting m(p) tokens into each place p ∈ P .

For a transition t ∈ T an arc (x, t) is called an input arc, and an arc (t, x) – an output arc.
A transition t ∈ T is enabled in a marking m iff ∀p ∈ P m(p) ≥ F (p, t). An enabled transition

t may fire yielding a new marking m′, such that m′(p) = m(p) − F (p, t) + F (t, p) for each p ∈ P
(denoted m

t→ m′, or just m → m′). Then we say that a marking m′ is directly reachable from a
marking m.

A marking m is called dead iff it enables no transition.

A run in N is a finite or infinite sequence of firings m1
t1→ m2

t2→ . . . . An initial run in (N ,m0)
is a run, starting from the initial marking m0. A cyclic run is a finite run starting and ending at
the same marking. A maximal run is either infinite, or ends with a dead marking.

We say that a marking m is reachable from a marking m′ in N iff there is a run m′ = m1 →
m2 → · · · → mn = m; m is reachable in (N ,m0) iff m is reachable from the initial marking. By
R(N ,m) we denote the set of all markings reachable in N from the marking m. A run σ in (N ,m)
is called feasible iff σ starts from a reachable marking.

A T-invariant in a Petri net with n transition t1, . . . , tn is an n-dimensional vector α =
(α1, · · · , αn) with αi ∈ Nat such that after firing of every transition sequence containing ex-
actly αi occurrences of each transition ti in an arbitrary marking m (if possible) leads to the same
marking m.

A reachability graph of a Petri net (N ,m0) presents detailed information about the net behavior.
It is a labeled directed graph, where vertices are reachable markings in (N ,m0), and an arc labeled
by a transition t leads from a vertex v, corresponding to a marking m, to a vertex v′, corresponding

to a marking m′ iff m
t→ m′ in N .

A reachability graph may be also represented in the form of a reachability tree, which can be
defined in a constructive form. We start from the initial marking as a root. If for a current leaf v
labeled with a marking m, there is already a node v′ 6= v lying on the path from the root to v and
labeled with the same marking m, we notify v to be a leaf in the reachability tree. If not, nodes
directly reachable from m and the corresponding arcs are added. Note, that in a reachability tree
run cycles are represented by finite paths from nodes to leafs.

A place p in a Petri net is called bounded iff for every reachable marking the number of tokens
residing in p does not exceed some fixed bound κ ∈ N. A marked Petri net is bounded iff all its
places are bounded.

It is easy to see, that a Petri net (N ,m0) is bounded iff its reachability set R(N ,m0), and
hence its reachability graph, are finite.

A marking m′ covers a marking m (denoted m′ ≥ m) iff for each place p ∈ P , m′(p) ≥ m(p).
The relation ≥ is a partial ordering on markings in N . By the firing rule for Petri net, if a sequence
of transitions is enabled in a marking m, and m′ ≥ m, then this sequence of transitions is also
enabled also in m′. A marking m′ strictly covers a marking m (denoted m′ > m) iff m′ ≥ m and
m 6= m. redundantly For an unbounded Petri net, a coverability tree gives a partial information
about the net behavior. It uses the notion of a generalized marking, where the special symbol ω
designates an arbitrary number of tokens in a place. Formally, a generalized marking is a mapping
m : P → N∪{ω}. A coverability tree is defined constructively. It is started from the initial marking
and is successively constructed as a reachability tree. The difference is that when a marking m′

of a current leaf v′ in a reachability tree strictly covers a marking m of a node v, lying on the
path from the root to v′, then in a coverability tree the node v′ obtains a marking mω, where
mω(p) = ω, if m′(p) > m(p), and mω(p) = m′(p), if m′(p) = m(p). For generalized markings
enabling of a transition and a firing rule is defined as for usual markings except that ω-marked



places are ignored. Each place p, which was marked by ω, remains ω-marked for all possible run
continuations.

Let N = (P, T, F ) be an unmarked Petri net and let I : T −→ Q+
0 × (Q+

0 ∪ {∞}) be a function
such that for each t ∈ T holds: I(t) = (at, bt) and at ≤ bt. Thus, the function I associates an
interval [at, bt] with each transition t in T . We notate at with eft(t) (earliest firing time for t) and
bt with lft(t) (latest firing time for t).

Here at and bt are relative to the time, when t was enabled last. When t becomes enabled,
it can not fire before at time units have elapsed, and it has to fire not later than bt time units,
unless t got disabled in between by the firing of another transition. The firing itself of a transi-
tion takes no time. The time interval is designed by real numbers, but the interval bounds are
nonnegative rational numbers. It is easy to see (cf. [18]) that w.l.o.g. the interval bounds can
be considered as integers only. Thus, the interval bounds at and bt of any transition t are natural
numbers, including zero and at ≤ bt or bt =∞. A comprehensive introduction can be found in [18].

