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Abstract. We present Petri nets with time windows (tw-PN) where eaeltels associated with
an interval (window). Every token which arrives at a placésgereal-valued clock which shows
its “age”. A transition can fire when all needed tokens are ‘@mhough”. When a token reaches an
“age” equal to the upper bound of the place where it is sithatee “token’s age”, i.e., clock will
be reset to zero. Following this we compare these time degrRetri nets with their (timeless)
skeletons. The sets of both their reachable markings ara geir liveness behaviour is different,
and neither is equivalent to Turing machines. We also progeskistence of runs where time gaps
are possible in the tw-PN, which is an extraordinary feature

1. Introduction

Petri nets with time windows (tw-PN) are derived from claakiPetri nets (PN) where each placés
associated with a time intervd),, u,]. When a token arrives in a plapeit can not leave beforel, time
units have elapsed. During the time interval (windgiy) «,,] the token can leave. At the end of the
interval there is not a force for leaving. When the token rieséonger in the place aswu, time units
then the current time of the token in the places reset modula:,. Whent becomes enabled, it can fire
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when enough tokens in its input places can leave them. I otbeds, ¢ can fire if¢ is enabled and all
time windows of enough tokens in all input places @fre “open”. The firing itself of a transition takes
no time. The time is represented by non-negative real nusnbat the interval bounds are non-negative
rational numbers. It is easy to see that w.l.0.g. the intdvwands can be considered as integers only.
Thus, the interval bounds andw, of any placep are natural numbers, including zero apd< w,, or

Up = Q.

Every possible situation in a given tw-PN can be describedptetely by a time markingZ with
M(p) € (R3)* for each place. Thus, a time marking is a vector of words o . In general, each
tw-PN has (i.e. the state space of the tw-PN contains) iefimiimber of time markings.

The tw-PN was first introduced in [8] and later applied for rllidg and diagnosis in the automation
engineering in [5].

Related work: In the classical Petri nets the time is only implicitly inved in the kind of causal
context. The works of Merlin [7] and Ramchandani [11] ceraistarted a new branch of Petri nets -
the time dependent Petri nets. Merlin defined the Time Pets (TPN) and Ramchandani the Timed
Petri nets. Since this time a huge amount of different kirfdgre associations have been defined. Time
can be added to transitions ( [7], [11], [6]), to places ( [18], [5]) and to edges ( [2], [1]) in various
ways. Classes of well known time dependent Petri nets aengiv[13]. However, most of them are
equivalent to the Turing machines and thus the most intageproblems like the reachability problem
and the liveness problem are undecidable.

The paper is organised as follows: The next section giveegmeliminary definitions and remarks.
The third section compares the reachability behaviour o&ritrary tw-PN with its skeleton. After-
wards, the non-equivalence between tw-PNs and Turing mashs proved. The fourth section deals
with liveness behaviour of a tw-PN and its skeleton. Findhg last section summerizes the results and
gives a remark including future outlook.

2. Basic Notations and Definitions

As usual, we use the following notations in this pap€ris the set of natural number;" := N\{0}.

Qg is the set of non-negative rational numbers &jdthe set of non-negative real numbers. By we
denote the number of elements of a finite seff/A.denotes the language of all words over the alphabet
T, including the empty word, the natural numbéi(w) is the length ofu. The worda* with a € T and

k € N stands for the words . . . @ .

k—times

Definition 2.1. (classical Petri net)
The structure\ = (P, T, F,V,m,) is called a (classical) Petri net (short: PN) iff

@iy P, T, F are finite sets with
PNT=0,PUT#0),FC(PxT)U(T x P)anddom(F)Ucod(F)=PUT

(i) V: F — NT (weight of the arcs)

(i) m, : P — N (initial marking)
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A marking of a PN is a (total) functiom : P — N, such thatn(p) denotes the number of tokens
at the placep. The pre-sets and post-sets of a transiti@me given by*t := {p | p € P A (p,t) € F}
andt® := {p | p e P A (t,p) € F'}, respectively. Each transitionc T defines the markings™ and¢™
as follows:

(p) = Vip,t) iff (pt)eF F(p) = V(t,p) iff (t,p)eF

"o it (pt) & F 0 it (tp) ¢ F
Moreover,At denoteg™ — ¢~. A transitiont € T' is enabled (may fire) at a marking iff t— < m (i.e.
t~(p) < m(p) for every placep € P). When an enabled transitigrat a markingn fires, this yields a
new markingm’ given bym’(p) := m(p) + At(p) and is denoted by tom

Definition 2.2. (Petri net with time windows in the places)
The pairP = (N, I) is called a Petri net with time windows in the places (shavtPiN) iff

(i) NVis a(classical) PN and

(i) I:P— Qf x (Qf U{oc}) and for each place € P andI(p) = (I, u,) it holds: I, < wu,,.

The PNV is called the skeleton @ and is it is denoted by (7). W.l.0.g. we consider the function
I with a co-domairNg x (Nj U {oc}).

Example 1.

Figure 1. P, is a Petri net with time windows in the places.

It is obvious that tokens can arrive at a place in differemes. Hence, we have to keep the arriving
time of each token of every place. This can be solved supglisieasily using words over numbers.
The empty word: will be assigned to a place without tokens. Each token in egpis presented with a
non-negative real number, which is the arriving time of thieeh in the place (modulo the upper bound
of the time interval of the place). We call this kind of prefsdion of a markingime marking

Definition 2.3. (time marking)
Let P be a Petri net with time windows in the places. The nidp: P — (Rj)" is called a time
marking inP.
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By mj s we denote the usual (not time) marking

(M (p1)), l(M (p2)), - .-, (M (p|p))))

which corresponds to the time marking: the wordM (p;),7 = 1...|P| describes the duration of dwell
of the tokens in the place; (modulow,,) and the lengthi(M (p;)) of the word M (p;) is equal to the
number of tokens in the plage at the time marking\/.

Definition 2.4. (initial time marking)
Let P be a tw-PN andn, be the initial marking inS(P). ThenM, is the initial time marking orP , iff

€ if mo(p) =0
0moP)  else

Mo(p) == {

Obviously, it holds:m s, = my.
The initial time marking)/, of P; (s. Figure 1) isMy = (0,¢,¢,¢).

Itis clear that a time marking can change into an other oneriogfa transition or by time elapsing as
it is the case in each kind of time dependent PNs. First, waeldfie notiorready to fireand afterwards
the notionschange by firingandchange by time elapsing

Definition 2.5. (ready to fire)
Let M be atime marking wittM/ (p) = ald ... afm o for eachp € P and lett be an arbitrary transition
in the tw-PNP. Transitiont is ready to fire inM, ifé

() t < mar,
(i) Yp(p € *t —Vj(j € {1,....,t=(p)} — I, < a¥ < wy)).

Definition 2.6. (firing a transition)
Let P be a tw-PN, letl" be its set of transitions and l&t/ be an arbitrary time marking i®. The
transitiont € T can fire in the time marking/, iff ¢ is ready to fire inM. After firing it, M changes

into the time-marking\/’, denoted by\/ ' M, which is defined as follows: LeY/ (p) = afab ... ab,
with a} € R, ¢~ (p) = k andt*(p) = rL. Than it holds:

al ... dbhor ifk<n
M’(p):z{ o

0" ifk=n

Remark 1. Let M; b, M, be a time marking change in the tw-PN Obviously thent is enabled in
the markingm ,, in the skeletor5(P) and it holds:my, N MM, - O

!Leta be a letter in an alphabet. Thend® = ¢.
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Definition 2.7. (time elapsing)

Let P be a tw-PN and let be a non-negative real number. Then, the elapsing of tinmeP is in any

time marking always possible. L&t be an arbitrary time marking i®. ThenM is changedinto the

time markingM’ by the time elapsing 7 € R{, denoted byl —— M, iff the following holds:
Let M (p) = aldb ... ah with o? € R{ and letu,, < a; + 7 anda;4+1 + 7 < u,, hold for each natural

numberi with 1 < ¢ < n. Then the succsessor time markihg (p) = b7b} ... b}, is defined as the time

marking in’P with

WP a‘;l-’+j+7' - ifi+j<n '
J (afﬂ._n +7) mod u, else

Please note that:

— amodb if amodb#0
a modb = ) .
if amodb=0

Example 2. Let P be a tw-PN and led/ be a time marking irP with
M(p) =3.7 2.8 23 2 1.5 0.3 0.1 andI(p) = (2,6).
The succsessor time markidd’ at the placey after the time elapcing = 4 holds then:
M'(p) =6 5.5 4.3 4.1 1.7 0.8 0.3

The behaviour of a given tw-PR = (P, T, F,V, mq, I) is defined by its changes from a given time
marking into another. In general, the changes are an aliegnaeries of time elapsings and firings.
Thus, we use the following notions.

A transition sequence = tity...t, in P is aword inT*. A run o(7) of a transition sequence
o = tity...t, With time elapcsings = 7971 ... 7, € (Ry)* is the wordroty 7 ... t, 7, iIN Ry (T RY)*.
Thetime-lengthi(o (7)) of the runo(7) is the sumry + ... 4+ 7,. Aruno(7) is afeasible one inP if
starting inM, all time marking changes defined byr) are possible irP. A transition sequence is a
feasible transition sequende P if there exists at least a feasible rar).

A time marking )/ is called areachable time marking P, if there exists a feasable rur{r) in P

with 2y 27 a1

Theset of all reachable time markings P, starting with time marking\/, is denoted byRp (M ).
Please note th&?» (M) is the set of all reachable time markingsin Finally, by R (m,, ) we denote
{mum | M € Rp(Mo)}-

A tw-PN P is boundedf the set{m; | M € Rp(My)} is a finite one.

As already set, time elapsing is always possible in tw-PNerddver, it can happen that in a time
marking only time elapsing is possible. This can happenvar different reasons. First, there is no
transition enabled in that time marking. Second, no enalpbetsition can become ready to fire because
of the time restrictions. In the first case, the transitiogussice, which leads to this time marking and
ends here, is also a sequence in the skeleton. In the seceadwa will call ittime-deadlock the
underlying transition sequence is a firing sequence in tABNywhich can be continued (only) in the
skeleton.

Definition 2.8. (time-deadlock)
Let M be a time marking in the tw-PI®. The transitior? is in M in a time-deadlock (short: t-DL), if
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() i~ <muy

(i) Vr(r eRT — M Th).

At the end of this section we introduce the notlimenessfor tw-PNs. Actually, there are four levels
of liveness. We consider here only the so called 4-livengsned by Lautenbach in [4]. This notion
will also be defined in a similar manner to the definition fae tlassical PNs.

Definition 2.9. (liveness)
Let P be a tP-PN and/ a reachable time marking.

(i) Atransitiont is live in the time markingV/ if
VYM'(M' € Rp(M) —s IM"(M" € Rp(M') A M" L)

(i) Atw-PN P is live if all transitions are live inV/;.

3. Reachability

In this section we discuss the reachability of an arbitraryPN, i.e., we compare the reachabiltiy of
tw-PNs with its skeleton. Our main goal is to show that bottriPets have the same sets of reachable
markings.

Finally, we briefly compare tw-PN and TPN. In particular, waka some remarks why one cannot
consider natural numbers for the time elapsing only. Beybig] we show that in a tw-PN, a feasible
run can have “gaps” in its run.

Theorem 1. Let P be a tw-PN andb(P) its skeleton. Then the firing sequeneés a firing sequence in
S(P) if and only if o is a firing sequence i®.

Proof:
(«<=) This part of the proof is easy to see as a transitio® ioan fire if it is enabled. Therefore, it is
enabled inS(P).

(=) The idea of proof is to wait until the clock of each token rezch time which is equal to the
upper bound of the place where it is situated. After this oegua transition is fired. This firing approach
is calledultimo rule

For this proof letr := ¢, .. . t,, a firing sequence i§(P). Then we haveny 2 m; 2% ... 2 m,
inS(P).

