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Abstract. In this paper we present a time extension of Petri nets called Petri net with Time Windows
(short: tw-PN) where time intervals (windows) are associated with the places. We give a formal definition
for this class and compare these time dependent Petri nets with their (timeless) skeletons. In particular,
we compare their sets of reachable markings and their liveness behaviour. The sets of reachable markings
are equal but the liveness behaviors are different. For a restricted class of tw-PNs, we give a sufficient
condition for liveness equivalence. We prove that tw-PNs are not Turing equivalent and finally show the
existence of runs with time gaps in a tw-PN.

1 Introduction

The Petri Nets are well-known for modelling and analysing concurrent systems where the time is implicitly
involved as a causal correlation. However the Petri Nets can be extended to include time in different ways. Petri
nets with time windows (tw-PNs) are derived from Petri nets (PNs) where each place p is associated with a time
interval [lp, up]. When a token arrives in a place p, it cannot leave p before lp time units have elapsed. During
the time interval (window) [lp, up] the token can leave p when no older (modulo up) tokens are in p. There is
not a force for leaving at the end of the interval. When the token remains longer in the place p as up time units
then the current time of the token in the place p is reset modulo up. When t becomes enabled, it can fire when
enough tokens in its input places can leave them. In other words, t can fire if t is enabled and all time windows
of enough tokens in all input places of t are “open”. The firing itself of a transition takes no time. The time is
designed by non-negative real numbers, but the interval bounds are non-negative rational numbers. It is easy
to see that w.l.o.g. the interval bounds can be considered as integers only. Thus, the interval bounds lp and up

of any place p are natural numbers, including zero and lp ≤ up or up = ∞.
Every possible situation in a given tw-PN can be described completely by a time marking M with M(p) ∈

(R+
0 )∗ for each place p. Thus, a time marking is a vector of words over R+

0 . In general, each tw-PN has infinite
number of time markings.

The tw-PN was first introduced in [7] and later applied for modelling and diagnosis in the automation
engineering in [12].

Related Work. In classical Petri nets the time is only implicitly involved in a causal context. Merlin’s [15]
definition of Time Petri nets (TPN) and Ramchandany’s [16] definition of Timed Petri nets began a new
branch of Petri nets – the time dependent Petri nets. Since this time, a great amount of different kinds of time
associations have been defined. Time can be added to transitions ( [15], [16], [14]), to places ( [17], [7], [12]) and
to edges ( [3], [1]) in varied ways. The main difference between these time dependent PNs and the tw-PNs is
the firing mode. An enabled transition in a tw-PN is never forced to fire, neither immediately after it has been
enabled nor at any time later. A collection of well known classes of time dependent Petri nets is given in [18].
However, most of them are equivalent to the Turing machines and thus the most interesting problems like the
reachability problem and the liveness problem are undecidable.

Outline of the paper. This paper is organized as follows. The second section introduces the formal
definition for the tw-PN, recalls some basic definitions and remarks. In the third section we show that the set of



reachable markings of a tw-PN is equal to the set of reachable markings in their skeletons. Afterwards, we prove
that tw-PNs are not equivalent to Turing machines. The fourth section deals with feasible runs in a tw-PN. We
show the existence of runs with “time gaps”. Furthermore, we show that a tw-PN where the time elapsings are
natural numbers has a different behavior as the same net using real numbers for the time elapsings. In the fifth
section we show that the liveness behavior of a tw-PN is, in general, different to the liveness behavior of its
skeleton. Finally we summarize our work and give an outlook for our future work.

2 Basic Notations and Definitions

As usual, we use the following notations in this paper: N is the set of natural numbers, N+ := N\{0}. Q+
0 is the

set of non-negative rational numbers and R+
0 the set of non-negative real numbers. T ∗ denotes the language of

all words over the alphabet T , including the empty word ε ; l(ω) is the length of the word ω.

Definition 1 (classical Petri net). The structure N = (P, T, F, V, mo) is called a (classical) Petri net (short:
PN) iff

(i) P, T, F are finite sets with
P ∩ T = ∅, P ∪ T 6= ∅, F ⊆ (P × T ) ∪ (T × P ) and dom(F ) ∪ cod(F ) = P ∪ T

(ii) V : F −→ N+ (weight of the arcs)
(iii) mo : P −→ N (initial marking)

A marking of a PN is a (total) function m : P −→ N, such that m(p) denotes the number of tokens at
the place p. The pre-sets and post-sets of a transition t are given by •t := {p | p ∈ P ∧ (p, t) ∈ F} and
t• := {p | p ∈ P ∧ (t, p) ∈ F}, respectively. Each transition t ∈ T induces the markings t− and t+, defined as
follows:

t−(p) =

{
V (p, t) ,iff (p, t) ∈ F

0 ,iff (p, t) 6∈ F
t+(p) =

{
V (t, p) ,iff (t, p) ∈ F

0 ,iff (t, p) 6∈ F

Moreover, ∆t denotes t+ − t−. A transition t ∈ T is enabled (may fire) at a marking m iff t− ≤ m (i.e.
t−(p) ≤ m(p) for every place p ∈ P ). When an enabled transition t at a marking m fires, this yields a new

marking m′ given by m′(p) := m′(p) + ∆t(p) and denoted by m
t−→ m′.