Z = (N ,m0, I) is called Time Petri net (TPN) and it was first introduced by Merlin [14]. The
marked Petri net (N ,m0) := S(Z) is called the skeleton and I - the interval function of Z.

p2

[0,3]

p3

[2,4]t2t1

p1

[2,3][1,5] t4t3

2

Fig. 1. The Time Petri net Z

Every possible situation in a given TPN can be described completely by a state z = (m,h),
consisting of a (place) marking m and a transition marking h. The (place) marking, which is a place
vector (i.e. the vector has as many components as places in the considered TPN), is defined as the
marking notion in classic Petri nets. The time marking, which is a transition vector (i.e. the vector
has as many components as transitions in the considered TPN), describes the time circumstances
in the considered situation. In general, each TPN has infinite number of states.

The state space of a TPN can be characterized parametrically and it is shown that knowledge
of the integer-states, i.e. states whose time markings are (nonnegative) integers, is sufficient to
determine the entire behavior of the net at any point in time (cf. [17] and [18]. Thus, a reachability
graph for a TPN can be defined so that the nodes of the graph are the reachable integer-states
and a directed edge connects two nodes, from z1 to z2 if there is possible to change from z1 to z2,
considered as states in the TPN. And finally, a reachability tree can be then also defined for TPN
considering the reachable p-markings.

In this paper we use the parametric states in order to restrict the behavior of a live and
unbounded PN to a live and bounded one. The notions parametric state and parametric run can be
easily defined by recursion. Let Z = (P, T, F, V,m0, I) be a Time Petri net and let σ = t1 · · · tn be a
firing sequence in Z. Then, the parametric run (σ(x), Bσ) of σ in Z with σ(x) = x0t1x1 · · ·xn−1tnxn
and the parametric state (zσ, Bσ) in Z are recursively defined as follows:

Basis: σ = ε, i.e., σ(x) = x0.

Then zσ = (mσ, hσ) and Bσ are defined as follows:

1. mσ := mo,

2. hσ(t) :=

{
x0 if t− ≤ mσ

] otherwise
,

3. Bσ := { 0 ≤ hσ(t) ≤ lft(t) | t ∈ T ∧ t− ≤ mσ }



Step: Assume that zσ and Bσ are already defined for the sequence σ = t1 · · · tn.
For σ = t1 · · · tn︸ ︷︷ ︸

:=w

tn+1 = wtn+1 we set

1. mσ := mw +∆tn+1,

2. hσ(t) :=


] if t− 6≤ mσ

hw(t) + xn+1 if t− ≤ mσ ∧ t− ≤ mw ∧
•tn+1 ∩• t = ∅

xn+1 otherwise

,

3. Bσ := Bw ∪ { eft(tn+1) ≤ hw(tn+1) } ∪ { 0 ≤ hσ(t) ≤ lft(t) | t ∈ T ∧ t− ≤ mσ }.

The state zσ together with the set Bσ forms the parametric state (zσ, Bσ). Such a parametric
state also represents the set of all states which can be reached by firing a feasible run of σ. These
states are obtained by combining σ with all possible solutions x of Bσ. Each such solution yields
a feasible run of σ. We denote the set of all states by {zσ | Bσ}, i.e.,

{zσ | Bσ} := {zσ(β(x)) | β(x) is a solution of Bσ}.

A short example should illustrate the calculation of parametric states. We useKσ as a shorthand
for {zσ | Bσ}.

Let us consider the Time Petri net Z in Fig. 1.
It is easy to see that

Kε = {( (0, 1, 1)︸ ︷︷ ︸
mε

, (x0, ], ], x0)︸ ︷︷ ︸
hε

) | {0 ≤ x0 ≤ 3}︸ ︷︷ ︸
Bε

}.

After firing the sequence σ = t4 the net Z2 is in a state belonging to Kσ = Kt4 .

Kt4 = {( (1, 1, 0)︸ ︷︷ ︸
mt4

, (x0 + x1, ], x1, ])︸ ︷︷ ︸
ht4

) | {2 ≤ x0 ≤ 3, x0 + x1 ≤ 5, 0 ≤ x1 ≤ 4}︸ ︷︷ ︸
Bt4

}.

The set of conditions Bt4 is the union of the three sets

Bε, {eft(t4) ≤ hε(t4)} = {2 ≤ x0} and {0 ≤ hσ(t) ≤ lft(t) | t− ≤ mσ} =

{
x0 + x1 ≤ 5,
0 ≤ x1 ≤ 4

}
.