We have to show that there exists a feasiblea(n) = 7ot17 ... 7,—1t, in P. We make the proof
by induction.

Basis:letn =1, i.e.0 = t3.

First, we need to know how much time must elapse until eadtrtigk“old” enough to become ready
to fire. This is the case when the upper bound is not infiniy time of the token is equal to the upper
bound of the place, and when it is infinite, then to the lowarriab

Now for an arbitrary time marking/* we define

Un := {uplp € P Ay # 0o A M*(p) # e}
Ly :=={lplp € P Nu, =00 AN M*(p) # ¢}
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and
BM* = UM* ULM*

Let 7y := LCM(Byy,) and consider the time markiny, with M, > M}. Then we have for each
peP
€ iff mo(p) =0
Mg (p) = uzlo(p) iff mo(p) # 0 Awy # oo,
lg"bo(p) iff mo(p) # 0 A, = oo.

Obviously we haveny = my, = Mg and therefore each transitiens enabled inP in M, iff ¢ is
enabled inS(P) in m,,;. Furthermore is ready to fire in\/; iff ¢ is enabled im\Zj.
By assumptiort; is enabled inS(P) in magy and thus ready to fire i in M. Let M, be the time

marking we get by firing;, i.e., M, 1, M. Then we have for eaghe P

£ iff mi(p) =0
M1(p) _ u;ﬂo(P)—\t;(P)|0\t1+(p)| iff m1(p) 7& 0 Ay ?é 00,
lgm(p)_lt;(p)‘Ow(p)‘ iff m1(p) # 0Auy = oc.

Now we can see that the duration of dwell of each token in agple@qual either to the upper time of
their place or0 (if the upper is not infinity). Note that by definitiohandu, are in a way equivalent.
Again we haven; = myy, .

Inductive step: Leto =t ...t,_1tn.

Letd :=t;...t,—1. By the inductive hypothesis a feasible réfr) = 7ot17; ... 7,—2t,—1 €XisSts

with M, 5, M/ _, and

€ iff m,_1(p) =0,
My—1(p) = u;n”%(p)_lt”’l(p)‘0|tf+z*1(p)| iff my,—1(p) # 0 A uy # oo,
w Olta—1 (@) iff 1m,,_1(p) # 0 Auy, = oo,

wherew € (R({)* is a word such that for all letters (i.e. non-negative nurspewhich appear inv we
havex > [,,.

Now consider the time,,_; := LCM(By;,_,) andM,_; —— M, and it holds

€ Iﬁ mn—l(p) = 07
L) = um )i,y (p) £ O Ay # oo,
w iff my,—1(p) # 0 A uy = oc.

Again a transitiort is ready to fire in the certain time markiny,,_, iff it is enabled inA)_,. By
induction hypothesis the transitiop is enabled inV/] _, and therefore ready to fire in this time marking.
That means, however, the transition sequencea firing sequence i®, as well. O

Corollary 1. For all tw-PNP the setRp(may,) is equal to the seR g(p) of all reachable markings in
the skeleton ofP.
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When one compares the tw-PNs with the TPN (defined by Mettia)e are two more remarkable
results.

First, we know that the TPN behave in the same manner as they do vésenling time elapsing
with real numbers or only natural numbers (cf. [10]). Thisdt true for tw-PNs. Let us consider the
tw-PN P in Figure 2 and the transition sequence= tt;. After firing the run0.5 ¢; 0.5 ¢; the only
enabled transitions is in t-DL and thus the run cannot be continued. In contragrerun ofc where
the time elapsings are natural numbers can be contiued.

R@)o1
2
t ty
1.1
[1,1] B

Figure 2. A tw-PN which “real” behaviour differs from its “haal” behaviour.

SecondLet Z be a TPN and a transition sequence . Leto(7,) ando(73) be two feasable runs
of a transition sequencewith

lo(ra)) =t < B :=1(o(73)).

