
Time Petri Nets

Part II: State Class based methods

Bernard Berthomieu

LAAS/CNRS, Université de Toulouse

7 avenue du Colonel Roche, 31077 Toulouse, France

Bernard.Berthomieu@laas.fr

ATPN

XIAN – June 2008

Plan

1. Background

2. State Class graphs as abstract state spaces

3. State Classes Preserving markings and traces

4. Preserving states and traces

5. Preserving states and branching properties

6. Quantitative properties, Other techniques

7. Subclasses, extensions, alternatives

8. Application areas, Tools

1

Background

1. Background

2. State Class graphs as abstract state spaces

3. State Classes Preserving markings and traces

4. Preserving states and traces

5. Preserving states and branching properties

6. Quantitative properties, Other techniques

7. Subclasses, extensions, alternatives

8. Application areas, Tools

2

1. Background

Time Petri Nets

Dense semantics, state spaces

Representation of states – firing domains, clocks vectors

Basic theorems – decidability results

Logics

3

Time Petri Nets (Merlin 1974) [Me74,MF76]

(P, T,Pre,Post,m0, Is) where

• (P, T,Pre,Post,m0) is a Petri net

• Is is the Static Interval Function

t 7→ Is(t) ⊆ IR+, rational bounds

4

Behaviour

States characterize sets of time-transition sequences

5

Terminology, Notations

p, p′, . . . : places

t, t′, . . . : transitions

m,m′, . . . : markings, map places to nonnegative integers

E(m) : transitions enabled at m, t ∈ E(m) ⇔ Pre(t) ≤ m

I, I ′, . . . : interval functions, map enabled transitions to real intervals

↓I(t) : earliest firing time of t (left endpoint of I(t))

↑I(t) : latest firing time of t (right endpoint of I(t), or ∞)

σ, σ′, . . . : sequences of transitions

ρ, ρ′, . . . : time-transition sequences (or firing schedules) θ1.t1.θ2.t2 . . .

|ρ| : support of ρ, |θ1.t1.θ2.t2 . . . | = t1..t2 . . .

f\D = {(x, y) ∈ f | x ∈ D} : restriction of function f to domain D

I −. θ = {x− θ|x ≥ θ ∧ x ∈ I} : interval I (I ⊆ IR+) shifted by θ and truncated

6

Semantics

A state is a pair s = (m, I) ∈ S, where:

• m is a marking

• I is an interval function with domain E(m)

The initial state is s0 = (m0, Is\E(m0))

There are two sorts of transitions:

• discrete transitions: (m, I)
t
 (m′, I ′) iff t ∈ T and

1. m ≥ Pre(t)

2. 0 ∈ I(t)

3. m′ = m−Pre(t) + Post(t)

4. (∀k ∈ T)(m′ ≥ Pre(k) ⇒
I ′(k) = if k 6= t ∧ m−Pre(t) ≥ Pre(k) then I(k) else Is(k))

• continuous transitions: (m, I)
d
 (m, I ′) iff

(∀k ∈ T)(m ≥ Pre(k) ⇒ d ≤↑I(k) ∧ I ′(k) = I(k) −. d)

7

State spaces

With all continuous and discrete transitions:

SG = (S,
t ∪ d , s0)

Any state is reachable from the initial state by some

sequence alternating delays and discrete transitions

(a time-transition sequence, or firing schedule).

Restricted to the targets of discrete transitions, delays abstracted:

DSG = (S,
t−→, s0)

where

s
t−→ s′ ⇔ (∃θ)(∃s′′)(s

θ s′′ ∧ s′′ t s′)

State graphs are typically infinite, dense.

8

Direct “Discrete” semantics (DSG)

Let s
t@θ−→ s′ ⇔ (∃s′′)(s

θ
 s′′ ∧ s′′ t

 s′)

Then s
t−→ s′ ⇔ (∃θ)(s

t@θ−→ s′)

With (m, I)
t@θ−→ (m′, I ′) iff t ∈ T , θ ∈ R+ and:

1. Pre(t) ≤ m (t is enabled at m)

θ ≥ ↓I(t)

(∀k)(Pre(k) ≤ m⇒ θ ≤ ↑I(k))

2. m′ = m−Pre(t) + Post(t)

3. (∀k)(Pre(k) ≤ m⇒ I ′(k) =

if k 6= t ∧m−Pre(t) ≥ Pre(k)

then I(k) −. θ

else IS(k))

9

Example

E0 = (m0, I0)

m0 : p1, p2(2)
I0 : solutions in t1 of

4 ≤ t1 ≤ 9

E0
t1@θ1−→ E1 = (m1, I1) with (θ1 ∈ [4,9]):

m1 : p3, p4, p5

I1 : solutions in (t2, t3, t4, t5) of

0 ≤ t2 ≤ 2
1 ≤ t3 ≤ 3
0 ≤ t4 ≤ 2
0 ≤ t5 ≤ 3

E1
t2@θ2−→ E2 = (m2, I2) with (θ2 ∈ [0,2]):

m2 : p2, p3, p5

I2 : solutions in (t3, t4, t5) of

max(0,1− θ2) ≤ t3 ≤ 3− θ2

0 ≤ t4 ≤ 2− θ2

0 ≤ t5 ≤ 3− θ2

The schedule, or time-transition sequence, 5.t1.0.t2 is firable.

10

Representing states

By Interval functions (canonical)

s = (m, {(t1, [2,3]), (t2, [2,∞[), (t3,]0,5])})

By firing domains (canonical)

I represented by {φ | φ ∈ I(t1)× I(t2)× I(t3)}

s = (m, {φ ∈ IR3 | 2 ≤ φt1 ≤ 3 ∧ 2 ≤ φt2 ∧ 0 < φt3 ≤ 5})

By clock vectors (surjection, relative to Is)

I represented by γ, where (∀t ∈ E(m))(I(t) = Is(t) −. γt}

s = (m, γ), with γ ∈ IR3, indexed over {t1, t2, t2}

By “total” clock vectors (cf. Louchka, # means “undefined”):

s = (m, γ), with γ ∈ (IR∪ {#})|T |, indexed over all transitions

11

“General” Properties

Let R = {s | (∃ρ)(s0
ρ−→ s)}

Problems:

State reachability : s ∈ R

Marking reachability : (∃I)((m, I) ∈ R)

Liveness : (∀s ∈ R)(∀t ∈ T)(∃ρ)(∃s′)(s
ρ.t−→ s′)

Boundedness : (∃b ∈ IN)(∀(m, I) ∈ R)(∀p ∈ P)(m(p) ≤ b)

k-boundedness : (∀(m, I) ∈ R)(∀p ∈ P)(m(p) ≤ k)

12

Decidability results

Marking reachability : undecidable [JLL77]

TPNs can encode 2-counter machines:

State reachability, Boundedness, Liveness : undecidable

k-boundedness : decidable [BM82]