By repeatedly firing the transitions t3 and t4 we obtain the parametric states zt4t3 and zt4t3t4
and Kt4t3 and Kt4t3t4 :

Kt4t3 = {((0, 1, 1), (x0 + x1 + x2, ], ], x2)) |
2 ≤ x0 ≤ 3, x0 + x1 ≤ 5,
2 ≤ x1 ≤ 4, x0 + x1 + x2 ≤ 5,
0 ≤ x2 ≤ 3

}

Kt4t3t4 = {((1, 1, 0), (x0 + x1 + x2 + x3, ], x3, ])) |
2 ≤ x0 ≤ 3, 2 ≤ x1 ≤ 4, 2 ≤ x2 ≤ 3,
0 ≤ x3 ≤ 4, x0 + x1 ≤ 5, x0 + x1 + x2 ≤ 5,
x0 + x1 + x2 + x3 ≤ 5

}.

Obviously, some of the inequalities are redundant. For instance, the inequalities of the set Bt4t3t4
can be reduced to the set {

2 ≤ x0 ≤ 3, 2 ≤ x1 ≤ 4, 2 ≤ x2 ≤ 3,
0 ≤ x3 ≤ 4, x0 + x1 + x2 + x3 ≤ 5

}
.

In general, the number of inequalities in Bσ is at most min{2 ·
(
n · |T |+ 1

)
, (n+ 1) · (n2 + 2)} (cf.

[18]).
Liveness can be defined in several ways for Petri nets [15]. We will use the standard “L4-live”

variant, which states that every transition in a PN is potentially enabled in any reachable marking.
More exactly, a transition t in a Petri net (N ,m0) is called live in (N ,m0) iff for every reachable
marking m in (N ,m0) there exists a sequence of firings starting from m, which includes t.



3 Time Constrains for Boundedness

Let (N ,m0) be a live and unbounded Petri net. We would like to check, whether it is possible to
make this net bounded, not losing its liveness, by transforming it into a Time Petri net (with the
same skeleton), i.e. by adding intervals to its transitions. To solve this problem we will associate
transition intervals (if possible), which would exclude runs leading to unboundedness.

We start by recalling some properties of live and bounded Petri nets considered in our article
[12]. Then, instead to assign priorities to the transitions we add intervals. We will show that this
time solution is more precise than the solution with priorities. In this connection ”more precise”
means that the set of reachable markings in the time-dependent net (sometimes properly) covers
the set of reachable markings in the net with priorities.

It is clear that if a live PN is bounded then there exists a feasible cyclic run, including all
transitions of the PN. Furthermore, a TPN is obtained from a PN by a adding time interval to
each transition. Then the reachability tree is a subgraph of the reachability tree of the PN. Hence,
it is obvious that if for some interval function I the TPN Z = (N ,m0, I) is live and bounded, then
there exists a feasible cyclic run in (N ,m0) which includes all transitions of N .

Proposition 1. Let (N ,m0) be a live and unbounded Petri net. If there exists an interval function
I such that the TPN (N , I,m0) is live and bounded, then there exists a T-invariant without zero
components for N , i.e. all transitions in N are covered by some T-invariant.

As we already set in [12], given a live and unbounded Petri net (N ,m0), before looking for
times, which would transform the net into a bounded (and still live) Petri net, it makes sense first
to check necessary conditions. First one could compute T-invariants for the net N . If there is no
T-invariant, covering all transitions in N , then the net cannot be recovered, i.e., the net cannot
become live due to adding time, priorities etc.

If there is such a T-invariant, then a more strong necessary condition can be checked: whether
there exists a feasible cyclic run in (N ,m0), which includes all transitions in N , i.e. a cyclic run
realizing one of T-invariants with non-zero components. To do this check the algorithm, proposed
in [5] by J. Desel, can be used. This algorithm is based on constructing a coverability net — a
special extension of a coverability graph, and can take an exponential time. However, if a net does
not have too much concurrency and a small number of unbounded places, this method can be
acceptable.

Now let (N ,m0) be a live and unbounded Petri net, and let the above necessary conditions are
satisfied. We would like to find time intervals for the transition that will make the net bounded,
keeping its liveness. The procedure will be illustrated by the net (N ∗,m∗0) in Fig. 2.

a b c d

1

S
3

S

2

S52

S
4

S

Fig. 2. An example of a live and unbounded marked Petri net (N ∗,m∗
0).

The following algorithm is a modification of the algorithm given in [12]. Here reason we use the
stages 1,2 and 3 of the ’old’ algorithm and add new stages 4 and 5.