Then there exists a feasible rur, ), with [(o (7)) =~ for all v € [a, f].

This is not true for a tw-PN. It is possible that there are digaps” in the run. If there is a feasible
runo(7,) and another feasible run(7z) so thatl(o(7,)) = v andi(o(73)) = f with a < 3, then there
can be a real number € («, 3) so that the length of all feasible ruhg (7)) # ~. Of course this is
neither true for albv and 3 nor is it true for all runs.

To clarify this fact we state an example. Figure 3 shows th@Nwve use in this example.

R 23] t R

2,3]

tg ty, 13 ty
1R 3R

Figure 3. A tw-PN with a run with time gaps.

Now consider the sequenee = ¢; to t3 and the feasible runs(m) := 3 t; 3 t2 3 t3 and
o(m) := 5t 2 ta 3 ts. Itholds: i(o(1)) = 9 andl(o(m2)) = 10. However, there is no feasible run
o(73) such that(o(73)) = 9.5.
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4. tw-PNs and Turing Machines

In this section we will show that tw-PN are not equivalent taifig machines. In order to prove this
we will show that this class of nets is not equivalent to ceumiachines. A counter machine itself is
equivalent to Turing machines ( [3]). Counter machines wstdad four different commands: START,

HALT, INC (increase) and DEC (decrease). We will show how care simulate the first three commands
using tw-PN and, afterwards, we prove that one cannot sietitee DEC command with tw-PN. This

proves that tW-PNs are not equivalent to counter machingghamnefore they are not equivalent to Turing
machines.

At first we will recall the four different commands of a counteachine.

Counter machine command Description of the command

0: START :m Start the program and go to line.

m : HALT Stop the program.

m . INC(j) : r Increase countef by 1 then go to
line r.

m: DEC(j):7:s If counterj equals 0 then go to line
r else decrease countgthen go to
line s.

The command DEC does two things. First, it checks the placdédocemptiness (zero test) and,
second, it subtracts a token from another place. We willlsaethe zero test is the problematic part.
Now we show how to simulate the first three commands (STARTL-Hand INC) with tw-PNs.

Notation of the Model of the numbered
numbered command, command as a tw-PN

Pora
0: START :m n(e)01]

Pm.""\[c,_”
A
m . HALT

m . INC(j) : r

In order to simulate the DEC command it is nessecary to simtiteezero test The zero test is a test

that checks whether there is a token on a pjaocenot. If there is a token opthe placep; gains a token,
else the place gains the token.
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Theorem 2. The zero test cannot be simulated by a tw-PN.

Proof:
Assume that the zero test can be simulated for the pldgea tw-PNP,,.

Then there exist two placgs andp, with p; # ps so thatP, “stops” with eitherp; or p, marked,
that meang’, reaches a marking where eithgror p » are marked and all transitions are disabled.
Case 1:My(p) = €. Every feasible rumw(7) in P, with M, 2T, M has only a finite amount of con-

tinuations so that for every continuation either céiyer (ii) occurs

(i) It € Tandt™ < myy
(i) Vte T :t~ £ my andl(M(p,)) = 0 andi(M (py)) = 1.

Case 2:My(p) # . Every feasible rumw (7) in P, with M, 2T, M has only a finite amount of con-

tinuations so that for every continuation either céiyer (ii) occurs
(i) 3t € Tandt™ < myy
(i) Vt € T -t~ £ mys andl(M(p;)) = 1 andi(M (pys)) = 0.

Please recall that/,(p) = ¢ really means that(M,(p)) = 0. Furthermore, note that cas@g can
only happen once as no transition is any longer enabled.

Case 1 My(p) =«

It follows that there is only a finite amount of feasible rumgldhey all stop in a time marking/
with [(M (py)) = 1 andi(M (p;)) = 0.

If there were another sequenceSP) we could reach it by using the ultimo property. Therefore,
there is no further sequeneein S(P) so thato is not feasible irP.

Case 2 My(p) # ¢

Analogous to Case 1.