For bounded TPNs: all problems decidable

13

Logics

Linear time

Propositional LTL (e.g. SPIN)

Interpreted over runs (infinite sequence of states)

(For each run)

φ φ true at the first state
©φ φ true at next state
�φ φ always true
♦φ φ eventually true
φ U ψ φ true until ψ does and ψ eventually true

�♦φ φ true infinitely often (fairness requirements)
�(φ⇒ ♦ψ) φ always results in ψ (later)

State/Event LTL (e.g. SELT/TINA)

Both state and event properties

A run is an infinite sequence alternating states and transitions

Linear time µ-calculus

14

Logics

Branching time

CTL (Computational tree logic)

Interpreted at the states of a transition system

φ φ holds at the current state
EX φ some transition leads to a state at which φ holds
AX φ all transitions lead to a state at which φ holds
E[φ U ψ] ψ true at current state or for some path ...
A[φ U ψ] ψ true at current state or for all paths

EF φ = E[true U φ]
AF φ = A[true U φ]
EG φ = ¬(AF (¬φ))
AG φ = ¬(EF (¬φ))

Fixpoint calculi

Modal µ-calculus (Hennessy-Milner logic + least/greatest fixpoints)
(e.g. Evaluator/CADP, MEC5/Altarica)

Dicky/Arnold calculus (src, tgt, rsrc, rtgt + systems of equations)
(MEC4/Altarica)

15

Useful CTL derived modalities

16

“Timed” Logics

Temporal or fixpoint operators tagged with clock expressions

(e.g. k ≤ 5)

Linear time

MTL, MITL (Metric Temporal Logics)

Branching time

TCTL (e.g. Kronos, Uppaal (fragment), Romeo (fragment))

Timed µ-calculi

17

State Classes

1. Background

2. State Class graphs as abstract state spaces

3. State Classes Preserving markings and traces

4. Preserving states and traces

5. Preserving states and branching properties

6. Quantitative properties, Other techniques

7. Subclasses, extensions, alternatives

8. Application areas, Tools

18

State space abstractions

Concrete state space infinite dense ⇒ unsuitable representation

Abstraction required

state space is partitionned into abstract states

concrete states in an abstract state considered collectively

many possible partitions

19

Properties of abstract state spaces

s ∈ S : concrete states, c ∈ C : abstract states

All states in c have a successor in all successors of c:

AE = (∀c, c′)(∀t)(c
t−→A c

′ ⇒ (∀s ∈ c)(∃s′ ∈ c′)(s
t−→ s′))

All states in c have a predecessor in all predecessors of c:

EA = (∀c, c′)(∀t)(c′ t−→A c⇒ (∀s ∈ c)(∃s′ ∈ c′)(s′ t−→ s))

Abstract states are linked (−→A) iff concrete states are (−→):

EE = (∀t)(∀s, s′)(∀c, c′)(c
t−→A c

′ ⇔ s
t−→ s′)

Weaker EE, if C is a cover of S rather than a partition:

EE’ = (∀t)((∀c, c′)(c
t−→A c

′ ⇒ (∃s ∈ c)(∃s′ ∈ c′)(s
t−→ s′)

∧ (∀s, s′)(s
t−→ s′ ⇒ (∃c 3 s)(∃c′ 3 s′)(c

t−→A c
′))

20

Theorems

s ∈ S : concrete states, c ∈ C : abstract states

EE is a soundness condition on C wrt S

Assuming C is a partition of S: (see e.g. [PP04])

AE ensures preservation of branching properties (bisimilarity)

EA ensures preservation of linear properties (LTL)

21

State Class graphs

State : E = (m, I) : marking × firing interval vector

State class graphs

Covers of the state space by convex (wrt time info) subsets of states

all states in a class share the same marking

satisfying EE’ (−→A simply written −→)

Several partitions possible

Preserving markings

Preserving markings and LTL properties [BM 82, BM83, BD91]

Preserving states

Preserving states and LTL properties [BV03]

Preserving states and CTL properties [YR98, BV03]

22

State Classes

1. Background

2. State Class graphs as abstract state spaces

3. State Classes Preserving markings and traces

4. Preserving states and traces

5. Preserving states and branching properties

6. Quantitative properties, Other techniques

7. Subclasses, extensions, alternatives

8. Application areas, Tools

23

State classes

Recall direct discrete semantics:

s
t−→ s′ ⇔ (∃θ)(s

t@θ−→ s′)

With (m, I)
t@θ−→ (m′, I ′) iff t ∈ T , θ ∈ R+ and:

1. Pre(t) ≤ m (t is enabled at m)

θ ≥ ↓I(t)

(∀k)(Pre(k) ≤ m⇒ θ ≤ ↑I(k))

2. m′ = m−Pre(t) + Post(t)

3. (∀k)(Pre(k) ≤ m⇒ I ′(k) =

if k 6= t ∧m−Pre(t) ≥ Pre(k) then I(k) −. θ else IS(k))

Idea: abstract parameter θ

24

State classes

States

(m, {φ | φ ∈ I(t1)× . . .× I(tn)}) where {t1, . . . , tn} = E(m)

Representation of classes:

Marking + firing domain

where

Marking of class = marking of any state in the class

Domain of class = solution set of inequality system Wφ ≤ q

Equality of classes:

(m,W) ∼= (m′,W ′) iff m = m′ and W and W ′ have same solution set

25

Computing State Classes

Algorithm 1: Computes Cσ.t = (m′,W ′) from Cσ = (m,W):

• Cε = (m0, {↓Is(t) ≤ φt ≤ ↑Is(t) | Pre(t) ≤ m0})

• t is firable from some state of Cσ iff:

(i) m ≥ Pre(t) (t is enabled at m)

(ii) W augmented with the following is consistent:

{φt ≤ φi | i 6= t ∧m ≥ Pre(i)}

• If so, then m′ = m−Pre(t) + Post(t), and W ′ is obtained by:

1. add inequations (ii) to W ;

2. ∀i enabled at m′, add variable φ′i and inequations:

φ′i = φi − φt, if i 6= t and m−Pre(t) ≥ Pre(i)

↓Is(i) ≤ φi ≤ ↑Is(i), otherwise

3. Eliminate variables φ

• (m,W) ∼= (m′,W ′) iff m = m′ and W and W ′ have equal solution sets

26

In terms of states

Let:

C=
⋃
σ∈T ∗

{Cσ}, where Cε ={s0}, Cσ.t={s|(∃s′∈Cσ)(s′
t→s)}

Then:

SCG = (C/∼=,
t→, [{s0}]∼=)

c∼=c′ iff (∀((m, I), (m′, I ′)) ∈ c× c′)(m = m′) ∧⋃
s∈c

(F(s)) =
⋃
s′∈c′

(F(s′))

where F(m, I) = I(t1)× . . .× I(tn) (t1, . . . , tn ∈ E(m))