Definition 2 (Petri net with time windows in the places). The pair P = (N , I) is called a Petri net
with time windows in the places (short: tw-PN) iff

(i) N is a (classical) PN and
(ii) I : P −→ Q+

0 × (Q+
0 ∪ {∞}) and for each place p ∈ P and I(p) = (lp, up) it holds: lp ≤ up.

The PN N is called the skeleton of P and is denoted by S(P). W.l.o.g. we consider the function I with a
co-domain N+

0 × (N+
0 ∪ {∞}).
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Fig. 1. P1 is a Petri net with time windows in the places.

√

It is obvious that tokens can arrive at a place in different times. Hence, we have to keep the dwell time of
each token of every place. This can be solved suprisingly easily using words over numbers. The empty word ε

will be assigned to a place without tokens. Each token in a place is presented with a non-negative real number,
which is the arriving time of the token in the place (modulo the upper bound of the time interval of the place).
We call this kind of presentation of a marking time marking.



Definition 3 (time marking). Let P be a tw-PN and let P be the set of its places. The map M : P −→
(
R+

0

)∗
is called a time marking in P.

By mM we denote the marking (l(M(p1)), l(M(p2)), . . . , l(M(p|P |))). Note that mM is not a time marking.
It is defined by the number of tokens in each place, i.e. mM is an “usual” marking.

Definition 4 (integer time marking). A time marking M in P is called an integer time marking iff M :
P −→ N∗ and P is the set of the places in P.

Definition 5 (initial time marking). Let P be a tw-PN and m0 be the initial marking in S(P). Then M0 is
the initial time marking on P , iff

M0(p) :=

{
ε , if m0(p) = 0
0m0(p) , else

.

Obviously, it holds: mM0
= m0 and M0 is always an integer time marking.

The initial time marking M0 of P1 (see Fig. 1) is M0 = (0, ε, ε, ε).
It is clear that a time marking can change into an other one by firing a transition or by time elapsing. First,

we define the notion ready to fire and afterwards the notions change by firing and change by time elapsing.

Definition 6 (ready to fire). Let M be a time marking such that for each p ∈ P it holds M(p) = a
p
1a

p
2 . . . a

p

|m(p)|

and let t be an arbitrary transition in the tw-PN P. Transition t is ready to fire in M , iff

(i) t− ≤ mM (t is enabled in the skeleton S(P)),
(ii) ∀p(p ∈ •t −→ ∀j(j ∈ {1, . . . , t−(p)} −→ lp ≤ a

p
j ≤ up)).

Definition 7 (firing a transition). Let P be a tw-PN, let T be its set of transitions and let M be an arbitrary
time marking in P. The transition t ∈ T can fire in the time marking M , iff t is ready to fire in M . After the

firing, the tw-PN changes into the time-marking M ′, denoted by M
t−→ M ′, which is defined as follows: Let

M(p) = a
p
1a

p
2 . . . ap

n, t−(p) = k and t+(p) = r4. Then it holds:

M ′(p) :=

{
a

p
k+1 . . . ap

n0r ,if k < n

0r ,if k = n
.

Example 1. Consider P2 and the time marking M = (

M(p1)︷ ︸︸ ︷
2.5 2.0 0.7,

M(p2)︷︸︸︷
1.3 ,

M(p3)︷︸︸︷
ε ). After firing the transition t2 the

tw-PN P2 changes into the time marking M ′ = (2.0 0.7︸ ︷︷ ︸
M ′(p1)

, 1.3 0.0︸ ︷︷ ︸
M ′(p2)

, 0.0︸︷︷︸
M ′(p3)

), i.e. M
t2−→ M ′.

P1

[2,3]

2t
P3

[3,4]

t1

P2
[2,2]

Fig. 2. The tw-PN P2.
√

Remark 1. Let M1
t−→ M2 be a time marking change in the tw-PN P . Obviously then, t is enabled in the

marking mM1
in the skeleton S(P) and it holds: mM1

t−→ mM2
.

