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Abstract. Biochemical networks are modelled at different abstraction levels. Basically, qualitative
and quantitative models can be distinguished, which are typically treated as separate ones. In this
paper, we bridge the gap between qualitative and quantitative models and apply time Petri nets for
modelling and analysis of molecular biological systems. Wedemonstrate how to develop quanti-
tative models of biochemical networks in a systematic manner, starting from the underlying quali-
tative ones. For this purpose we exploit the well-established structural Petri net analysis technique
of transition invariants, which may be interpreted as a characterisation of the system’s steady state
behaviour. For the analysis of the derived quantitative model, given as time Petri net, we present
structural techniques to decide the time-dependent realisability of a transition sequence and to cal-
culate its shortest and longest time length. All steps of thedemonstrated approach consider systems
of integer linear inequalities. The crucial point is the total avoidance of any state space construction.
Therefore, the presented technology may be applied also to infinite systems, i.e. unbounded Petri
nets.
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1. Introduction

Biochemical networks are modelled at different abstraction levels. It is common sense to differentiate
between quantitative (kinetic) models and qualitative (stoichiometric or even purely causal) models.
The fast majority of published biochemical case studies employs quantitative models; so they seem to
be the favourite choice. The reason lies probably in the long-term objective to predict the systems’
dynamic behaviour by continuous quantitative measures. Quantitative models are prevalently used as
soon as a ”critical mass” of the necessary kinetic parameters is known - such as substance concentrations,
equilibrium constants, or reaction rates. Then, the missing kinetic parameters are usually taken from the
taxonomically nearest neighbour species, for which they are available, or they are estimated. Related
evaluation methods have typically to deal with systems of ordinary differential equations (ODEs), see
e.g. [9]. Corresponding tools are e.g. GEPASI [16] and E-CELL [26]. But, available evaluation packages
for quantitative models do not support any model validationtechniques.

Contrary, qualitative models are generally used only, if kinetic parameters are indeed deficient or not
available at all. Moreover, they are accepted tentatively as intermediate step for larger models, if the
solution of ODEs is not feasible due to the problem complexity. Qualitative models consider the steady
state of a biochemical network, where the kinetic parameters are supposed to be constant. All these
qualitative models are based on some graph-theoretical description of the system topology, or structure,
which is defined in case of stoichiometric models by the knownstoichiometric equations. In biology,
the qualitative analysis is basically used to derive all possible pathways through a network, especially
the minimal ones, but without any explicit validation objective in mind. In [7] we have proposed to take
advantage of the explicitly given system structure to validate the model for self-consistency or sensible
biochemical interpretation, using approved graph theory results.

Typically, quantitative and qualitative models are handled as separate ones. In this paper, we bridge
the gap between quantitative and qualitative models and apply a timed version of directed bichromatic
multigraphs, the time Petri nets [17], for modelling and analysis of molecular biological systems. So, we
introduce another intermediate step by way of a first quantitative model, which is still discretely treatable.
We demonstrate, how to develop quantitative models of biochemical networks in a systematic manner,
starting from the underlying qualitative one. For this purpose, we exploit the well-established structural
Petri net analysis technique of transition invariants [13], which may be interpreted as a characterisation of
the system’s steady state behaviour. For the analysis of thederived quantitative model, given as time Petri
net, we present a structural technique to decide the time-dependent realisability of a transition sequence,
esp. of a transition invariant, given by its Parikh vector. Moreover, the shortest and longest time length
for a transition sequence can be calculated. All steps of thedemonstrated approach consider systems of
integer linear inequalities. The techniques employed consist in their solution or the solution of a related
linear program. The crucial point is the total avoidance of any state space construction in the whole
approach. Therefore, the presented technology may be applied also to infinite systems, i.e. unbounded
Petri nets.