Note: SCG is an abstract state space

27

Example 1

C0 = (p1 p2, {4 ≤ t19})

C1 = (p3 p4, {0 ≤ t2 ≤ 4,5 ≤ t3 ≤ 6,3 ≤ t4 ≤ 6})

C2 = (p2 p3, {1 ≤ t3 ≤ 6,0 ≤ t4 ≤ 6, t3 − t4 ≤ 3, t4 − t3 ≤ 1})

C3 = (p2 p3, {5 ≤ t3 ≤ 6,3 ≤ t4 ≤ 6})

C4 = (p3 p4, {0 ≤ t2 ≤ 1,5 ≤ t3 ≤ 6,3 ≤ t4 ≤ 6})

C5 = (p2 p3, {4 ≤ t3 ≤ 6,2 ≤ t4 ≤ 6, t3 − t4 ≤ 3, t4 − t3 ≤ 1})

28

Example 2

C0 = (p0 p3, {0 ≤ t0 ≤ 4,5 ≤ t2 ≤ 6})

C1 = (p1 p3, {3 ≤ t1 ≤ 4,1 ≤ t2 ≤ 6})

C2 = (p2 p3, {0 ≤ t2 ≤ 3})

C3 = (p2 p4, {})

C4 = (p1 p4, {0 ≤ t1 ≤ 3})

29

TPN example

30

Properties of the abstraction

State sets equivalent by ∼= have same futures

SCG Finite iff the TPN is bounded

Preserves markings and firing sequences (LTL)

Decides k-boundedness, marking reachability (if bounded)

Does not preserve states (state membership cannot be inferred)

Does not preserve branching properties nor liveness

31

Branching properties not preserved

32

Computing classes

Firing domains of classes are difference systems

Represented by Difference Bounds Matrices (DBM’s):

t3 ≤ 6
4 ≤ t3
2 < t4

t3 − t4 < 3
t4 − t3 ≤ 1

t3 − ι ≤ 6
t4 − ι ≤ ∞
ι− t3 ≤ −4
ι− t4 < −2
t3 − t4 < 3
t4 − t3 ≤ 1

x− y ι t3 t4
ι (≤,0) (≤,−4) (<,−2)
t3 (≤,6) (≤,0) (<,3)
t4 (≤,∞) (≤,1) (≤,0)

Canonical forms (tightest constraints) computed in (O(n3))

∼= implemented as equality of canonical forms

33

O(n2) Firing rule [Ro93, Vi01, BM03]

(m,M) is the current class, M canonical.

• Transition f is firable iff (∀i 6= f)(−Mif ≤ 0)

• The canonical M ′ at the target class (m′,M ′) is obtained by:

M ′
00 = 0

Foreach t enabled at m′:

M ′
tt = 0

if t is newly enabled then

M ′
t0 = − ↓(Is(t)), M ′

0t =↑(Is(t))

else

Mt0 = 0, M ′
ot = Mft

Foreach t′ enabled at m′: M ′
t′0 = min(M ′

t0,M
′
tt′)

Foreach t enabled at m′

Foreach t′ 6= t enabled at m′

if t or t′ is newly enabled

then M ′
tt′ = M ′

t0 +M ′
ot′

else M ′
tt′ = min(Mtt′,M ′

t0 +M ′
ot′)

34

Checking boundedness

Sufficient conditions for boundedness:

No c = (m,D) and c′ = (m′, D′) such that:

1. c′ reachable from c

2. m′ ≥ m ∧m′ 6= m

3. D′ = D

4. (∀p)(m′(p) > m(p) ⇒ m′(p) ≥ maxt{Pre(p, t)})

But not necessary:

passes with 1,2,3
fails with 1,2

passes with 1,2,3,4
fails with 1,2,3

fails with 1,2,3,4

35

LTL model checking of Time Petri Nets

Obtaining a Kripke transition system:

• Build the SCG

• Add loops to deadlock states

• Add loops to temporarilly diverging states
(those at which all enabled transitions have unbounded intervals)

Atomic properties are the places marked and transitions fired

Check property (standard):

• Synchronize KTS with Buchi automaton obtained from the negation of
formula

• Find a strong connected component containing an accepting state (of
the automaton)

Check can be done on the fly while building the SCG

36

Preserving markings only (SCG⊆)

If Sol(D) = Sol(D′) then (m,D) and (m,D′) have same futures

If Sol(D) ⊆ Sol(D′) then any schedule firable from (m,D) is firable

from (m,D′), so we won’t find new markings by storing (m,D)

SCG⊆ = SCG except a class is identified with any including it

Preserves markings but NOT firing sequences

Often much smaller than SCG

37

Example : Level crossing

SCG SSG⊆
Classes 11 10

(1 train) Edges 14 13
CPU(s) 0.00 0.00
Classes 123 37

(2 trains) Edges 218 74
CPU(s) 0.00 0.00
Classes 3101 172

(3 trains) Edges 7754 492
CPU(s) 0.07 0.01
Classes 134501 1175

(4 trains) Edges 436896 4534
CPU(s) 5.85 0.07
Classes 8557621 10972

(5 trains) Edges 34337748 53766
CPU(s) 1254.92 1.20

38

Strong state classes

1. Background

2. State Class graphs as abstract state spaces

3. State Classes Preserving markings and traces

4. Preserving states and traces

5. Preserving states and branching properties

6. Quantitative properties, Other techniques

7. Subclasses, extensions, alternatives

8. Application areas, Tools

39

Strong State classes

SCG:

Do not preserve branching properties (no AE)

Cannot decide state reachability (∼= too coarse)

Let:

C=
⋃
σ∈T ∗

{Cσ}, where Cε ={s0}, Cσ.t={s|(∃s′∈Cσ)(s′
t→s)}

Then: [BV03]

SSCG = (C, t→, {s0})

40

Clocks, equivalence ≡

Clock systems

γt = time elapsed since t was last enabled

Clock vector γ denotes the interval I such that (∀t)(I(t) = Is(t) −. γt)

NOTE: infinitely many clock vectors may denote the same state

Strong Classes

Represented by a marking and a clock system

(m,Gγ ≤ g) denotes a set of states

Clock system equivalence

(m,Q) ≡ (m′, Q′) iff they denote the same set of states

special case: If all transitions have bounded static intervals

Then (m,Q) ≡ (m′, Q′) ⇔ m = m′ ∧ Sol(Q) = Sol(Q′)

41

Computing Strong State Classes

Algorithm 2: Computes Cσ.t = (m′, Q′) from Cσ = (m,Q):

• Cε = (m0, {0 ≤ γt ≤ 0 | Pre(t) ≤ m0})

• t is firable from some state of Cσ iff:

(i) m ≥ Pre(t) (t is enabled at m)

(ii) Q augmented with the following is consistent:

0 ≤ θ
↓Is(t) ≤ γt + θ

{θ + γi ≤ ↑Is(i) | m ≥ Pre(i)}

• If so, then m′ = m−Pre(t) + Post(t), and Q′ is obtained by:

1. add inequations (ii) to Q;

2. ∀i enabled at m′, add γ′i and inequations:

γ′i = γi + θ, if i 6= t and m−Pre(t) ≥ Pre(i)

0 ≤ γ′i ≤ 0, otherwise

3. Eliminate variables γ and θ

• (m,Q) ≡ (m′, Q′) iff m = m′ and Q and Q′ have equal solution sets

42

Example

C0 = (p1 p2, {0 ≤ t10})

C1 = (p3 p4, {0 ≤ t2 ≤ 0,0 ≤ t3 ≤ 0,0 ≤ t4 ≤ 0})

C2 = (p2 p3, {0 ≤ t3 ≤ 4,0 ≤ t4 ≤ 4, t3 − t4 ≤ 0, t4 − t3 ≤ 0})

C3 = (p2 p3, {0 ≤ t3 ≤ 0,0 ≤ t4 ≤ 0})

C4 = (p3 p4, {3 ≤ t2 ≤ 4,0 ≤ t3 ≤ 0,0 ≤ t4 ≤ 0})

C5 = (p2 p3, {0 ≤ t3 ≤ 1,0 ≤ t4 ≤ 1, t3 − t4 ≤ 0, t4 − t3 ≤ 0})

43

Handling Unbounded Intervals

Problem: If ≡ implemented as said, then SSCG may be infinite

Cε = (m0, {0≤γt0≤0, 0≤γt1≤0})

C(t0)k = (m0, {0≤γt0≤0, k≤γt1})

But C(t0)k ≡ (m0, {0≤γt0≤0, 0≤γt1})

Solution: Relax clock systems in Strong Classes

Q̂ obtained by, recursively:

Partition Q by γk ≥ Efts(k), for k s.t. Lfts(k) = ∞

In half space γk ≥ Efts(k), relax upper bound of γk

Theorem:

(m,Q) ≡ (m′, Q′) iff m = m′ and Sol(Q̂) = Sol(Q̂′)

44

Implementations

Assume Q denotes the set of states E

Relaxation [BV03]:

computes the largest set of clock vectors denoting set E

fragments classes (Q̂ is not convex)

Normalization [Had06]:

compute the largest clock DBM denoting set E

faster, avoids fragmentation

45

Properties

SSCG Finite iff the TPN is bounded

Preserves EA, hence firing sequences (LTL)

Decides k-boundedness, marking and state reachability (if bounded)

Does not preserve branching properties nor liveness

46

Analysis with the SSCG

Checking state reachability (in the DSG)

From s = (m, I), compute the smallest γ such that

(∀t ∈ E(m))(I(t) = Is(t) −. γt)

Then s is reachable if γ belongs to some (relaxed) strong class

LTL model checking with the SSCG

As for the SCG

But SCG is a better choice since typically smaller

Checking boundedness

As for the SCG

47

Computation of the SSCG

Clock domains of classes are difference systems (DBM’s)

Same complexity as SCG for class computations (O(n2))

≡ implemented as equality of canonical forms

after relaxation or normalization

48

Preserving states only, SSCG⊆

Similar to the SCG:

If Sol(Q) ⊆ Sol(Q′) then any schedule firable from (m,Q) is firable

from (m,Q′), so we won’t find new states by storing (m,Q)

SSCG⊆ = SSCG except a class is identified with any including it

Preserves states but NOT firing sequences

Often much smaller than SSCG

49

Example : Level crossing

SCG SSCG

Classes 11 11
(1 train) Edges 14 14

CPU(s) 0.00 0.00
Classes 123 141

(2 trains) Edges 218 254
CPU(s) 0.00 0.00
Classes 3101 5051

(3 trains) Edges 7754 13019
CPU(s) 0.07 0.13
Classes 134501 351271

(4 trains) Edges 436896 1193376
CPU(s) 5.85 20.14
Classes 8557621 35945411

(5 trains) Edges 34337748 151908273
CPU(s) 1254.92 7439.25

SCG⊆ SSCG⊆
Classes 10 10

(1 train) Edges 13 13
CPU(s) 0.00 0.00
Classes 37 41

(2 trains) Edges 74 82
CPU(s) 0.00 0.00
Classes 172 232

(3 trains) Edges 492 672
CPU(s) 0.01 0.01
Classes 1175 1807

(4 trains) Edges 4534 7062
CPU(s) 0.07 0.15
Classes 10972 18052

(5 trains) Edges 53766 89166
CPU(s) 1.20 3.70

50

State Classes

1. Background

2. State Class graphs as abstract state spaces

3. State Classes Preserving markings and traces

4. Preserving states and traces

5. Preserving states and branching properties

6. Quantitative properties, Other techniques

7. Subclasses, extensions, alternatives

8. Application areas, Tools

51

SSCG analysis

Satisfies EA (hence preserves LTL) but not AE

Does not preserve branching properties

ASCG: (Atomic State class graph revisited):

Start from the SSCG or SSCG⊆

Enforce AE using partition refinement

The ASCG and DSG will be bisimilar

First such construction proposed in [YR98] (Atomic state classes)

52

Partition refinement

[Paige et Tarjan, 1987]

Consider a structure (P,→) and two subsets A and B of P

A is Stable wrt B if no s ∈ A has a successor in B or all have one.

B−1 = {A|A→ B}

Partitions (P,→) according to bisimulation:

Q = P

while (∃A,B ∈ Q)(A is not Stable wrt B)

do replace A by A1 = A ∩B−1 and A2 = A−B−1

53

Revisited Atomic state classes

SCG inadequate as initial partition (too coarse)

SSCG or SSCG⊆ are adequate

Algorithm 3

Start from the SSCG [BV03] (or SSCG⊆ [BH04])

while some class c is unstable wrt one of its successor classes c′

do partition c such that is stable wrt c′

Collect all classes reachable from the initial one

54

Partitionning SSCG classes

Partition Technique

If c=(m,Q)
t→ c′ and c is unstable wrt c′ then some constraint ρ is:

• necessary for s ∈ c to have a successor in c′

• nonredundant in Q

c is partitionned into (m,Q ∩ {ρ}), (m,Q ∩ {¬ρ}):

Computing ρ constraints

Compute predecessors P by t of states in c′ (by reverse SSCG rule)

Q is stable iff Sol(Q) ⊆ Sol(P)

Otherwise take any constraint of P nonredundant in Q

55

Example 1

C0 = (p0 p3, {0 ≤ t0 ≤ 0,0 ≤ t2 ≤ 0})
C1 = (p1 p3, {0 ≤ t1 ≤ 0,1 ≤ t2 ≤ 3})
C2 = (p2 p3, {3 ≤ t2 ≤ 6})
C3 = (p2 p4, {})
C4 = (p1 p4, {1 ≤ t1 ≤ 4})
C5 = (p1 p3, {0 ≤ t1 ≤ 0,0 ≤ t2 < 1})
C6 = (p1 p3, {0 ≤ t1 ≤ 0,3 < t2 ≤ 4})

56

Example 2

57

Properties:

Finite iff the TPN is bounded

Abstraction preserves states and firing sequences (LTL)

Decides k-boundedness, marking and state reachability

Refinement restores AE, hence ASCG preserve branching

properties and liveness (suitable for CTL modelchecking)

Notes:

ASCG is a cover rather than a partition ⇒ not minimal

ASCG is bisimilar to the DSG, but not to the SG

58

Liveness analysis

SCG, SSCG ASCG

Theorem: A TPN is live if each of its transitions labels some
arc in all pending SCCs of its ASCG.