√

4 Let a be a letter in an alphabet. Then is a0 = ε.



Definition 8 (time elapsing). Let P be a tw-PN and let τ be a non-negative real number. Then the elapsing
of time τ in P is in any time marking always possible. Let M be an arbitrary time marking in P. M is then
changed into the time marking M ′ by the time elapsing τ ∈ R+

0 , denoted by M
τ−→ M ′, iff holds:

Let M(p) = a
p
1a

p
2 . . . ap

n and let up < ai + τ and ai+1 + τ ≤ up be true for each natural number i with
1 ≤ i ≤ n. Then the succsessor time marking M ′(p) = b

p
1b

p
2 . . . bp

n is defined as the time marking in P with

b
p
j :=

{
a

p
i+j + τ ,if i + j ≤ n

(ap
i+j−n + τ) m̂od up ,else

.

Please note that:

a m̂od b :=

{
a mod b ,if a mod b 6= 0
b ,if a mod b = 0

.

Example 2. Let P be a tw-PN and let M be a time marking in P with

M(p) = 3.7 2.8 2.3 2 1.5 0.3 0.1 and I(p) = (2, 6).

The succsessor time marking M ′ at the place p after the time elapsing τ = 4 holds then:

M ′(p) = 6 5.5 4.3 4.1 1.7 0.8 0.3

√

The behaviour of a given tw-PN P = (P, T, F, V, m0, I) is defined by its changes from a given time marking
into another. In general, the changes are an alternating series of time elapsings and firings. Thus, we use the
following notions.

A transition sequence σ = t1t2 . . . tn in P is a word in T ∗. A run σ(τ) = τ0t1τ1 . . . tnτn is a word in R+
0 (T R+

0 )∗.
The time-length l(σ(τ)) of the run σ(τ) is the sum τ1 + . . . + τn. A run σ(τ) is a feasible one in P if starting in
M0 all time marking changes defined by σ(τ) are possible in P . A transition sequence σ is a firing sequence in
P if there exists at least a feasible run σ(τ).

A time marking M is called a reachable time marking in P , if there exists a feasable run σ(τ) in P with

M0
σ(τ)−−−→ M .

The set of all reachable time markings in P , starting with time marking M , is denoted by RP (M). Obviously,
RP(M0) is the set of all reachable time markings in P . Finally, by RP(mM0

) we denote the set {mM | M ∈
RP(M0)}.

A tw-PN P is bounded if the set {mM | M ∈ RP (M0)} is a finite one.
As already stated, time elapsing is always possible in tw-PNs. Moreover, it can occur that in a time marking

only time elapsing is possible. This can happen for two different reasons. First, there is no transition enabled in
that time marking. Second, a transition is at least enabled but no transition can become ready to fire because
of the time restrictions. In the second case, the transition sequence which leads to this time marking can be
continued in the skeleton by firing a transition but it cannot be contiued in the tw-PN. We say that all enabled
transitions in the considered time marking are in time-deadlock. Next definition formalizes this notion.

Definition 9 (time-deadlock). Let M be a time marking in the tw-PN P. The transition t̂ is in M in a
time-deadlock (short: t-DL), if

(i) t̂− ≤ mM

(ii) ∀τ(τ ∈ R+
0 −→ M

τ−→6 t̂−→).

Next, we introduce the notion liveness for tw-PNs. Actually, there are four levels of liveness. We consider
here only the so called 4-liveness, defined by Lautenbach in [11]. This notion will be similarly defined to the
definition for the classical PNs.

Definition 10 (liveness). Let P be a tP-PN and M a reachable time marking.

(i) A transition t is live in the time marking M if

∀M ′(M ′ ∈ RP(M) −→ ∃M ′′(M ′′ ∈ RP (M ′) ∧ M ′′ t−→).
(ii) A tw-PN P is live if all transitions are live in M0.



3 Reachability and Turing Machines

In this section we compare the sets of reachable markings of a tw-PN and of its skeleton. We will prove that
both sets are equal w.r.t. the number of the tokens of the places. Please note that in general there are infinite
many time markings with the same number of tokens of the places or, formally said, for each reachable marking
m∗ in S(P) the set {M | M ∈ RP (M0) and mM = m∗} is infinitely. Afterwards, we show that the power of
tw-PNs is not equal to the power of Turing machines, i.e. the tw-PN’s are not Turing-complete.

Theorem 1. Let P be a tw-PN and S(P) its skeleton. Then an arbitrary firing sequence σ is a firing sequence
in S(P) iff σ is a firing sequence in P.

Idea of the proof:
(⇐=) The truth of the sufficiency can be easily proved based on the fact that when a transition can fire in

the tw-PN then it is ready to fire. This means that this transition is enabled in the skeleton (see Def. 6).
(=⇒) The basic idea for the proof of the necessity is to use the ultimo rule, i.e. we wait until the clock of

each token reaches a time which is equal to the upper bound of the place where it is situated. Then each enabled
transition is also ready to fire. The ultimo rule is realised when between the firing of two transitions always α

time units elapse, where α = LCM of all up’s in S(P), which are natural numbers (not ∞). When a up = ∞
then the lp 6= 0 is used for the computation of α. If lp = 0 then it will be not considered. For a complete formal
proof see [9] or [5]. 2

The “waiting time” between the firing of two transitions can of course be reduced. We can always compute a
specific “waiting time” α(ti, tj) between the firing of the two transitions ti and tj which are fired consecutively
in the firing sequence. Now, α(ti, tj) is computed analogosly to above but it will involve only places which are
marked after the firing of ti and which at least have a post-transition. Please recall that a clock of a token which
stays in a place p for more than up time units is reset after up time units to zero.