Stage 1. Find all minimal feasible cycles, which include all transitions. As already
mentioned, this can be done by the technique described by J. Desel in [5]. Moreover, following
this technique for each minimal feasible cyclic run σ we can simultaneously find a finite initial run
τ , such that τσ? is an initial run in (N ,m0).



If (N,m0) does not have such cycles, then the problem does not have a solution. So, let

C(N ,m0) := { τσ | τσ? is an initial run in (N ,m0),
τ does not include σ and
σ includes all transitions in N }

be a set of all minimal feasible cyclic runs together with prefixes leading to the cycles.
Thus, for example, the net (N ∗,m∗0) in Fig. 2 has five minimal cyclic runs with all transitions.

Three of them have empty prefixes, and two have prefixes τ1 = b and τ2 = ba, respectively:

babcda
babcad
babacd

and

τ1=︷︸︸︷
b abacbd
ba︸︷︷︸
τ2=

bacbad
.

Stage 2. Construct a spine tree. A spine tree is a subgraph of a reachability tree, containing
exactly all runs from C(N ,m0).

1,0,1,1,0

b

a

b

0,1,2,1,0

c

a

a c

da

dd

a

1,0,0,1,0 1,0,0,1,0 1,0,0,1,0

1,0,1,1,0

1,0,2,1,0

1,0,0,0,1

0,1,1,1,01,0,1,0,1

0,1,0,0,1

0,1,0,1,01,0,0,0,1

0,1,1,0,1

b

d

d

1,0,0,1,0

0,1,1,1,0

Fig. 3. The spine tree for the net (N ∗,m∗
0).

The spine tree for Petri net (N ,m0) from our example is shown in Fig. 3.
Note, that a spine tree contains the behavior that should be saved to keep a Petri net live.

Stage 3. Construct a spine-based coverability tree. A spine-based coverability tree is a
special kind of a coverability tree, that includes a spine tree as a backbone. Leaves in a spine-based
coverability tree will be additionally colored with green or red. This coloring will be used then for
computing transition priorities.

The spine-based coverability tree for a Petri net (N ,m0) is defined constructively by the fol-
lowing algorithm:

Step 1. Start with the spine tree for (N ,m0). Color all leaves in the spine tree in green.
Step 2. Repeat until all nodes are colored:
For each uncolored node v labeled with a marking m:

1. check whether there is a marking m′, directly reachable from m and not included in the current

tree. For each such marking m′, where m
t→ m′:



(a) Add a node v′ labeled with m′ as well as the corresponding arc from v to v′ labeled with t.
(b) If the marking m′ strictly covers a marking in some node on the path from the root to v′,

then v′ becomes a leaf and gets the red color.
(c) Otherwise, if the marking m′ coincides with a marking labeling some node on the path

from the root to v′, then v′ becomes a leaf and gets the green color.
(d) Otherwise, leave v′ uncolored.

2. Color the node v in yellow.

The spine-based coverability tree for our example net (N ∗,m∗0) is shown in Fig. 4. Here node colors
are used to illustrate the tree construction. A leaf and some inner node have the same color, if they
have the same markings, or the leaf marking strictly covers the marking of its ancestor. Strictly
covering leaves are marked with the ω-symbol, they are ’red’ leaves. All other leaves are ’green’
leaves.

b
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Fig. 4. The spine-based coverability tree for (N ∗,m∗
0): Left: A leaf and some inner node have the same

color, if they have the same markings, or the leaf marking strictly covers the marking of its ancestor. Strictly
covering leaves are marked with the ω-symbol. Right: The spine-based coverability tree for (N ∗,m∗

0) after
finishing stage 3.

Stage 4. Compute a parametric state space. Let T be a spine-based coverability tree.
Consider the TPN (N ,m0, I) with time interval [at, bt] for each transition t ∈ T . All at, bt are
unknown and have to be calculated in stage 5. By the construction of T , all its leaves are colored
either in green, or red. In this stage we construct an interval function I : T → Q+

0 ×Q+
0 . For this

we consider every path from the root to a green leaf as a parametric run. Additionally, we forbid
a branching to a red leaf using strict inequality.

(1) Let vg be a green leaf and let σ be the path from the root to this leaf. Consider the
parametric run (σ(x), Bσ).

(2) Let vr be a red leaf. Consider the path σ from the root to this leaf. Let v∗ be the youngest
ancestor of vr such that at least one run goes from v∗ to a green leaf vg. The initial node v0 is
labeled with the marking m0. Let the node v∗ be labeled with m∗, vr with mr and vg with mg.
Finally, let σ∗ be the path from the root to the node v∗, σr the path from the node v∗ to vg and
trσr the path from the node v∗ to vr. That means, we have the situation

m0
σ∗

→ m∗
σg→ vg, m0

σ∗

→ m∗
tr→σr→ vr, σ = σ∗trσr



and there is not a path from a node in σr to a green one. Hence, using time, we will forbid the
firing of the transition tr in m∗. For this reason we add to Bσ∗ the constrain (strong inequality)
hσ∗(tr) < atr .

