Humboldt–Universität zu Berlin Institut für Informatik

Übungsaufgaben zur Vorlesung Lineare Optimierung SS 2006

Übungsblatt 6 Abgabe 11.07.2006, vor der Vorlesung

Aufgabe 1: (6 Punkte)

Die Produzenten (P_i) erzeugen das gleiche Produkt, das zu vier Verbrauchern (V_j) transpo rtiert werden soll. Die Produzenten produzieren folgende Mengen (a_i) :

	P_1	P_2	P_3
a_i	40	45	50

und die Verbraucher benötigen folgende Mengen (b_i) :

	V_1	V_2	V_3	V_4
b_i	22	33	44	36

Die Transportkosten je Mengeneinheit auf der Transportstrecke P_iV_j sind c_{ij} und folgender Tabelle zu entnehmen:

	V_1	V_2	V_3	V_4
P_1	8	3	3	4
P_2	6	7	5	8
P_3	1	8	10	2

Die insgesamt auftretenden Transportkosten sind zu minimieren, wobei zu berücksichtigen ist, dass auf keiner der Strecken mehr als 22 Mengeneinheiten transportiert werden können. Folgende Aufgaben sind zu lösen:

- (a) Stellen Sie das mathematische Modell auf!
- (b) Bestimmen Sie den optimalen Transportplan und die dabei entstehenden Transportkosten!

Aufgabe 2: (10 Punkte)

Ein Betrieb ist durch vorhandene freie Kapazitäten in der Lage, einmalig (für genau ein Jahr) ein Produkt zusätzlich in den Produktionsplan aufzunehmen. Für dieses Produkt besteht in den einzelnen Quartalen folgender Bedarf:

Quartal: 4000 [ME]
Quartal: 5000 [ME]
Quartal: 3000 [ME]
Quartal: 2000 [ME]

Zur Herstellung dieses Produktes kann der Betrieb zwei Maschinentypen M_1 und M_2 einsetzen, die mit unterschiedlichem Kostenaufwand arbeiten. Die freien Kapazitäten für die einzelnen Quartale und die Kosten sind in den folgenden Tabellen angegeben:

[ME]	Q_1	Q_2	Q_3	Q_4
M_1	2000	5000	4000	1000
M_2	3000	2000	1000	1000

[GE/ME]	Q_1	Q_2	Q_3	Q_4
M_1	3	1	2	4
M_2	2	1	4	5

Es besteht die Möglichkeit, im voraus für die nachfolgenden Quartale zu produzieren. Dabei entstehen Lagerhaltungskosten von 1 [GE] pro [ME] und [Quartal]. Es soll aus betrieblichen Gründen ausgeschlossen werden, daß im 2. Quartal eine Produktion für das 4. Quartal erfolgt.

Bestimmen Sie die Mengen, die jede Maschine in jedem Quartal herstellen soll, so daß der Bedarf gedeckt wird und die Kosten minimal sind, wobei:

- 1) Formulieren Sie das mathematische Modell in Tabellenform!
- 2) Geben Sie für die Aufgabe eine numerische Lösung an!