59

Example : Level crossing

SCG SSCG ASCG

Classes 11 11 11
(1 train) Edges 14 14 15

CPU(s) 0.00 0.00 0.00
Classes 123 141 192

(2 trains) Edges 218 254 844
CPU(s) 0.00 0.00 0.02
Classes 3101 5051 6966

(3 trains) Edges 7754 13019 49802
CPU(s) 0.07 0.13 2.24
Classes 134501 351271 356940

(4 trains) Edges 436896 1193376 3447624
CPU(s) 5.85 20.14 291.478
Classes 8557621 35945411 23081275

(5 trains) Edges 34337748 151908273 279572133
CPU(s) 1254.92 7439.25 54 : 30 : 07

60

State Classes

1. Background

2. State Class graphs as abstract state spaces

3. State Classes Preserving markings and traces

4. Preserving states and traces

5. Preserving states and branching properties

6. Quantitative properties, Other techniques

7. Subclasses, extensions, alternatives

8. Application areas, Tools

61

6. Quantitative properties, Other techniques

Checking “Timed” properties

Path analysis

State classes % alternative techniques

62

Checking “Timed” properties

Model checkers for timed logics:

e.g. Romeo, technique adapted from Timed Automata

Observers technique:

Reduce property to reachability using an observer composed with TPN

e.g. t1 fires at most 8 ut after t0 ⇒ no reachable marking marks BAD:

A large class of formulas can be reduced to reachability

63

Path Analysis

Problem:

Given a firing sequence σ:

Characterize firing schedules over σ

Check existence of time constrained schedules

Find fastest/slowest schedule

. . .

64

Computing Path Systems

As for SSCG, but without elimination of θ:

Algorithm 4: Computes Kσ.t = (m′, Q′) from Kσ = (m,Q):

• Kε = (m0, {0 ≤ γt ≤ 0 | Pre(t) ≤ m0})

• t is firable from some state of Kσ iff:

(i) m ≥ Pre(t) (t is enabled at m)

(ii) Q augmented with the following is consistent:

0 ≤ θ
↓Is(t) ≤ γt + θ

{θ + γi ≤ ↑Is(i) | m ≥ Pre(i)}

• If so, then m′ = m−Pre(t) + Post(t), and Q′ is obtained by:

1. add inequations (ii) to Q;

2. ∀i enabled at m′, add γ′i and inequations:

γ′i = γi + θ, if i 6= t and m−Pre(t) ≥ Pre(i)

0 ≤ γ′i ≤ 0, otherwise

3. Eliminate variables γ

65

Path Systems ...

Kσ Links firing times along σ with state reached

P (θ|γ) ≤ p

Projecting on θ yields path system

T (θ) ≤ t

Characterizes times at which transitions can fire along σ

in delays (θ, relative times)

or dates (δ, absolute times) using:

δi = θ1 + . . .+ θi

66

Tools ...

Implementation: PLAN/TINA

Computes all paths (system) or one path

In delays or dates

Applications:

Path analysis (existence, fastest, . . .)

Timing counter-examples returned by LTL modelchecker

67

Alternative methods

Essential states methods

easier implementation

build nondeterministic graphs (may be much smaller than deterministic)

preserve LTL

no open intervals

sensitive to scaling of intervals (may blow up)

Unfolding methods

mature for untimed nets

some progress for dense timed systems

Translation into Timed Automata

Structural translation [CR06] preserves weak timed bisimilarity

Provided by Roméo toolbox

68

State classes % Essential states

SCG ES ES + delays

Classes 11 13 24
(1 train) Edges 14 27 37

CPU(s) 0.00 0.00 0.00
Classes 123 116 203

(2 trains) Edges 218 382 378
CPU(s) 0.00 0.00 0.00
Classes 3101 1550 2299

(3 trains) Edges 7754 5823 5294
CPU(s) 0.07 0.03 0.03
Classes 134501 22268 28895

(4 trains) Edges 436896 91256 81142
CPU(s) 5.85 0.671 0.600
Classes 8557621 313214 372475

(5 trains) Edges 34337748 1397517 1245566
CPU(s) 1254.92 15.12 12.92

69

Same example, intervals scaled by 5

SCG ES ES + delays

Classes 11 25 80
(1 train) Edges 14 123 129

CPU(s) 0.00 0.00 0.00
Classes 123 564 3110

(2 trains) Edges 218 8154 6107
CPU(s) 0.00 0.03 0.02
Classes 3101 27950 119479

(3 trains) Edges 7754 315629 273782
CPU(s) 0.07 1.65 1.48
Classes 134501 1680212 5785743

(4 trains) Edges 436896 18328768 15813462
CPU(s) 5.85 133.09 114.61
Classes 8557621 ? ?

(5 trains) Edges 34337748 ? ?
CPU(s) 1254.92 ? ?

70

State Classes

1. Background

2. State Class graphs as abstract state spaces

3. State Classes Preserving markings and traces

4. Preserving states and traces

5. Preserving states and branching properties

6. Quantitative properties, Other techniques

7. Subclasses, extensions, alternatives

8. Application areas, Tools

71

7. Subclasses, extensions, alternatives

7.1. Subclasses

7.2. Extensions

Open time intervals

Inhibitor arcs, read arcs, flush arcs

Priorities

Stopwatches

High level notations – Time transition systems

7.3. Other models for real-time systems

The variety of TPN’s

Timed Automata

72

Subclasses

All intervals singular (reduced to a point)

have finite state spaces

All intervals unbounded

state class graph = marking graph

Poor expressiveness

73

7. Subclasses, extensions, alternatives

7.1. Subclasses

7.2. Extensions

Open time intervals

Inhibitor arcs, read arcs, flush arcs

Multi-enabledness

Priorities

Stopwatches

High level notations – Time transition systems

7.3. Other models for real-time systems

The variety of TPN’s

Timed Automata

74

“Light” extensions

Open time intervals

e.g.]1,3] [3,6[]4,5[]6,∞[

Read arcs, Inhibitor arcs:

Do not transfer tokens

Positive (m(p) ≥ k) or Negative (m(p) < k) conditions

Only impacts enabledness (and resets of intervals)

Flush arcs:

Transfer as many tokens as found in the source place

Only impacts computation of markings

⇒ Can be handled

75

Multi-enabledness

t is k-enabled at m if m ≥ k ∗Pre(t) (k ≥ 0)

So far: One temporal variable per transition, whether or not

multi-enabled (single-server semantics)

Consider: If t is k-enabled, then k temporal variables associated

with t (multi-server semantics)

Instances considered independent or not (e.g. oldest fires first)

⇒ State class constructions can be adapted

76

Multi-enabledness example (oldest fires first SCG)

C0 C1 C2
M0 p0(1) M1 p0(1), p1(1) M2 p0(1), p1(2)
D0 1 ≤ t1 ≤ 1 D1 1 ≤ t1 ≤ 1 D2 1 ≤ t1 ≤ 1

0 ≤ t2 ≤ 2 0 ≤ t02 ≤ 1
0 ≤ t3 ≤ 2 0 ≤ t12 ≤ 2

0 ≤ t03 ≤ 1
0 ≤ t13 ≤ 2

C3 C4 C5
M3 p0(1), p1(3) M4 p0(1), p1(1) M5 p0(1)
D3 1 ≤ t1 ≤ 1 D4 0 ≤ t1 ≤ 1 D5 0 ≤ t1 ≤ 1

0 ≤ t02 ≤ 0 0 ≤ t2 ≤ 2
0 ≤ t12 ≤ 1 0 ≤ t3 ≤ 2
0 ≤ t22 ≤ 2 t2 − t1 ≤ 1
0 ≤ t03 ≤ 0 t3 − t1 ≤ 1
0 ≤ t13 ≤ 1
0 ≤ t23 ≤ 2

77

Time Petri nets with Priorities (PrTPN)

〈P, T,Pre,Post,m0, Is,�〉 in which:

• 〈P, T,Pre,Post,m0〉, I+ is a Time Petri net

• �⊆ T × T is the Priority relation

� assumed irreflexive, asymmetric and transitive

78

Semantics

• Initial state: (m0, Is0)

• discrete transitions: (m, I)
t−→ (m′, I ′) iff t ∈ T and

1. m ≥ Pre(t)

2. 0 ∈ I(t)

3. (∀k ∈ T)(m ≥ Pre(k) ∧ 0 ∈ I(k) ⇒ ¬(k � t))

4. m′ = m−Pre(t) + Post(t)

5. (∀k ∈ T)(m′ ≥ Pre(k) ⇒
I ′(k) = if k 6= t ∧ m−Pre(t) ≥ Pre(k) then I(k) else Is(k))

• continuous transitions: (m, I)
d−→ (m, I ′) iff

(∀k ∈ T)(m ≥ Pre(k) ⇒ d ≤↑I(k) ∧ I ′(k) = I(k) −. d)

79

Expressiveness

In terms of timed language acceptance:

TPN = TA [BCHRL05, BHR06]

In terms of weak timed bisimulation:

TPN < TA [CR06]

TPN = TA− [BCHRL05]

TA+{≤,∧} = PrTPN with right-closed or unbounded intervals [BPV06]

Note: Priorities enable compositional design

80

Priorities add expressiveness to TPN

81

Priorities add expressiveness to TPN

81-a

Priorities add expressiveness to TPN

81-b

Priorities add expressiveness to TPN

81-c

Double click TA

82

Not quite double click in TPN

83

At time 1:

Incorrect: simple enabled

84

Double click in PrTPN

85

SCG and priorities

Founding observation for SCG:

Classes equivalent by ∼= have same future

Is no more true with priorities:

Firing t0 or t1 leads to equal classes
but t2 may fire only if less than 1 unit of time elapsed ...

⇒ SCG inapplicable

86

Computing Strong State Classes with priorities

Algorithm 2: Computes Cσ.t = (m′, Q′) from Cσ = (m,Q):

• Cε = (m0, {0 ≤ γt ≤ 0 | Pre(t) ≤ m0})

• t is firable from some state of Cσ iff:

(i) m ≥ Pre(t) (t is enabled at m)

(ii) Q augmented with the following is consistent:

0 ≤ θ
↓Is(t) ≤ γt + θ

{θ + γi ≤ ↑Is(i) | m ≥ Pre(i)}
{θ + γj < ↑Is(j) | m ≥ Pre(j) ∧ j � t}

• If so, then m′ = m−Pre(t) + Post(t), and Q′ is obtained by:

1. add inequations (ii) to Q;

2. ∀i enabled at m′, add γ′i and inequations:

γ′i = γi + θ, if i 6= t and m−Pre(t) ≥ Pre(i)

0 ≤ γ′i ≤ 0, otherwise

3. Eliminate variables γ and θ

87

Updated firability conditions

Firability conditions (ii) rephrased:

(ii.1) θ ≥ 0

(ii.2) θ + γt ∈ Is(t)

(ii.3) (∀i 6= t)(m ≥ Pre(i) ⇒ θ + γi ≤ ↑Is(i))

(ii.4) (∀j)(m ≥ Pre(j) ∧ j � t⇒ θ + γj 6∈ Is(j))

In (ii.4):

θ + γi 6∈ Is(i) ⇔ θ + γj < ↓Is(j) ∨ θ + γj > ↑Is(j)

But last subcondition would contradict (ii.3), hence:

θ + γi 6∈ Is(i) ⇔ θ + γj < ↓Is(j)

Hence no cost penalties (O(n2))

(No O(n4) polyhedra differences required)

88

Modeling temporal preemption

Why

Verification of task scheduling in realtime systems (e.g. Avionics)

How

Scheduling extended TPNs [LR03]

Preemptive TPNs [BFSV04]

TPNs with inhibitor hyperarcs [RL04]

Stopwatch Time Petri Nets [BLRV07]

89

Time Petri nets with Stopwatches (SwTPN)

[BLRV07]

〈P, T,Pre,Sw,Post,m0, Is〉 in which:

• 〈P, T,Pre,Post,m0〉, I+ is a Time Petri net

• Sw is the Stopwatch incidence function

An enabled transition is either Active or Suspended

90

Semantics

• Initial state: (m0, Is0)

• discrete transitions: (m, I)
t−→ (m′, I ′) iff t ∈ T and

1. m ≥ Pre(t) ∧ m ≥ Sw(t)

2. 0 ∈ I(t)

3. m′ = m−Pre(t) + Post(t)

4. (∀k ∈ T)(m′ ≥ Pre(k) ⇒
I ′(k) = if k 6= t ∧ m−Pre(t) ≥ Pre(k) then I(k) else Is(k))