Stage 5. Compute a parametric state space. Let

B :=
⋃
{Bσ | σ is an initial run to a green node}∪

{0 ≤ at ≤ bt | t ∈ T}∪⋃
{hσ∗(tr) < atr | w.r.t.Stage4}.

B is the set of all constrains which have to be fulfilled in order to keep the live behavior of the net
and to forbid all transition sequences leading to unboundedness. Clearly, B is a system of linear
inequalities and it can be solved in Q+

0 . Actually, we are interested in finding solutions for all at’s
and bt’s such that the resulting system of inequalities is solvable. Of course, when we can find
rational values for solutions for all at’s and bt’s then we can find also integer values for them.

At this point we would like to notice that instead of the full parametric space of the spine-
based coverability tree we can use only a part of them, consisting of paths including together
all transitions of the net. In this case it is possible that some markings which does not lead to
unboundedness in the PN will be not reachable in the TPN.

Applying the procedure of the stages 4 and 5 to the spine-based coverability tree for our ex-
ample net (N ∗,m∗0) (cf. Fig. 4) we sequentially obtain the following parametric state space and
eventually the following inequality system B:

Kε = {
(

(1, 0, 0, 1, 0), (], x0, ], ])
)
| 0 ≤ x0 ≤ bb},

Kb = {
(

(0, 1, 1, 1, 0), (x1, ], ], ])
)
| ab ≤ x0 ≤ bb, 0 ≤ x1 ≤ ba},

Kba = {
(

(1, 0, 1, 1, 0), (], x2, ], ])
)
| ab ≤ x0 ≤ bb, aa ≤ x1 ≤ ba 0 ≤ x2 ≤ bb},

Kbab =

{(
(0, 1, 2, 1, 0), (x3, ], x3, ])

) ab ≤ x0 ≤ bb, aa ≤ x1 ≤ ba, ab ≤ x2 ≤ bb,
0 ≤ x3 ≤ ba, x3 ≤ bc

}
,

Kbabc =

{(
(0, 1, 0, 0, 1), (x3 + x4, ], ], x4)

) ab ≤ x0 ≤ bb, aa ≤ x1 ≤ ba, ab ≤ x2 ≤ bb,
ac ≤ x3 ≤ bc, x3 + x4 ≤ ba, 0 ≤ x4 ≤ bd

}
,

Kbabcd =

( (0, 1, 0, 1, 0), (x3 + x4 + x5, ], ], ])
) ab ≤ x0 ≤ bb, aa ≤ x1 ≤ ba, ab ≤ x2 ≤ bb,
ac ≤ x3 ≤ bc, ad ≤ x4 ≤ bd, 0 ≤ x5
x3 + x4 + x5 ≤ ba,

 ,

Kbabcda =

( (1, 0, 0, 1, 0), (], x6, ], ])
) ab ≤ x0 ≤ bb, aa ≤ x1 ≤ ba, ab ≤ x2 ≤ bb,
ac ≤ x3 ≤ bc, ad ≤ x4 ≤ bd, 0 ≤ x5
aa ≤ x3 + x4 + x5 ≤ ba, 0 ≤ x6 ≤ bb

 ,

Kbabca =

( (1, 0, 0, 0, 1), (], x7, ], x7)
) ab ≤ x0 ≤ bb, aa ≤ x1 ≤ ba, ab ≤ x2 ≤ bb,
ac ≤ x3 ≤ bc, aa ≤ x3 + x4 ≤ ba, 0 ≤ x4 ≤ bd
0 ≤ x7 ≤ bd, x7<ab

 ,

Here we have add the strong inequality x7<ab in order to forbid the firing of the transition b in
the marking (1, 0, 0, 0, 1).