This paper is organised as follows. The next two sections give an introduction into qualitative and
quantitative modelling of biochemical networks using Petri nets, followed by a discussion of the quanti-
tative analysis techniques applied. Afterwards, it is sketched how the proposed approach can be applied
to a representative case study, the sucrose breakdown pathway in the potato tuber [10], [11]. Finally, we
summarise some related work and give conclusions, comprising also an outlook.
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2. Qualitative Modelling

Living organisms require a continuous influx of free energy to carry out their various functions. The
term metabolism alludes to the overall process, through which living systems acquire and utilise the free
energy they need. During this process many chemical reactions take place, usually catalysed by special
enzymes, by which chemical compounds are converted into other chemical compounds. Refering to the
processes’ purpose, these involved primary chemical compounds are called metabolites. Additionally,
there exist auxiliary compounds, which are generally supposed to be ubiquitous ones and available in
sufficient quantities. Despite of the complexity of their internal processes, living systems maintain -
under normal conditions - a steady state, where all primary and auxiliary compounds have reached a
dynamic concentration equilibrium, i.e. the concentrations of all compounds are permanently reproduced
in a constant amount due to the constant reaction rates.

Obviously, the steady state and the steady state behaviour are fundamental characteristics of any
network. This explains why network evaluation typically starts with the steady state assumption, before
taking into account also transient state behaviour, which might be caused, e.g., by a change of the living
conditions. In this paper, the steady state behaviour will be considered only.

Metabolic networks, often also called metabolic pathways,consist of numerous networked enzymatic
reactions, transforming input compounds, the educts, via several intermediate compounds into output
compounds, the products. We have here an infinite continuousflux of chemical compounds. The steady
state is maintained by a sophisticated mesh of metabolic control mechanisms. In metabolic pathways the
chemical reactions of metabolites, given by their stoichiometric equations, are usually known, whereas
the metabolite concentrations and other reaction-specificquantitative parameters are often unknown.
Therefore it makes obviously sense to start with a qualitative model.

To derive a qualitative Petri net model of the biochemical network behaviour under the steady state
assumption, each biochemical compound (metabolites, auxiliary compounds) is assigned to a place. The
relations between biochemical compounds are established by chemical reactions. They are represented
by transitions, modelling the biochemically atomic events. The corresponding arc multiplicities reflect
the given stoichiometric numbers of the reactions’ stoichiometric equations, compare Figure 1.
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Figure 1. Example light-induced phosphorylation - 2 NAD
�

+ 2 H�O � 2 NADH + 2 H
�

+ O�. Left - the core
model without environment behaviour, right - the core modelenriched by the producing and consuming boundary
transitions. Boundary transitions are given as flat ones to highlight their special meaning.



152 L. Popova-Zeugmann et al. / Time Petri Nets for Modelling andAnalysis of Biochemical Networks

This straightforward modelling principle has been appliedin a prosperous manner to a variety of
biological networks, see [27] for a bibliography of relatedpapers, and [6] for three representative case
studies. The Petri net structure mirrors the biochemical network topology, and the incidence matrix of
the Petri net coincides with the stoichiometric matrix of the modelled metabolic system.

Following this construction principle, we get place-bordered models (see Figure 1, left side), where
the input compounds appear as source nodes (no predecessors) and the output compounds as sink nodes
(no successors). Obviously, there is no initial marking, where each (re-) action may happen infinitely
often to make the model live. To animate permanently such a core model, opening the doors to standard
analysis techniques, we need an additional model componentto describe the environment behaviour of
the network under consideration, producing the input compounds and consuming the output compounds.
There are basically three styles, how such an environment behaviour can be described, compare [6].

We use here a quite simple one, where the tokens for all input compounds are generated by sup-
plemental input transitions (which are now the source nodesof the net), while the tokens of all output
compounds are consumed by supplemental output transitions(becoming the new sink nodes). Doing so,
the place-bordered models are transformed into transition-bordered ones (see Figure 1, right side). All
these input and output transitions work independently. Therefore, no assumptions about the quantitative
relations between the single input/input, input/output, and output/output compounds are made. Now, the
expected Petri net behaviour reflects all partial order sequences of chemical reactions from the input to
the output compounds respecting the given stoichiometric relations. To be precise, the qualitative (i.e.
time-less) Petri net behaviour consists of all behaviour possible under any timing conditions.