The next example illustrates the firing of a transition sequence with the ultimo rule and using specific
elapsing times between the firing of two transitions.

Example 3. Let us consider the tw-PN P3 and the transition sequence σ = t1t2t3 in the skeleton S(P3). This
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Fig. 3. The tw-PN P3.

transition sequence is obviously feasible in S(P3). In order to show that σ is a firing sequence in P3 we need to

show that there is a run σ(τ) with M0
σ(τ)−−−→. According to the “reduced” algorithm for firing due to the ultimo

rule the run we search for should start with the time elapsing τ0 = 4. This is because the only marked place in
M0 is P1 with uP1

= 4. Then t1 fires. In the successor time marking the marked places are P2 and P3 and both
have post-transitions. Thus the elapsing time τ1 = LCM{2, 3} = 6. Then t2 can fire. Now, although the marked
places in the followed time marking are P2, P4 and P5, only P2 and P5 are relevant for computing τ2 because
P4 has no post-transitions. Eventually, τ2 = 10 and subsequently t3 can fire. Thus, σ(τ) = 4 t1 6 t2 10 t3 is a
feasible run in P3.

√



The next theorem follows immediately from Theorem 1.

Theorem 2. The sets RP (mM0
) of all reachable markings (not considered as time markings) of an arbitrary

tw-PN P is equal to the set RS(P) of all reachable markings of its skeleton.

Please note, that although both sets of reachable markings of a tw-PN and of its skeleton are equal, it is
possible to reach a time marking in the tw-PN such that all enabled transitions are in a t-DL in them. In Section
5 we state some examples for this fact.

In the second part of this section we show that the power of tw-PNs is not equal to the power of Turing
machines. For this purpose we prove the non-equivalence between the power of tw-PNs and counter machines.
As it is well known, each Turing machine can be simulated by a counter machine and vice versa (cf. [4]).

A counter machine consists of a finite numbers of counters K1, . . .Kn and a numbered program comprising
the 4 different commands START, HALT, INC and DEC.

The next table recalls the syntax and the semantics of the four commands and shows how the START,
HALT and INC, can be simulated using a tw-PN. We will prove that the command DEC cannot be simulated.

Counter machine
command

Description of the com-
mand

Model of the numbered
command as a tw-PN

0 : START : m
Start the program and go
to line m.

mP [0,1]

m : HALT Stop the program.

mP [0,1]

t

m : INC(j) : r
Increment counter j by 1
then go to line r.

mP [0,1]

Pr [0,1]

t Wj

[0,1]

m : DEC(j) : r : s

If counter j equals 0 then
go to line r,
else decrement counter j

and go to line s.

-

The reason for the impossibility to simulate the command DEC with a tw-PN is because it is impossible
to model the zero-test with them. The zero-test for a (tw-)PN is the check whether a place is marked or not.
More exactly, the zero-test is the following. Let us consider three places p, pmarked and pempty in a (tw-)PN. In
the initial marking, the places pmarked and pempty are not marked. If p is marked in the initial marking, then
there is a run and after its firing the place pmarked is marked, the place pempty is not marked and there is no
run that can change this. If p is not marked in the initial marking, then there is a run and after its firing the
place pempty is marked, the place pmarked is not marked and there is no run that can change this.

Assuming that the power equivalence between tw-PNs and counter machines holds, this leads to the power
equivalence between classical PNs and counter machines. The reason for this is the fact that each firing sequence
in the skeleton is also a firing sequence in the tw-PN. That means there is a feasible run of each transition
sequence which can be fired in the skeleton (cf. Theorem 1). Additionally, in the tw-PN there are feasible runs



which cannot be continued with an enabled transition because the transition is in a t-DL in the current time

marking. Consequently, for a transition sequence σ = σ1tk there is a feasible run σ1(τ) with M0
σ1(τ)−−−→ M and

tk is enabled in M but also in t-DL in M . Then, σ is a firing transition sequence in the skeleton and with it a
firing sequence in the tw-PN (with another feasible run), too. Thus, a zero-test for a place p with a tw-PN is
a zero-test (same firing sequences) for p with a classical PN. That leads immediately to the power equivalence
between classical PNs and Turing machines. The last is obviously a contradiction.

In summary we can state the following theorem.

Theorem 3. The power of tw-PNs is not equal to the power of Turing machines.