Putting Case 1 and 2 together we receive that we can modet¢tbdest inS(P) and, therefore, the
classical Petri nets are equivalent to Turing machinest iStecontradiction (cf. [9]). O

5. Liveness

In this section we compare the liveness of tw-PNs with therless of its skeleton. As we have shown,
the sets of the reachable markings of the both nets are g¢hadiveness behaviour, however, of the both
nets are not.

Some examples are shown here why the liveness behavior flankgitween a tw-PN and its skele-
ton.

Lastly, we state a result for a class of restricted nets whenw-PN is live. We will show furhermore
the necessity for this restriction.

Remark 2. When a tw-PNP net is live thenS(P) is live as well. The opposite does not hold in general.

Proof:
This small example (figure 4) shows the tw-PN. It is obvious thatS(P) is live. If we assume the
sequence; 5.0 t1, then it is easily seen that cannot become ready to fire. O
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R@)o.1
2
t ty
[9,10] B

Figure 4. The tw-PN is not live although its skeleton is live.

Remark 3. LetP be a tw-PN withV (f) = 1 for eachf € F and|*t| < 1. Thenitis true:P is live iff
S(P) is live.

Remark 4. Note that restricting the net B%¢| < 1 is essential as Figure 5 shows.

Figure 5. Example for a tw-PIR with V(f) = 1 Vf € F thatis not live althougly (P) is live.

Remark 5. It is easy to see that a transitiomvith *¢ = {p} is in time-DL in the time marking\/ if one
of the following statements are true:

(i) For all time markingsM’ = a}...a, with M = M’ 7 € RJ,V := V(p,t) the inequality

al, — ay, > u, — Iy holds.

(i) The number of tokens in the intervdll,, u,] is less thanV/ (p,¢) for all time markings)M’ with
ML M T eR].

Definition 5.1. (equidistant time marking)

Let P be a tw-PN. A time marking// is called an equidistant time marking in the placég M (p) =
p p i

ai,...,an With

p p_ _u - p p_ _u
aj+1—aj—mforj—l,...,n—l and(up—an)—kal—m.

The notion equidistant time marking is very important foe tiext proof. We will show that if a
transition is not in a t-DL in an equidistance time markingen it will be never in a t-DL in a time
marking with the same number of tokens. This means that tisteexe of an equidistance time marking
is the “worst case” for the occurrence of t-DL for a trangitio



348  J.T. Wegener and L. Popova-Zeugmann / Petri Nets with Timdatis: A Comparison to Classical Petri Nets

Theorem 3. Let P be a tw-PN and let be a transition wittt = {p}. For each time markings/, M*
and M€ wherel(M*(p)) = I(M¢(p)) = l(M(p)) the following statements are equivalent:

() There is atime marking/* so thatt is in a time-DL inM*.

(i) tisintime-DL in the equidistant time markiniy €.

. V(p,t)—1
(i) 1, > u, (1 - z((J]\th()p)) )

Proof:

We setn := (M (p)) = {(M*(p)) = U(M*(p)), A := V(p,1).
(i) = (i) trivial
(i) = (i) We have

a; —ay = (a1 —az)+ (a2 —a3)+...+ (ap_1 —ay)
u
= — 12
CEL

= up—up—i-()\—l)%

A—1
= up—up<1—T> > up — 1y

and subsequentlyis in M€ in a time-DL.

(i) = (iii) W.L.o.g. we can assume thigt u, € N anda}, = u,, for the time marking\/*.

For an easier formal writing we copy the interyal «,] and add it to the end, i.e. we consider the
time markingM* (p) := al, ... ah,al +up, ... ah + up.

Now let x; ;, be the number of tokens in the interyalk].

Furthermore there exists a natural numket= [{a? € M*(p) : a € N}|. We assumed that, = Up
thusx > 1.