• continuous transitions: (m, I)
d−→ (m, I ′) iff

(∀k ∈ T)(m ≥ Pre(k) ⇒
d ≤↑I(k) ∧ I ′(k) = if m ≥ Sw(k) then I(k) −. d else I(k))

91

State classes

All state class constructions remain applicable, but

May yield infinite graphs, even for bounded nets

In fact: state reachability with stopwatches is undecidable

Overapproximations of state spaces

Identify state spaces containing the exact one

Finite iff the net is bounded

Yield sufficient conditions for verification

92

Undecidability [BPV07]

Counters can be encoded as phase differences between two peri-

odic events

Any 2-counter machine can be encoded into a safe (1-

bounded) SwTPN with:

A single stopwatch arc

A single transition with non singular interval

Hence:

State/marking reachability undecidable for bounded SwTPN

k-boundedness undecidable for SwTPN

93

Overapproximations

exact polyhedra ⊆ quantized polyhedra ⊆ smallest enclosing DBM

94

Example, task system [BFSV04]

(observer in grey for the property “task 3 achieved in ≤ 96s”)

95

More examples, scheduling policies

Round-Robin
Rate-monotonic

96

Handling Data

From Petri nets to Keller transition systems:

markings ⇒ vectors of integers

“additives” transitions ⇒ arbitrary transitions

Higher expressiveness but:

reachability and boundedness undecidable

From Keller systems to Time transition systems:

Time Transition System = Keller TS + temporal intervals

State class techniques remain applicable

97

High level Notations

Cotre Project (http://www.laas.fr/COTRE)

Avionics software

Cotre language

TOPCASED project (http://www.topcased.org)

Toolkit in OPen source for Critical Applications and SystEms Develop-
ment

Fiacre language:

– intermediate form language for RTS;

– end-user formalisms (AADL, SDL, etc) translated into Fiacre;

– Fiacre programs translated into Tina and CADP input (mid 2008).

98

Fiacre example

type index is 0..3
type request is union get_sum, get_value of index end
type data is array 4 of nat

process ATM [req : in request, resp : out nat] is
states ready, send_sum, send_value
var c : request, i : index, sum : nat, val : data := [6, 2, 7, 9]
init to ready
from ready

req ?c;
case c of get_sum -> to send_sum
| get_value (i) -> to send_value
end

from send_value
resp !val[i]; to ready

from send_sum
sum, i := 0, 0;
while i < 3 do sum, i := sum + val[i], i + 1 end;
sum := sum + val[i];
resp !sum;
to ready

component C [p : in nat] (&X : read nat) is
port q : none in [2, 8]
var Y : bool := false
par p -> C1 [p,q] (X, Y)
|| p -> C2 [p,q] (X, Y)
end

99

7. Subclasses, extensions, alternatives

7.1. Subclasses

7.2. Extensions

Open time intervals

Inhibitor arcs, read arcs, flush arcs

Priorities

Stopwatches

High level notations – Time transition systems

7.3. Other models for real-time systems

The variety of TPN’s

Timed Automata

100

The variety of TPNs

Intervals on transitions (TPNs)

Oldest, and most widely used

Established convenient analysis methods, tools available

Good expressiveness

Extensions available (priorities, stopwatches)

Intervals on places (p-TPNs)

Tokens have age of creation attached

Places bear intervals, filtering tokens according to their age

Intervals on arcs (Timed arcs TPNs)

Tokens have age of creation attached

Arcs from places bear intervals, filtering tokens according to age

More expressive than above both

Some relative expressiveness results can be found in [BR06]

101

Timed Automata

Timed Automata

Without progress conditions

With progress conditions (invariants, urgency, etc)

Extensions available (priorities, stopwatches, linear hybrid, etc)

Widely used, extensively studied, tools available [Uppaal, Kronos,
Hytech]

Same semantic model (timed transition systems)

TPN to TA translators available [Romeo]

Analyzing TPNs by translation into TAs

Adapting TA methods to TPNs (e.g. TCTL model checking)

Expressiveness

In terms of language acceptance: TA = TPN

In terms of weak timed bisimilarity: TA > TPN

But TA+ {≤,∧} < PrTPN

102

State Classes

1. Background

2. State Class graphs as abstract state spaces

3. State Classes Preserving markings and traces

4. Preserving states and traces

5. Preserving states and branching properties

6. Quantitative properties, Other techniques

7. Subclasses, extensions, alternatives

8. Application areas, Tools

103

8. Applications, Tools

8.1. Application areas

Communication protocols (Merlin)

Embedded software systems

Hardware systems

8.2. Tools

Some tools using state classes

The TINA toolbox

104

Topcased Project

June 05 ­ IRISATECH 1

AADL SDL SYSMLUML2.0PDL

Modelling Languages

Common Format

TINA CADP

...

...Model­Checkers

Editors

Translation

Meta­Modelling

Transformation Engine
ATL,KERMETA,...

Meta­Modeller

Model Transformation

Simulation & Formal Verification

Compilers

Simulator

105

Some tools (state class based)

Tina, http://www.laas.fr/tina

Oris, http://www.stlab.dsi.unifi.it/oris

Romeo, http://romeo.rts-software.org

106

TINA (TIme petri Net Analyzer)

Handles

Time Petri Nets (+ read arcs, inhibitor arcs, open intervals)

+ Priorities (Priority TPNs)

+ Data (Time Transition Systems)

+ Suspension/Resumption (Stopwatch TPNs)

+ High level notations (Fiacre language, forthcoming)

107

State space abstractions

Exact state spaces

When possible . . .

Managing combinatorial explosion

Partial order methods (Covering steps, Stubborn/Persistent sets)

Handling time constraints

Finite abstractions by State Class methods

Handling Suspension/Resumption

State reachability undecidable ⇒ geometric overapproximations

Handling Data

High level description languages ⇒ discrete overapproximations

108

Main components

tina (TIme petri Net Analyzer)

Input nets in graphical or textual form

Builds behavior abstractions, Preserving some classes of properties

Output in verbose form or for popular transition system analyzers

nd

Graphic and textual editor

Of Time Petri Net or Transition Systems

Drawing, printing functions

Interfaced with tina tool and selt model-checker

struct, plan, setl, muse, ktzio, ndrio, ...

Structural analysis, path analysis, SE-LTL model-checker, converters . . .