Kbabcad =

( (1, 0, 0, 1, 0), (], x7 + x8, ], ])
) ab ≤ x0 ≤ bb, aa ≤ x1 ≤ ba, ab ≤ x2 ≤ bb,
ac ≤ x3 ≤ bc, aa ≤ x3 + x4 ≤ ba, 0 ≤ x4 ≤ bd
ad ≤ x7 ≤ bd, x7<ab, 0 ≤ x8, x7 + x8 ≤ bb

 ,

Kbaba =

( (1, 0, 2, 1, 0), (], x9, x3 + x9, ])
) ab ≤ x0 ≤ bb, aa ≤ x1 ≤ ba, ab ≤ x2 ≤ bb,
aa ≤ x3 ≤ ba, x3 + x9 ≤ bc, 0 ≤ x9 ≤ bb,
x9<ab

 ,

Kbabac =

( (1, 0, 0, 0, 1), (], x9 + x10, ], x10)
) ab ≤ x0 ≤ bb, aa ≤ x1 ≤ ba, ab ≤ x2 ≤ bb,
aa ≤ x3 ≤ ba, ac ≤ x3 + x9 ≤ bc, 0 ≤ x9 ≤ bb,
x9 < ab, 0 ≤ x10 ≤ bd, x9 + x10 ≤ bb

 ,



Kbabacd =


(

(1, 0, 0, 1, 0), (], x9 + x10 + x11, ], ])
) ab ≤ x0 ≤ bb, aa ≤ x1 ≤ ba, ab ≤ x2 ≤ bb,
aa ≤ x3 ≤ ba, ac ≤ x3 + x9 ≤ bc,
0 ≤ x9 ≤ bb, x9 < ab, ad ≤ x10 ≤ bd,
x9 + x10 + x11 ≤ bb, 0 ≤ x11

 ,

Kbabacb =


(

(0, 1, 1, 0, 1), (x12, ], ], x10 + x12)
) ab ≤ x0 ≤ bb, aa ≤ x1 ≤ ba, ab ≤ x2 ≤ bb,aa ≤ x3 ≤ ba, ac ≤ x3 + x9 ≤ bc, 0 ≤ x9 ≤ bb,
x9 < ab, 0 ≤ x10 ≤ bd, x9 + x10 + x11 ≤ bb
0 ≤ x12 ≤ ba, x10 + x12 ≤ bd

 ,

Kbabacba =


(

(1, 0, 1, 0, 1), (], x13, ], x10 + x12 + x13)
)
ab ≤ x0 ≤ bb, aa ≤ x1 ≤ ba,
ab ≤ x2 ≤ bb, aa ≤ x3 ≤ ba,
ac ≤ x3 + x9 ≤ bc, 0 ≤ x9 ≤ bb,
x9 < ab, 0 ≤ x10 ≤ bd,
ab ≤ x9 + x10 ≤ bb, aa ≤ x12 ≤ ba,
x10 + x12 + x13 ≤ bd, x13 < ab


,

Kbabacbad =


(
(1, 0, 1, 1, 0), (], x13 + x14, ], ])

)
ab ≤ x0 ≤ bb, aa ≤ x1 ≤ ba,
ab ≤ x2 ≤ bb, aa ≤ x3 ≤ ba,
ac ≤ x3 + x9 ≤ bc, 0 ≤ x9 ≤ bb,
x9 < ab, 0 ≤ x10 ≤ bd,
ab ≤ x9 + x10 ≤ bb, aa ≤ x12 ≤ ba,
ad ≤ x10 + x12 + x13 ≤ bd, x13<ab
0 ≤ x14, x13 + x14 ≤ bb


,

Kbabacbd =


(
(0, 1, 1, 1, 0), (x12 + x15, ], ], ])

) ab ≤ x0 ≤ bb, aa ≤ x1 ≤ ba, ab ≤ x2 ≤ bb,
aa ≤ x3 ≤ ba, ac ≤ x3 + x9 ≤ bc, 0 ≤ x9 ≤ bb,
x9 < ab, 0 ≤ x10 ≤ bd, ab ≤ x9 + x10 ≤ bb
0 ≤ x12 ≤ ba, ad ≤ x10 + x12 ≤ bd
0 ≤ x15, x12 + x15 ≤ ba

 .

Hence, we obtain for B the following inequality system, excluding redundant inequalities:

B =



ab ≤ x0 ≤ bb ad ≤ x4 ≤ bd 0 ≤ x8 0 ≤ x13 < ab aa ≤ x3 + x4 + x5 ≤ ba
aa ≤ x1 ≤ ba 0 ≤ x5 x9 < ab 0 ≤ x14 ac ≤ x3 + x9 ≤ bc
ab ≤ x2 ≤ bb 0 ≤ x6 ≤ bb ad ≤ x10 0 ≤ x15 x9 + x10 + x11 ≤ bb
aa ≤ x3 ≤ ba 0 ≤ x7 ≤ bd 0 ≤ x11 ab ≤ x9 + x10 ad ≤ x10 + x12 + x13 ≤ bd
ac ≤ x3 x7 < ab aa ≤ x12 ≤ ba x13 + x14 ≤ bb x7 + x8 ≤ bb
0 ≤ aa 0 ≤ ab 0 ≤ ac ad ≤ x10 + x12 x12 + x15 ≤ ba
0 ≤ ad

Subsequently, with respect to the properties of a interval function (cf. [18]) it has to be true:

0 ≤ at ≤ bt for all t ∈ {a, b, c, d}, ab ≥ 1, bb ≥ 1.