Transitions without preplaces, i.e. without preconditions, may fire infinitely often (or with other
words, infinitely fast). Thus, they are obviously live and all their immediate postplaces are unbounded.
Generally, the whole Petri net model is expected to be live and simultaneously unbounded in all places.
Consequently, no analysis methods can be applied, which rely on state space construction. Sometimes,
the two expected properties (liveness, unboundedness) canbe deduced by property-preserving structural
reduction rules.

In the following section we demonstrate, how to derive systematically timing parameters from a
structurally decidable property of the qualitative model,which reflects the steady state behaviour. The
imposed time restrictions might make the model bounded.

3. Quantitative Modelling

To transform a qualitative model into a quantitative one, still representing the steady state behaviour, we
exploit a fundamental behavioural, but structurally decidable Petri net property - the transition invariants,
which are called in the following T-invariants for short.

T-invariants, introduced 1973 in [13], are multi-sets of transitions with a total zero effect on the
marking; with other words, if such a multi-set fires (in an appropriate order), a given (appropriate)
marking is reproduced. Therefore, in the context of metabolic Petri nets, T-invariants stand for multi-
sets of chemical reactions, which are able to reproduce a given distribution of chemical compounds, e.g.
the steady state, and they will do so, if the token situation allows the firing of all transitions involved.
Then, they are called to be realizable ones. Due to the fact ofstate reproduction, an observed behaviour,
establishing a T-invariant, may happen infinitely often, resulting into cyclic system behaviour.
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A T-invariant corresponds to a possible pathway through thenetwork, which is defined by the net
representation of the T-invariant, i.e. a subnet of the whole network, consisting of the transitions belong-
ing to the T-invariant, all their pre- and post-places and all arcs in between with their given multiplicities.
If all transitions belong to a T-invariant, we call the network covered by T-invariants and all reactions
may contribute to some pathway.

To describe all possible behaviour in a given cyclic system,it would be obviously of great help to
have all system’s basic (cyclic) behaviour, the so-called minimal T-invariants.1 Minimal T-invariants
correspond to minimal multi-sets of transitions with the state reproduction property, i.e. they do not
include any subset of transitions with the property on hand.To calculate T-invariants, we need the
incidence matrix

�
of the net, which is a (card�� � �card�� �) - matrix with

�
for the set of places and�

for the set of transitions. An entry (�, �) in the incidence matrix gives the token change on the place�
by firing of the transition�. We get all minimal T-invariants by determining the uniquely defined basis
for all integer solutions of the following system of integerlinear inequalities:

�	

	�

� � 
 � �

 � �

 �� � �

whereby
�

is the incidence matrix, and



is the Parikh vector (counting vector) of a transition firing
sequence in the net. Then, any cyclic system behaviour in thesteady state may be described by a non-
negative integer linear combination of minimal T-invariants.

In the given application setting, we distinguish two particular kinds of T-invariants. First, the two
transitions, modelling a reversible reaction, establish always a trivial T-invariant. Second, among the non-
trivial T-invariants the so-called I/O-T-invariants are often of special interest, which include boundary
transitions.
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Figure 2. A transformation of a qualitative model into a quantitative one. Let’s assume the following transition
order:���� �, ���� �, ��, ��� �, ��� �. The firing durations, given in brackets, are normalised to the time unit
6, the least common multiple of the minimal T-invariant’s entries.

Let us consider the example given in Figure 2, at first as qualitative Petri net. The initial marking
is empty. So, we look for T-invariants, reproducing the empty marking. Obviously, there is just one
minimal T-invariant, given as Parikh vector (1, 2, 1, 1, 3), which is an I/O-T-invariant, covering the net.