Lastly, the power of the tw-PNs is bounded below. This follows from the next theorem.

Theorem 4. The power of tw-PNs is not less than to the power of the classical PNs.

Proof. Each classical PN N can be presented as a tw-PN with lp := 0 and up := ∞ for each place p in N . With
it the proposition follows immediately. ⊓⊔

4 Feasible Runs in a tw-PN

In this section we consider feasible runs in tw-PNs and compare these with runs in Time Petri Nets (TPN).
The TPNs are defined by Merlin in [15] and well studied in [2], [6] and [8]. These time dependent PNs

are derived from classical Petri nets, where each transition t is associated with a time interval [at, bt]. Here
at and bt are relative to the time, when t was last enabled. When t becomes enabled, it cannot fire before at

time units have elapsed and it has to fire not later than bt time units, unless t got disabled in between by the
firing of another transition. The firing itself of a transition takes no time. The time interval is described by real
numbers, but the interval bounds are non-negative rational numbers. It is easy to see (cf. [6]) that w.l.o.g. the
interval bounds can be considered as integers only. Thus, the interval bounds at and bt of any transition t are
natural numbers, including zero and at ≤ bt or bt = ∞. It is clear that in general a transition sequence can
have infinitely many feasible runs. However, if a feasible run of a transition sequence takes α time units and an
other run of the same sequence takes β time units (α < β), then to each γ ∈ [α, β] there is also a feasible run
of the sequence which time duration is exactly γ time units. The behaviour of the feasible runs in a tw-PN is
quite different.

In a tw-PN it is possible to find a transition sequence with ”time gaps”. This means that the time continuum
[0,∞] can be divided in intervals [0, a0], [a0, a1], [a1, a2], [a2, a3], [a3, a4], . . . and it is possible to find a feasible
run σ(τ i) of the transition sequence σ with a time-length l(σ(τ i)) ∈ [ai, ai+1] for i = 0, 2, 4, . . . but there is no
feasible run for which time-length is a number in [0, a0] or in [ai, ai+1] for i = 1, 3, 5, . . ..

Theorem 5. Let Z be a TPN and σ = t1t2 . . . tn an arbitrary transition sequence in Z. Furthermore let σ(τα) =

τα
0 t1 τα

1 t2 τα
2 . . . τα

n−1 tn τα
n and σ(τβ) = τ

β
0 t1 τ

β
1 t2 τ

β
2 . . . τ

β
n−1 tn τβ

n be two feasible runs of the transition
sequence σ, with l(σ(τα)) = α and l(σ(τβ)) = β, α < β. Then for each γ ∈ [α, β] there exists a feasible run
σ(τγ) = τ

γ
0 t1 τ

γ
1 t2 τ

γ
2 . . . τ

γ
n−1 tn τγ

n with l(σ(τγ)) = γ.

Idea of the proof. A feasible run can be considered as a concrete instance of a ”parametric run”. A parametric
run is a run which times are not numbers but variables (parameters) satisfying some restrictions. For each
transition sequence there is one parametric run, e.g. for the sequence σ = t1t2 . . . tn the parametric run is
σ(X) = x0t1x1t2x2 . . . xn−1tnxn. The variables have to fulfill certain constrains derived from the time intervals
of the transitions belonging to the sequence σ. These are described by linear inequalities and define a polyhedron
Hσ ⊆ R+

0 . A formal and complete definition of a parametric run can be found in [10].
Now, the time-length of the parametric run of the transition sequence σ is given by the linear function

f(X) :=

n∑

i=0

xi and X = (xo, . . . , xn) satisfy Hσ.



The time-length of σ(τα) is then f(X) = α for X = τα and the time-length of σ(τβ) is then f(X) = β

for X = τβ . Obviously the values α and β are real numbers between µ = min{f(X) | X satisfied Hσ} and
λ = max{f(X) | X satisfied Hσ}1.

f(X)=

f(X)=

f(X)=

τ γ

H σ

τ βf(X)=

f(X)=

τ

γ

α
α

λ

µ

β

Fig. 4. Graphical ilustration of Hσ for n = 2.

Because the polyhedron is convex and the points τα and τβ belong to (satisfied) Hσ, there is a point τγ , which
belongs to Hσ (to the segment, defined by the points τα and τβ), and lies on a hyperplane, parallel to the
hyperplanes f(X) = α and f(X) = β (cf. [13]). This means that the function f(X) = γ for X = τγ . 2

This run property is not true for a tw-PN in general. It is possible that there are “gaps” in the time length
possibilities for the runs of a firing sequence. That means it is possible to find a tw-PN P and a firing sequence
σ with two feasible runs whose time lengths are α and β in P but there does not exist a run of σ with a length
γ, α < γ < β. Of course, this is neither true for all α and β nor for all firing sequences.

The next example verifies this fact.