109

nd

110

tina – exploration module

111

Untimed constructions

Covering graphs (Karp/Miller)

Detection of unbounded places, several heuristics

Marking graphs (Classical constructions)

Various stopping conditions

Liveness analysis

Partial order constructions (Classical constructions)

Covering steps

Stubborn sets

Stubborn steps

112

KTS, example

Marking graph

MARKINGS:
0 : p1 p2*2
1 : p3 p4 p5
2 : p2 p3 p5
3 : p2*2 p3
4 : p1 p2 p5
5 : p2 p3 p4
6 : p1 p2 p4
7 : p1 p4 p5

REACHABILITY GRAPH:
0 -> t1/1
1 -> t2/2, t3/5, t4/1, t5/7
2 -> t3/3, t4/2, t5/4
3 -> t4/3, t5/0
4 -> t3/0
5 -> t2/3, t4/5, t5/6
6 -> t2/0
7 -> t2/4, t3/6

113

Or in CADP format

des(0,17,8)
(0, "t1", 1)
(1, "t2", 2)
(1, "t3", 5)
(1, "t4", 1)
(1, "t5", 7)
(2, "t3", 3)
(2, "t4", 2)
(2, "t5", 4)
(3, "t4", 3)
(3, "t5", 0)
(4, "t3", 0)
(5, "t2", 3)
(5, "t4", 5)
(5, "t5", 6)
(6, "t2", 0)
(7, "t2", 4)
(7, "t3", 6)

114

Or in binary formats

Compact storage and exchange formats

BCG (CADP Toolbox, INRIA Grenoble)

Access to CADP tools

KTZ (Compressed Kripke Transition Systems)

State AND transition properties

e.g. packs 135000 states and 450000 transitions into 1Mb

115

Timed constructions

State class graphs

Preserving markings (SCG⊆)

Preserving markings and LTL properties (SCG)

Multi-enabledness SCG

Preserving states (SSCG⊆)

Preserving states and LTL properties (SSCG)

Preserving CTL∗ properties (ASCG)

116

Model checking

Native State/Event− LTL model checker (selt)

Exports to external equivalence or model checkers (CADP, MEC)

Path analysis by the plan tool

In progress:

More native model-checkers (µ-calculus, MITL, . . .)

Parallel model checkers, for very large state spaces

High level descriptions (Fiacre)

117

Some references

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[BCHRL05] B. Bérard, F. Cassez, S. Haddad, O. H. Roux, and D. Lime. Comparison
of the Expressiveness of Timed Automata and Time Petri Nets. In Formal
Modeling and Analysis of Timed Systems (FORMATS’05), LNCS 3829,
pages 211–225, 2005.

[BM82] B. Berthomieu, M. Menasche, A State Enumeration Approach for Ana-
lyzing Time Petri Nets, 3rd European Workshop on Petri Nets, Varenna,
Italy, 1982.

[BM83] B. Berthomieu, M. Menasche, An Enumerative Approach for Analyzing
Time Petri Nets, IFIP Congress 1983, Paris, France, 1983.

[BD91] B. Berthomieu, M. Diaz, Modeling and verification of time dependent sys-
tems using time Petri nets. IEEE Transactions on Software Engineering,
17(3), 1991.

[BRV04] B. Berthomieu, P-O. Ribet, F. Vernadat, The tool TINA – Construction
of Abstract State Spaces for Petri Nets and Time Petri Nets, International
Journal of Production Research, Vol 42, Number 14, July 2004

[BLRV07] B. Berthomieu, D. Lime, O. H. Roux, F. Vernadat, Reachability Problems
and Abstract State Spaces for Time Petri Nets with Stopwatches, Journal
of Discrete Event Dynamic Systems, 2007.

[BPV06] B. Berthomieu, F. Peres, F. Vernadat, Bridging the gap between Timed
Automata and Bounded Time Petri Nets, FORMATS 2006. Springer
LNCS 4202, 2006

[BPV07] B. Berthomieu, F. Peres, F. Vernadat, Model-checking Bounded Priori-
terized Time Petri Nets, ATVA 2007. Springer LNCS 4762, 2007

118

Some references ...

[BH04 H. Boucheneb and R. Hadjidj. Towards optimal CTL∗ model checking
of time Petri nets. Proceedings of 7th Workshop on Discrete Events
Systems, Reims, France, September 2004.

[BM03] H. Boucheneb and J. Mullins. Analyse des réseaux temporels : Calcul
des classes en o(n[2]) et des temps de chemin en o(mn). Technique et
Science Informatiques, 22:435–459, 2003.

[BHR06] P. Bouyer, S. Haddad, and P-A. Reynier. Extended timed automata and
time Petri nets. In Proc. of 6th International Conference on Application
of Concurrency to System Design (ACSD’06), Turku, Finland, June 2006.
IEEE Computer Society Press.

[BR06] M. Boyer and O. H. Roux. Comparison of the expressiveness of arc,
place and transition time Petri nets. Application and Theory of Petri
Nets 2007, Siedlce, Poland, Springer LNCS 4546.

[BFSV04] G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario. Timed State Space Anal-
ysis of Real-Time Preemptive Systems. IEEE Transactions on Software
Engineering, 30(2):97–111, February 2004.

[CR06] F. Cassez and O. H. Roux. Structural translation from time petri nets
to timed automata. Journal of Systems and Software, 2006.

[Ha06] R. Hadjidj. Analyse et validation formelle des systèmes temps réel. PhD
Thesis, Ecole Polytechnique de Montréal, Université de Montréal, Febru-
ary 2006.

[JLL77] N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of some
problems in Petri nets. Theoretical Computer Science 4, pages 277–299,
1977.

119

Some references ...

[LR03] D. Lime and O. H. Roux. Expressiveness and analysis of scheduling
extended time Petri nets. 5th IFAC International Conference on Fieldbus
Systems and their Applications. Elsevier Science, July 2003.

[Me74] P. M. Merlin. A Study of the Recoverability of Computing Systems. PhD
Thesis, Univ. of California, Irvine, 1974.

[MF76] P. M. Merlin and D. J. Farber. Recoverability of communication proto-
cols: Implications of a theoretical study. IEEE Tr. Comm., 24(9):1036–
1043, Sept. 1976.

[PP04] W. Penczek and A. Pó lrola. Specification and Model Checking of Tem-
poral Properties in Time Petri Nets and Timed Automata. Applications
and Theory of Petri Nets 2004, Bologna, Italy, Springer LNCS 3099.

[RL04] O. (H.) Roux and Didier Lime. Time Petri nets with inhibitor hyperarcs.
Formal semantics and state space computation. Application and Theory
of Petri Nets 2004, Bologna, Italy, Springer LNCS 3099

[Ro93] T. G. Rokicki. Representing and Modeling Circuits. PhD Thesis, Stan-
ford Univ., Stanford, CA, 1993

.

[RM94] T. Rokicki, C. Myers, Automatic Verification of Timed Circuits. 6th
Conference Computer Aided Verification, CAV’94, Springer LNCS 818

[Vi01] E. Vicario. Static Analysis and Dynamic Steering of Time-Dependent
Systems. IEEE Transactions on Software Engineering, 27(8):728–748,
August 2001.

[YR98] T. Yoneda and H. Ryuba. CTL model checking of Time Petri nets using
geometric regions. IEEE Transactions on Information and Systems, E99-
D(3):1–10, 1998.

120