1In [25] they are called elementary modes.
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With other words, the given empty marking is reproduced, if the transitions���� �, ��, and��� � fire
each ones, the transition���� 	 twice, and the transition��� 
 three times, of course in accordance
with the partial order defined by the net structure.

Moreover, due to the steady state assumption, the entries ofa minimal T-invariant’s Parikh vector
correspond to the relative firing rates of the involved transitions to maintain - while firing continuously -
the given stable state. Refering again to the example in Figure 2, the steady state is preserved as long as
���� 	 fires two times and��� 
 fires three times as often as the other three transitions, perany time
unit. Using a timed-transition model, relative firing ratesmay be simulated by adjusting the transition
times appropriately, as given in Figure 2 as interval times (compare next section). To get integers, the
transition times are normalised to the time unit, which is given by the least common multiple of all entries
in the minimal T-invariant (in the example, this time unit is6).

Generally, minimal T-invariants may overlap. If a given transition is involved in several minimal
T-invariants, the corresponding firing rate of this transition has to satisfy the steady state demands of
all state-reproducing processes (pathways). Therefore, the appropriate firing rates of all transitions are
given by the vector sum of all minimal non-trivial T-invariants, reduced by the greatest common divisor
of all vector entries. Then, to get integer interval boundaries (firing durations), which reflect accurately
all relative firing rates, the normalization time unit has tobe chosen as the least common multiple of all
entries in the vector sum. This calculation procedure may exceed the computer representation accuracy.
In this case, the firing durations have to be approximated appropriately.

The calculation of T-invariants requires only structural reasoning. The state space does not have to
be generated. Therefore, the danger of the famous state space explosion problem does not apply here.
However, solving the given system of linear inequalities, as given above, is known to be of exponential
complexity.

Due to the transformation procedure, we expect a kind of behavioural equivalence between the qual-
itative and the derived quantitative model. A natural equivalence notion seems to be that the basic
behaviour, i.e. all minimal non-trivial T-invariants, of the qualitative model is preserved in the quantita-
tive model. For this purpose, all minimal non-trivial T-invariants, which are realizable in the qualitative
model, have to be still realizable in the quantitative model. To be precise, they have to occur in the
steady state part(s) of the whole behaviour of the quantitative model, e.g. given by the terminal strongly
connected component(s) of its reachability graph. However, in the next section, a promising analysis
technique is introduced to check the time-dependent realizability of a given T-invariant, which does not
construct the reachability graph. Especially, if the firingdurations had to be approximated, this analysis
technique might be used to get the approximation approved.

4. Quantitative Analysis

To make the paper self-contained, we refresh here the main technical results used for the approach
presented in this paper.

Time Petri Nets (TPN) are classical Petri nets, where a time interval ��
 �
�
� is associated to each

transition �, whereby�
 and
�
 are relative to the time, when� was enabled last. When� becomes

enabled, it can not fire before�
 time units have elapsed, and it has to fire not later than
�
 time units,

unless� got disabled in between by the firing of another transition. The firing itself of a transition takes
no time. The time interval is designed by real numbers, but the interval bounds are non-negative rational
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numbers. It is easy to see (cf. [21]) that w.l.o.g. the interval bounds can be considered as integers only.
Thus, the interval bounds�
 and

�
 of any transition� are natural numbers, including zero, and�
 � �

or

�
 � �
.

t4
[2,3]

t1
[1,5]

t3
[2,4]

t2
[1,3]

p3p2

p1

Figure 3. �� - a Time Petri Net

Every possible situation in a given TPN can be described completely by a state� � ���
��

, consisting
of a (place) marking� and a time marking

�
. The (place) marking, which is a place vector (i.e. the vector

has as many components as places in the considered TPN), is defined as the marking notion in classical
Petri nets. Thus,���� gives the number of tokens in the place� in the net. The time marking, which
is a transition vector (i.e. the vector has as many components as transitions in the considered TPN),
describes the time circumstances in the considered situation. The value

���� shows the time elapsed
since the transition� became most recently enabled, if� is enabled at the marking�, and

���� � �
otherwise. As initial state we consider the state�� � ��� �

���with
���� � �

for all transitions�, enabled
at��.