Example 4. Let us consider the tw-PN P4 given in Fig. 5 and the transition sequence σ = t1t2t3. The runs
3 t13 t23 t3 and 5 t12 t23 t3 are feasible runs of σ1 with the time lengths 9 and 10. It is easy to see that there
does not exist a run of σ1 whose time length is e.g. 9.5 or any one other number between 9 and 10. However,
the lengths of all feasible runs of σ belong to the intervals [7, 9], [10, 12], [13, 15], . . . .

1 2P

4P

t

[0,1]

t

1

4t 25 t t

[3,3]

3

3P

[2,3]P

[2,3]

Fig. 5. The tw-PN P4.
√

Considering the sequence σ2 = t4t5t4, it is obvious that the shortest time length of a feasable run of σ2 is 4.
Furthermore, it can be easily seen that for each real number k, k ≥ 4 a feasible run of σ2 exists whose time
length is k.

1 If λ exists. Otherwise α and β are not bounded above.



At the end of this section we compare the behaviour of a tw-PN when the time elapsings are real numbers
with its behaviour when the time elapsings are natural numbers. We did this comparison for TPNs (cf. [10])
and proved that for these time dependent PNs (at least) the reachability behaviour and the liveness behaviour
are the same. This is not true for tw-PNs in general. Fig. 6 illustrates this fact.

Example 5. Here we use the notion “integer reachability graph” for a tw-PN which is

P

[2,3]

1

[0,1]2

P

2

t1t 2

2

ε

0

ε 0 0 

ε 1 1

ε 2 2

ε 3 3

ε1 0

1 1

ε 1 0 

ε 3 2

ε

ε 3 1

1 2

ε

ε

1 3

0

t 1

1

1

1

11t

t 22

1

t1
1

1

t1

1

1

1

t2 t

1

t1

1

1

1t1

t1

1

1

2 0

3 0

1 1

2 1

0 0 

Fig. 6. The tw-PN P5 and its integer reachability graph.

a reachability graph (labeled directed graph) obtained considering all reachable integer time markings as its

set of vertices. The edges are defined by the triples (M, t, M ′) and (M, 1, M ′), where M
t−→ M ′ and M

1−→ M ′,
respectively and M and M ′ are time markings, t is a transition, and 1 stands for one time unit. This reachability
graph can, of course, be reduced. A formal definition can be found in the Appendix.

In the reachability graph from above each vertex is divided into two parts. Each of them contain a word
over N∗ which describes the dwell time of each token in the place p (modulo up). Thus, the text ε | 3 2 in a
vertex models the time marking M with M(p1) = ε (p1 is not marked) and M(p2) = 3 2 (p2 has been contained
2 tokens for 3 resp. 2 time units modulo 3 = up2

).
As can easily be seen, the run σ(τr) = 1.5 t1 1.5 t1 is a feasable one in the tw-PN P5. After executing this

run P4 is in the time marking M r = (ε, 1.5 0) and thus t2 is enabled, but it is in t-DL. Subsequently, M r is a
leaf in the “real” reachability graph of P5. However, the “integer” reachability graph does not contain any leafs
and, therefore, the “real” and the “integer” behaviour of P 5 are different.

√

Finally, we give a necessary condition for having a difference between the “real” and the “integer” behaviour
of a tw-PN. The proof is given in the Appendix.

Theorem 6. Let P be a tw-PN and let t ∈ T be a transition so that •t = {p}. Furthermore, let up = lp ·
V (p, t) − 1.

Then the following is true:



(i) a time marking M r exists, so that |M r(p)| = V (p, t) and t is in M r in a t-DL,
(ii) no time marking M int exists, so that M int(p) ∈ N∗, |M int(p)| = V (p, t) and t is in M int in a t-DL.

Obviously, the place p2 in the tw-PN P5 (Fig. 6) satisfy the condition up = lp · V (p, t) − 1.

5 Liveness

In this section we compare the liveness behavour of tw-PN with the liveness behaviour of its skeleton and show
that both are not equal in general. Eventually, we give a result for a class of restricted tw-PNs whose liveness
behaviour is equal to that of its skeleton.

Remark 2. When a tw-PN P is live then S(P) is live as well. In general the opposite does not hold.

Proof. It is clear that when an arbitrary run of a sequence σ can be executed in an arbitrary tw-PN, then the
sequence can be fired in the skeleton of the net. It follows that when a tw-PN is live, its skeleton is live as well.
The opposite can be quickly falsified with an example. Let us consider the tw-PN P6 given in Fig. 7. It is obvious
that S(P6) is live. Moreover, after executing the feasable run t1 5.0 t1 in P6, it is easily seen that t2 is the only
feasable transition but it cannot become ready to fire, i.e. t2 is in t-DL in this time marking. Therefore, P6 is
not live.
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P

2
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Fig. 7. The tw-PN P6.
⊓⊔

However, there is a structural restricted class of tw-PNs whose liveness behaviour is the same as that of its
skeleton. The next theorem introduces this class.