Thus, a solution (with minimal values) for the interval function I∗ is, e.g., aa = ba = 0, ab =
bb = 1, ac = bc = 0, ad = 0 and bd = 1. All possible integer solutions for x1, ... , x15 are the base
for constructing the reachability graph and the reachability tree of the TPN. Actually, having all
interval bounds we construct the reachability graph/tree successively and without calculating any
inequality systems, cf. [18]. The reachability graph of the TPN has 11 states and is was calculated
with INA or tina (cf. [20], [21]). An analyzing protocol is included as an appendix.

Proposition 2. Let (N ,m0) be a live and unbounded Petri net, for which there exists a feasible
cyclic run, which includes all transitions in N . Let then I be an interval function calculated for
(N ,m0) according to the algorithm described above. Then the TPN (N , I,m0) is live and bounded.

Proof. (Idea) Note, that if a node in a spine-based coverability tree has a descendant leaf, colored
in red, then the marking of this node can enable an unbounded run, leading to an ω-marking. If



it has a descendant leaf, colored in green, then the marking of this node can enable a cycle, which
includes all transitions in N .

At each step at the stage 4 the parametric run forces initial runs to the markings labeling green
leaves in the spine-based coverability tree of the Petri net and forbid the branching of each initial
run ending into a marking which labels read leaf.

The set B of inequalities defined in stage 5 obtains all constains successively calculated in stage
4 and the conditions for interval bounds.

The resulting Time Petri net (N , I,m0) is live, because it retains all initial cycles with all
transitions.

The net (N , I,m0) is bounded, because all unbounded branches in (N ,m0) are cut by time
constrains. �

The above algorithm allows to calculate an interval function needed for the net boundedness,
only in the case, when such function exist.

In order to calculate minimal values for the interval bounds at and bt we can consider the Linear
Programming

min {
∑
t∈T

(at + bt) | B}.

Note also, that in the above algorithm we keep all feasible cycles, containing all transitions.
The algorithm can be modified to keep at least one such cycle.

Let us compare both algorithms for controlling the behavior of a Petri net: By using priorities,
cf. [12], and by using time constrains as represented here. Both algorithms can ”repair” a live
and unbounded Petri net into a live and bounded. But, the second algorithm works also in some
cases when the first one does not work and it works always when the first one does it. The reason
for that is the statical use of the priority relation. The time intervals introduce also a kind of
priority relation between the transitions, but this priority is a dynamic one. For example, for the
net (N ∗,m∗0) it is not possible to find a priority relation such that the firing of the transition d is
prioritized to transition b but once, at the marking (1, 0, 0, 0, 1) — where both transitions b and
d may fire — b should fire. This is possible assigning time intervals, as we have seen. Thus, when
the spine-based coverability tree would consist only of the left main branch, cf. Fig. 4, then there
would not be a priority solution but a solution with time constrains.

4 Conclusion

In this paper we have studied the possibility for obtaining a live and bounded Petri net from a
live and unbounded one by adding time constrains as time intervals associated to each transition.
We have presented necessary conditions for existence of such priorities. These conditions are not
sufficient, but help to exclude unsolvable cases. Furthermore, we have represented an algorithm for
computing (minimal) time intervals for transforming a live and unbounded Petri net into live and
bounded and live net. The resulting net is a Time Petri net with the prior skeleton (underlying
timeless net).

This algorithm converts a live and unbounded Petri net into a live and bounded Time Petri net
even in some cases, when our previous algorithm for finding a priority relation for retaining the
liveness does not work. Thus, the algorithm represented here is more powerful than the priority
algorithm.
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Integrated Net Analyzer [v2.2p6-Mar 23 2001-linux] session report:
Current net options are:
    token  type: black        (for Place/Transition nets)
    time option: intervals
    elements   : transitions
    firing rule: normal
    priorities : not to be used
    strategy   : single transitions
    line length: 80