In the net	
, compare Figure 3, the initial state is�� � ���� �� �
�
� �
�
�
�
�
�
�
���

. In the initial state, the
transitions�
 and�� are enabled, but neither�
 nor �� may fire because of their time restrictions. Thus,

�� can change into another state only as time elapses. For example, the change of states�� 
�
�� �
 is
feasible, where�
 is given by�
 � �� and

�
 � �����
�
�
�
� ��

��
. Furthermore,�
 can change into the

state�� with �
 
���� ��, where the state�� is given by�� � �
 and
�� � �����

�
�
�
�
����. In �� the

transition�� can fire, yielding the state�
 with: �
 � ��� ��
��

and
�
 � �����

�
�
�
�
��

. Now, as time
progresses by 2, state�
 changes into the state��, with �� ��
, �� � �����

����
����

��
. Subsequently,

�
 can fire and�� is changed into a state�� with �� � ���
�
�
��

and
�� � ���

����
����

��
. Thus, the

sequence�� 
�
�� �
 
���� ��

��� �
 ����� ��


��� �� is executable in	
. For more details and for formal
definitions cf. [21].

Out of all possible states, the so-called integer states will be of special interest. A state� � ���
��

is an ”integer” one, iff
���� is an integer or

�
for each�. Considering the TPN	
 again, the initial state

and the state�� are integer states, whereas the states�
��� ��

 and�� are not.

The set of all reachable states for a certain TPN, i.e. the state space of the net, is in general infi-
nite (and dense), of course. The state space can be defined as the union of all sets�, defined below
recursively:
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Basis: �� �� �� � �� �� � ��� � �� 	�� ��

Step: Let� be already defined. Then�� is derived from� by firing �

( formally � 
�� �� ), iff
�� �� �� � ��
����� ��
 � � � � � ��� � �



�� �� 	�� ��
.
However, in [22] it is shown that the state space can be given parametrically. For this purpose, each

set � is given parametrically by one state, whereby the time marking is defined parametrically. For
example, considering the TPN	
 again, the set�� has the parametric form

�� � ����� �� �
�
� �


 �

�
�
�
�


�� � � � 

 � �
�

After firing �� from an arbitrary state, belonging to��, the set�
 will be achieved, and�
 has the
parametric form

�
 � ����� ��
��
� �


 � 
� �

�
�

� �

��� � � � 

 � �
�


 � 
� � 


�
� � 
� � �
�

The parametric state���� �� �
�
� �


 �

�
�
�
�


�� defines the set��, and the parametric state���� ��

��
� �


 �
� �

�
�

� �

���
defines the set�
. The parameter



 in �� has to satisfy the constraint
� � 

 � �

, and the
parameters



, 
� in �
 have to satisfy the three constraints
� � 

 � �

�


�
� � 


�
� � 
� � �

. At the
same time,�� is the parametric description of the empty transition sequence, and�
 is the parametric
description of the transition sequence��. Thus, the parametric description for the transition sequence
�� � �


 is given by the following system of linear inequalities (SLI)

����� �� �
�
� �


 � 
� � 



�
�
�
�
�


�� �

� � 

 � �


 � 
� � 

� � 
� � �


 � 
� � 

 � 
� � 

 � �

� �� ������
�


�

Accordingly, for�� � �


� �� the parametric description is

����� ��
��
� �


 � 
� � 

 � 
���

�
�

� �

��� �

� � 

 � �


 � 
� � 

� � 
� � �


 � 
� � 

 � 

� � 

 � �


 � 
� � 

 � 
� � 
� � 
� � �

� �� ��������


�

For exact definition cf. [22].
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Moreover, in [21] it is proven that the knowledge of the net behaviour in the reachable integer states
is sufficient to determine the entire behaviour of the net at every time. The set of the integer states is
finite, if and only if the time net is bounded. Thus, when a TPN is bounded, qualitative and quantitative
analyses can be done using the integer states only. However,in case of unbounded TPN or if the state
space exceeds the available memory capacity, a lot of properties can be studied using the parametric
description only.