Theorem 7. Let P be a tw-PN and let S(P) be its skeleton so that |•t| ≤ 1 for every t ∈ T and so that S(P)
is live. Furthermore, let the following estimate hold for all places p ∈ P :

lp ≤ up

max
t∈T

V (p, t)
. (1)

Then P is live.

The proof is directly derived from Theorem 8 (see Appendix).
Please note that the restriction |•t| ≤ 1 is an essential one. The tw-PN P7 shown in Fig. 8 gives an example

for a net whose skeleton S(P7) is live, V (f) = 1 for all f ∈ F but P7 is not live. This fact can be verified

considering the run σ(τ) := 2 t1. It is clear that t2 is in a t-DL in the time marking M (with M0
τ(σ)−−−→ M) and,

therefore, P7 is not live.
Please also note that Theorem 7 gives a sufficient condition only. By doing a small modification to the tw-PN

P6 we gain a tw-PN P8 that violates condition (1) in Theorem 7, but it is still live.

Corollary 1. Let P be a tw-PN with V (f) = 1 for each f ∈ F and |•t| ≤ 1. Then P is live iff S(P) is live.

Corollary 2. Let P be a tw-PN and let S(P) be live. Let |•t| ≤ 1 for every t ∈ T . Furthermore lp = 0 or
up = ∞ is true for each place p in P. Then P is live, too.
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Fig. 8. Left: The tw-PN P7. Right: The tw-PN P8.

6 Conclusion

In this paper we have studied PNs with explicit time restrictions (windows) added to the places, the tw-PNs.
More precisely, a time interval [lp, up] is assigned to each place p. Each token, which arrives at the place p

cannot leave it before it has spent at least lp time units there. During the time lp until up, which begins upon
the tokens arrival, the place opens its “window” for this token and this token can leave. Each token counts the
time with “its own clock”. After up time units if the token, for whatever reason, has not left the place, its clock
resets, and the procedure is repeated.

Usually time dependent PNs are equivalent to Turing machines. Here we have shown, however, that this
does not hold for the power of the tw-PNs. Moreover, each classical PN can be considered as a tw-PN and thus
the power of the tw-PNs is not less than that of the classical PNs.

Another untypical result for time dependent PNs is that the set of reachable markings (considering the
number of tokens of the places only) is not decreased in comparison with the set of the same tw-PN without
the time (skeleton of the tw-PN). The reason for this fact is that a force for the transitions to fire is absent in
tw-PNs. However, the reachability behaviour, which means not only the set of all reachable (time) markings,
but also includes the set of all possible paths between two time markings and the liveness behaviour of a tw-PN,
generally differ from the reachability behaviour and the liveness behaviour of its skeleton.

For a structural restricted class of tw-PNs, we have shown that the liveness behaviour can be the same as
that of its skeleton. This means the time has no influence on the liveness behaviour. In future research, we will
pursue further classes of tw-PNs with time-invariant reachability and liveness behaviors.
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7 Appendix

Definition 11 (integer reachability graph). Let P be a tw-PN with the skeleton S(P) = (P, T, F, V, m0)
and let IM(P) be the set of all reachable integer time markings in P. The integer reachability graph of P is the
directed graph IGP = (IM(P), E) with

Basis:
IM(P) := {M0}; E := ∅

Step:
Let M ∈ IM(P) already. Then

1. for each t ∈ T

if M
t−→ M ′ possible in P then IM(P) := IM(P) ∪ {M ′};

E := E ∪ {(M, t, M ′)}
end if

2. if M
1−→ M ′ possible in P then IM(P) := IM(P) ∪ {M ′};

E := E ∪ {(M, 1, M ′)}
end if.

Definition 12 (equidistant time marking). Let P be a tw-PN. A time marking M is called an equidistant
time marking in the place p if M(p) = a

p
1, . . . , a

p
n with

a
p
j+1 − a

p
j =

up

|M(p)| for j = 1, . . . , n − 1 and (up − ap
n) + a

p
1 =

up

|M(p)| .

Theorem 8. Let P be a tw-PN and let t be a transition with •t = {p}.
For each time markings M, m∗ and M e where |M∗(p)| = |M e(p)| = |M(p)| the following statements are

equivalent:

(i) There is a time marking M∗ so that t is in a time-DL in M∗.
(ii) t is in time-DL in the equidistant time marking M e.

(iii) lp > up

(
1 − V (p,t)−1

|M(p)|

)
.

Proof. This proof is published in [5].
We set n := |M(p)| = |M∗(p)| = |M e(p)|, λ := V (p, t).