Therefore we have

up—1
no= Y Xjj—k 1)
=0
up—1
_ Zj:O Xjup—lp+j — K
up —lp
up—1
< Zjio A=1) =k
B up — 1
el =1
< Z]:O ( ) (2)
up — 1l
_ up(A —1)
up — 1y

where equality (1) holds astokens are counted twice and inequality (2) holds as 1.
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And thus
Up
A—1
n<up—lp( )
Up
= up—lp<;()\—1)
= l,>u,—u Al =u 1—)\_1
P P P n = Up n . O

It is easy to conclude from Theorem 3, that if a pre-place o&asition contains more than a certain
amount of tokens on a place, then the transition is able to Tine exact number of tokens is also easy
ascertainable. This is only true, however, for the clasgsliricted nets that we examined. The following
shows another reason why we had to restrict the nets.

The Theorem 3 cannot be extended to transitions ytith> 1. The problem is that the number of
tokens cannot be bound from above as it is done in the procds¥ (i) = (ii7) ). Figure6 illustrates
this fact.

The sequencet2t,2t1 2t . . . 2t12t5 leads to arbitrary many tokens on each place but the transiti
t3 cannot be made ready to fire.

ty ty

[3.4] [3.4]

t3

Figure 6. lllustration that pre-places of a transittozan hold arbitrary many tokens whilg is not ready to fire.

Lemmab5.1. Let P be a tw-PN andV/ a time marking iriP, ¢ an arbitrary transition irP andt enabled
in M. Furthermore, lef*¢| < 1 and let the following estimate hold for eaglwith (p,t) € F":

u
I, < —2
TVt
Thent can become ready to fire itV
Proof:
Let A := V(p,t). We know that is enabled inV/ and thus we havé/(p) := n > \. Therefore
u
, < L
D
A—A+1

IN
7N
—
|

>
S|
—_
S~
<
=

and the rest follows from previous theorem. O
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Let P* :={p € P | p* = 0} in the following.

Corollary 2. LetP be atw-PN and Igf¢| < 1 for every transitiort € T'. Furthermore, let the following
estimate hold for eache P\ P* andt € T"

Up

= max V(p,t)’
max V(p, )

Then there is no time markindy/ in 77 and no transitiort € 7" so thatt is in t-DL in M.

The reason why we neetdax V(p,t) is simple. We must make sure that in any plaseith [p®| > 1
ep®

we are able to fire any transition at any time.

Theorem 4. Let P be a tw-PN and lef(P) be its skeleton so thatt| < 1 for everyt € T" and so that
S(P) is live. Furthermore, let the following estimate hold for@lacesp € P\ P*:

Up

= max V(p,t)’
max V(p, )

®3)

Then?P is live.

Proof:

It follows immediately from Corollary 2 that no time markiigreachable irP so that a transition is in
at-DL init. Eventually, it is evident that any transitiongsnce inS(P) is also a transition sequence in
P because of the Theorem 1. Therefore, the livene$2 cdn be derived from the liveness $fP). O

Please note that Theorem 4 gives us a sufficient condition Gidure 7 gives us an example for a
tw-PN that violates the conditions in Theorem 4 but stilive

[5.5]

Figure 7. A live tw-PN that violates the estimate 3 of Theorem

Corollary 3. LetP be a tw-PN and les(P) be live. Let|*t| < 1 for everyt € T'. Furthermord, = 0
oru, = oo is true for each placg in P. Then?P is live, too.
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6. Conclusion

In this paper we have presented a PN with time restrictiotisegplaces. Usually time dependent PN are
equivalent to the Turing machins. However, we have showtrthiggpower of this class of time dependent
PNs is equivalent to the power of the classical PNs and, fibrerenot equivalent to the Turing machines.
The set of all reachable markings of an arbitrary tw-PN isstime as the set of all reachable markings
of its skeleton. The liveness behaviours of the both netsliffierent.

For a restricted class of nets we could show that the livelbelsaviour is the same.

After all we surmise that the following property is true: [22tbe an arbitrary tp-PN and I&t(P) be
live and let the following estimate be true for all plages P:

P

PE SV

tep®

l

ThenP is live.
Acknowledgment: The authors would like to thank Ben Collins as well as theawerrs for editing
the paper.
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