Till now it was assumed that all values
�� ��� are

�
or

�
. It is easy to see that similar considerations

can be done starting with an arbitrary initial state. In thiscase, the states belonging to the state class��
have to satisfy the following two conditions: The ”old” condition



 ����������� � � � � � �� ���

is kept and the inequality



 � �
is replaced by the condition



 � ������ ��� � � � � � �� � ��
.
Further it is clear that, because of the free choice of the initial state, now a path can be studied starting at
an arbitrary state. Of course it makes sense to start at a reachable one, but this is no restriction at all.

As already introduced in [8] we use the parametric description of a given transition sequence in
two ways: first, in order to decide, if the sequence can fire in the TPN; and second, applying linear
optimisation, to compute the shortest and longest time length of the sequence. For example, in order to
verify that the transition sequence���
 can fire in the TPN	
 we have to prove that the system of linear
inequalities (SLI-1) is solvable. Analogously, the unsolvability of the linear systems of inequalities (SLI-
2) means that the transition sequence�� � �



� �� can not fire in the TPN	
. For computing the longest

time length for the sequence�� � �

 we have to solve theLinear Program



 � 
� � 

 �� ���

subject to (SLI-1) .

In [8] it is shown that the shortest and the longest time length between two markings� and�� is an
integer one, if finite. This result is based on the algorithm,given in [22]:

Let � � ��
�
�
� �� �

�� � ����
���
� ��

�
be a sequence between two given states in a TPN, where all

the times�	 � �
� �� ����

� � � are nonnegative real numbers. Then, the algorithm finds two further
sequences�
 � ��
�

� �
�
 � �� �
� �
�� � ����

� �
���
� ��
�

and�� � ��
�
� ���
 � �� �

� ���� � ����
� �����
� ��

�
, where all the

times�
�
 �
	 � �

� �� ����
� � �areintegers, and it holds for the time lengths of the three sequences:

the length of�
 � the length of� � the length of��

The running time of this algorithm is�����, whereas finding an integer solution of an inequality
system is a NP-hard problem, in general.

In this paper, TPNs are used to model metabolic systems. In order to give time windows for certain
pathways - not necessarily minimal ones, in the steady state, their shortest and longest time length are of
interest. These time windows characterize the duration of the network’s transformation of the input into
the output compounds (network response duration). Moreover, the duration range of the transient state,
i.e. the shortest and longest time length of reaction sequences to enter the steady state, might be worth
being communicated. Please note, all the considered time notions are relative ones.
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5. Case Study - Central Carbon Metabolism in the Potato Tuber

The accumulation of starch in theSolanum tuberosum(potato) tuber is a crucial point in biotechnology
[10]. The major flux in the potato tuber carbon metabolism is the conversion of sucrose through hexose
phosphates into starch. Nearly all genes, believed to be directly involved in the sucrose breakdown
transformation, have been cloned by transgenic approaches. However, some fundamental questions are
still open. A deeper understanding of the network behaviour, underlaying the whole metabolism, might
be beneficial.

Sucrose delivered to the tuber can be cleaved in the cytosol by invertase to yield glucose and fructose,
or by sucrose synthase to yield fructose and UDP-glucose. Byhexokinase, fructokinase, and UDPglucose
pyrophosphorylase hexosephosphates are produced, which are equilibrated by the action of phosphoglu-
cose isomerase and phosphoglucomutase, and could lead either to starch synthesis, to glycolysis, or to
sucrose synthesis through sucrose phospahate synthase andsucrose phosphate phosphatase.

