Humboldt-Universität zu Berlin Institut für Informatik PD Dr. L. Popova-Zeugmann

Übungsaufgaben zur Vorlesung Lineare Optimierung WS 2018/19

Übungsblatt 8
12.12.2018, Abgabe 19.12.2018,
in dem Briefkasten gegenüber von R. 425 im Haus III,
4. Etage, in der Zeit 9:00 bis 11:00

Aufgabe 1: (8 Punkte)

Lösen Sie das lineare Problem

$$\max\{5x_1 - 2x_2 \mid 3x_1 + x_2 \le 7, 4x_1 - 2x_2 \le 3, x_1 \ge 0, x_2 \ge 0\}.$$

Falls ein opt. Punkt existiert, bei dem mindestens eine der Koordinaten nicht Null ist, dann sollen sich x_1 und x_2 um mindestens 1 unterscheiden, wobei die zweite Koordinate nicht kleiner als die erste sein darf.

Aufgabe 2: (8 Punkte)

Lösen Sie mit Hilfe des Gomory-Schnitt-Verfahrens folgende (ILP):

$$2x_1 + x_2 \longrightarrow \max$$

$$\begin{cases} -x_1 + 2x_2 \le 4 \\ 5x_1 + x_2 \le 20 \\ x_1, x_2 \in \mathbb{N} \end{cases}$$

Aufgabe 3 (Fakultativ):

(8 Punkte)

In einer Gemeinde sollen neue Feuerwehrstationen gebaut werden, die zusammen sechs Orte versorgen. Es gibt sechs mögliche Plätze für die Stationen. Folgende Liste beschreibt die Wirkungsbereiche (Orte) der potentiellen Feuerwehrstationen:

Platz	A	В	С	D	Е	F
Ort	1,2,5	2,3,4	1,4	2,3,6	1,4,6	4,5

Die Gemeinde ist daran interessiert, möglichst wenige Stationen zu bauen, um die Baukosten möglichst niedrig zu halten.

Formulieren Sie eine lineare Optimierungsaufgabe, die das eben beschriebene Problem modelliert.

Aufgabe 4 (Fakultativ): Lösen Sie Aufgabe 3. (10 Punkte)