(ii) =⇒ (i) trivial
(iii) =⇒ (ii) We have

a1 − aλ = (a1 − a2) + (a2 − a3) + . . . + (aλ−1 − aλ)

= (λ − 1)
up

n

= up − up + (λ − 1)
up

n

= up − up

(
1 − λ − 1

n

)

> up − lp



and subsequently t is in M e in a time-DL.
(i) =⇒ (iii) W.l.o.g. we can assume that lp, up ∈ N and ap

n = up for the time marking M∗.
For an easier formal writing we copy the interval [0, up] and add it to the end, i.e. we consider the time

marking M̃∗(p) := ã
p
1, . . . , ã

p
n, ã

p
1 + up, . . . , ã

p
n + up.

Now let χj,k be the number of tokens in the interval [j, k].

Furthermore there exists a natural number κ := |{ap ∈ M̃∗(p) : a ∈ N}|. We assumed that ap
n = up thus

κ ≥ 1.
Therefore we have

n =

up−1∑

j=0

χj,j+1 − κ (2)

=

∑up−1
j=0 χj,up−lp+j − κ

up − lp

≤
∑up−1

j=0 (λ − 1) − κ

up − lp

<

∑up−1
j=0 (λ − 1)

up − lp
(3)

=
up(λ − 1)

up − lp

where equality (2) holds as κ tokens are counted twice and inequality (3) holds as κ ≥ 1.
And thus

n <
up

up − lp
(λ − 1)

=⇒ up − lp <
up

n
(λ − 1)

=⇒ lp > up − up

(
λ − 1

n

)
= up

(
1 − λ − 1

n

)
.

⊓⊔

Proof of Theorem 6. It obviously implicates from up = lp · V (p, t) − 1 that

λ := V (p, t) ≥ 2, (4)

otherwise it would follow that up = lp − 1 and thus up < lp.
(i) Let M r be a time marking so that M r is an equidistant time marking in the place p and so that no other

place is marked, i.e. M r(p) = a1 . . . aλ and ak − ak+1 =
up

λ
, k = 1, . . . , λ − 1, and M r(p̃) = ε for all p̃ 6= p.

We will show that t is in a t-DL in M r. According to the conditions λ = |M r(p)| and up = lp · λ − 1 the
following holds

up

(
1 − λ − 1

λ

)
=

up

λ

=
lp · λ − 1

λ

= lp − 1

λ
< lp.



Thus we have

lp > up

(
1 − λ − 1

|M r(p)|

)

and from Theorem 8 it follows that t is in M r in a t-DL.
(ii) This part is proven in two steps.
First we show that for any time marking M so that t is in M in a t-DL, all “time distances” between two

tokens must be less than lp. Second we show that for any time marking M with M(p) ∈ N∗ there is at least one
“distance” greater (or equal) than lp.

Now let M be a time marking such that |M(p)| = λ and t is in M in a t-DL. Furthermore let M(p) := a1 . . . aλ.
Assume that there are two tokens such that the “distance” of their times is greater or equal than the lower bound
of the place, formally speaking: assume that a natural number k ∈ {1, . . . , λ} exists so that ak − ak+1 ≥ lp, if
k 6= λ, and up − a1 + aλ ≥ lp, if k = λ. W.l.o.g. we can assume that k = λ, i.e. up − a1 + aλ ≥ lp, and a1 = up.
Then it follows

lp ≤ up − a1 + aλ = up − up + aλ = aλ.

This means that the dwell times of all tokens are in the intervall [lp, up] and thus the transition t is ready to
fire. But this is a contradiction to the condition that t is in M in a t-DL.

Now we show the second step. We still need to prove that no time marking M exists so that M(p) ∈ N∗

and t is in M in a t-DL. For this purpose let us assume that M int is a time marking, with M int(p) = b1 . . . bλ,
bk ∈ N for each k ∈ {1, . . . , λ} and t is in M int in a t-DL. Please note, that M int does not need to be a reachable
one in P .

From the first step it follows that bk − bk+1 < lp for all k = 1, . . . , λ − 1 and up − b1 + bλ < lp. Therefore it
holds

b1 − bλ =
λ−1∑

k=1

bk − bk+1 <

λ−1∑

k=1

lp = (λ − 1) · lp.

It follows from lp ∈ N and by the condition M int(p) ∈ N that

b1 − bλ ≤ (λ − 1) · (lp − 1) = λ · lp − λ − lp + 1 (5)

holds.
Finally, w.l.o.g. we can assume that b1 = up. Then it follows from up = lp · λ − 1 and from (5) that

bλ = up − (b1 − bλ)

≥ up − λ · lp + λ + lp − 1

= λ · lp − 1 − λ · lp + λ + lp − 1

= lp + λ − 2.

Subsequently and because of (4) it follows immediately that bλ ≥ lp. This contradicts the assumption that t is
in M int in a t-DL. 2