Net read from irina_mit_int.pnt
Information on elementary structural properties:
Current name options are:
     transition names to be written 
     place names to be written 
The net is statically conflict-free.
The net is dynamically conflict-free.
The net is pure.
The net is not ordinary.
The net is not conservative.
The net is not subconservative.
The net is not a state machine.
The net is free choice.
The net is extended free choice.
The net is extended simple.
The net is marked.
The net is not marked with exactly one token.
The net is a marked graph.
The net is homogenous.
The net has not a non-blocking multiplicity.
The net has no nonempty clean trap.
The net has no transitions without pre-place.
The net has no transitions without post-place.
The net has no places without pre-transition.
The net has no places without post-transition.
Maximal in/out-degree:  2
The net is connected.
The net is not strongly connected.
ORD HOM NBM PUR CSV SCF CON SC  Ft0 tF0 Fp0 pF0 MG  SM  FC  EFC ES 
 N   Y   N   Y   N   Y   Y   N   N   N   N   N   Y   N   Y   Y   Y  
CPI CTI  B  SB  REV DSt BSt DTr DCF  L   LV L&S 
 ?   ?   ?   ?   ?   ?   ?   ?   Y   ?   ?   ?  
Current analysis options are:
     no symmetrical reduction 
     no depth restriction 
     do not use a 'bad' predicate 
Computation of the reachability graph
States generated: 11
Markings: 10     Clock positions: 9
Arcs generated: 16

Capacities needed:
Place 1 2 3 4 5
 Cap: 1 1 2 1 1



The net has no dead transitions at the initial marking.
The net has no dead reachable states.
The net is bounded.
The net is not safe.
The net is not live and safe.
Livenesstest:
Computing the strongly connected components

The net is live.
The net is live, if dead transitions are ignored.
The net is covered by semipositive T-invariants.
The computed graph is strongly connected.
The net is reversible (resetable).

State nr.    1     Marking nr.    1     Clocks nr.    1
P.nr: 1 2 3 4 5
toks: 1 0 0 1 0
T.nr: 1 2 3 4
time: - 0 - -
==[1,t2]=> s2
State nr.    2     Marking nr.    2     Clocks nr.    2
P.nr: 1 2 3 4 5
toks: 0 1 1 1 0
T.nr: 1 2 3 4
time: 0 - - -
==[0,t1]=> s3
State nr.    3     Marking nr.    3     Clocks nr.    1
P.nr: 1 2 3 4 5
toks: 1 0 1 1 0
T.nr: 1 2 3 4
time: - 0 - -
==[1,t2]=> s4
State nr.    4     Marking nr.    4     Clocks nr.    3
P.nr: 1 2 3 4 5
toks: 0 1 2 1 0
T.nr: 1 2 3 4
time: 0 - 0 -
==[0,t1]=> s5
==[0,t3]=> s10
State nr.    5     Marking nr.    5     Clocks nr.    4
P.nr: 1 2 3 4 5
toks: 1 0 2 1 0
T.nr: 1 2 3 4
time: - 0 0 -
==[0,t3]=> s6
State nr.    6     Marking nr.    6     Clocks nr.    5
P.nr: 1 2 3 4 5
toks: 1 0 0 0 1
T.nr: 1 2 3 4
time: - 0 - 0
==[1,t2]=> s7
==[0,t4]=> s1
==[1,t4]=> s9
State nr.    7     Marking nr.    7     Clocks nr.    6



P.nr: 1 2 3 4 5
toks: 0 1 1 0 1
T.nr: 1 2 3 4
time: 0 - - 1
==[0,t1]=> s8
==[0,t4]=> s2
State nr.    8     Marking nr.    8     Clocks nr.    7
P.nr: 1 2 3 4 5
toks: 1 0 1 0 1
T.nr: 1 2 3 4
time: - 0 - 1
==[0,t4]=> s3
State nr.    9     Marking nr.    1     Clocks nr.    8
P.nr: 1 2 3 4 5
toks: 1 0 0 1 0
T.nr: 1 2 3 4
time: - 1 - -
==[0,t2]=> s2
State nr.   10     Marking nr.    9     Clocks nr.    9
P.nr: 1 2 3 4 5
toks: 0 1 0 0 1
T.nr: 1 2 3 4
time: 0 - - 0
==[0,t1]=> s6
==[0,t4]=> s11
State nr.   11     Marking nr.   10     Clocks nr.    2
P.nr: 1 2 3 4 5
toks: 0 1 0 1 0
T.nr: 1 2 3 4
time: 0 - - -
==[0,t1]=> s1
ORD HOM NBM PUR CSV SCF CON SC  Ft0 tF0 Fp0 pF0 MG  SM  FC  EFC ES 
 N   Y   N   Y   N   Y   Y   N   N   N   N   N   Y   N   Y   Y   Y  
CPI CTI  B  SB  REV DSt BSt DTr DCF  L   LV L&S 
 ?   Y   Y   ?   Y   N   ?   N   Y   Y   Y   N  
Current options written to options.ina

End of Analyzer session.