Altogether, this metabolic network is characterised by 16 chemical stoichiometric equations, seven
of them are reversible ones. For more details see [10]. The corresponding Petri net, compare Figure 4,
consists of 17 places (10 primary compounds, among them one input compound�

���, and one output
compound������, and 7 ubiquitous substances) and 25 transitions (9 for the non-reversible reactions,
2
�
7 for the reversible reactions, one input transition� �

���, and one output transition� ������). There
are 19 minimal T-invariants covering the net, for details see [11]. Seven of them are trivial ones, cor-
responding to the seven reversible reactions. The remaining twelve non-trivial T-invariants go into the
calculation of the transition firing rates, following the approach sketched in section 3. The entries in the
vector sum of all minimal T-invariants vary between 6 and 236. The least common multiple of all entries
in the vector sum exceeds the standard computer accuracy. Thus, we have to skip this last normalization
step and the firing times have to be approximated by rational numbers. Doing so, we abandon the chance
to construct the integer state space, but our original objective - to get structural methods based on the
state space’s parametric description - still works.

Using the parametric description approach, as summarized in section 4, it can be shown that all
minimal T-invariants are still realisable in the steady state of the derived time Petri net model. Doing
so, we can be sure that the derived timed model is self-consistent. Moreover, the time windows for the
durations of pathways of special interest can be calculatedusing linear programming.

As a next step it is planned to compare this quantitative TPN model and the calculated measures with
the quantitative model, given in [10] as a system of ordinarydifferential equations.

6. Related Work

The idea to represent chemical systems, consisting of chemical compounds and chemical reactions, by
net models has already been mentioned 1976 by C. A. Petri in his paper on interpretations of net theory
[20]. The first paper, really demonstrating the modelling ofmetabolic processes by Petri nets, appeared
1993 [24]. In the meantime, several research groups followed this line. But a closer look on the literature
(see [27] for a bibliography) reveals that the majority of papers, applying Petri nets for modelling and
analysis of biological systems, concentrate on quantitative aspects. Typical examples of used Petri net
extensions are stochastic Petri nets [18], [19] and hybrid Petri nets [4], [14], [15], but also coloured
Petri nets [5] as well as discrete time extensions [12] have been employed for that purpose. Contrary,
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qualitative aspects are discussed only in a few papers, see e.g. [24], [23], [6], [7]. No paper is known to
discuss and present an approach how to derive the quantitative model in a systematic manner from the
qualitative one.

Computations, similar to the ones discussed in section 4, have also been made for a slightly modified
time Petri net in [3]. There, the proofs are based on the analysis method of time Petri nets, introduced in
[2] and further considered in [1].

7. Conclusions

In this paper we use time Petri nets to develop a discretely treatable quantitative model for biochemical
networks. Our approach starts with the qualitative model and the well-established structural analysis
method to computate the minimal transition invariants. After converting the qualitative Petri net into
a quantitative one, we give a structural technique to prove the time-dependent realisability of a given
transition sequence, and by this means of a transition invariant. Moreover, we are able to calculate the
shortest and longest time length of transition sequences using linear programming. The crucial point of
the whole approach is the total avoidance of any state space construction. Therefore, it may be applied
also to infinite systems, i.e. unbounded Petri nets.

Up to now, only such interval times are used, where lower and upper bounds are equal. This special
case is a result of the calculation procedure relying entirely on the qualitative model. As soon as timing
parameters are also derived experimentally, interval times are recommendable to cope with unavoidable
measurement inaccuracies. That’s why we deal with the more general case right from the beginning.
It might be of interest whether the analysis techniques would enjoy severe simplification, if the given
application does indeed restrict itself to the special caseonly.

The objective of our work is a general integrative approach to model and analyse biochemical net-
works qualitatively as well as quantitatively. Each kind ofmodel contributes a different perspective
by providing different analysis techniques and related conclusions. Thus, they are not competing, but
complementing each other.

In this paper, we explain our approach for a special metabolic network of the central carbon metabolism
in the potato tuber. But it may be applied to other biochemical networks of different types, e.g. signal
transduction pathways, too.
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