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Abstract. Biochemical networks are modelled at different abstrackivels. Basically, qualitative
and quantitative models can be distinguished, which arieajlp treated as separate ones. In this
paper, we bridge the gap between qualitative and quawétaibdels and apply time Petri nets for
modelling and analysis of molecular biological systems. d&enonstrate how to develop quanti-
tative models of biochemical networks in a systematic marstarting from the underlying quali-
tative ones. For this purpose we exploit the well-establisstructural Petri net analysis technique
of transition invariants, which may be interpreted as a ati@risation of the system’s steady state
behaviour. For the analysis of the derived quantitative ehogiven as time Petri net, we present
structural techniques to decide the time-dependent edwliity of a transition sequence and to cal-
culate its shortest and longest time length. All steps ofirmonstrated approach consider systems
of integer linear inequalities. The crucial point is theat@voidance of any state space construction.
Therefore, the presented technology may be applied alstfitote systems, i.e. unbounded Petri
nets.
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1. Introduction

Biochemical networks are modelled at different abstractevels. It is common sense to differentiate
between quantitative (kinetic) models and qualitativei¢stiometric or even purely causal) models.
The fast majority of published biochemical case studiesleyspquantitative models; so they seem to
be the favourite choice. The reason lies probably in the-teng objective to predict the systems’
dynamic behaviour by continuous quantitative measuresan@ative models are prevalently used as
soon as a "critical mass” of the necessary kinetic paramédmnown - such as substance concentrations,
equilibrium constants, or reaction rates. Then, the miskinetic parameters are usually taken from the
taxonomically nearest neighbour species, for which theyaamilable, or they are estimated. Related
evaluation methods have typically to deal with systems dfrary differential equations (ODESs), see
e.g. [9]. Corresponding tools are e.g. GEPASI [16] and E-CE6]. But, available evaluation packages
for quantitative models do not support any model validaterhniques.

Contrary, qualitative models are generally used only,riEkic parameters are indeed deficient or not
available at all. Moreover, they are accepted tentativelyneermediate step for larger models, if the
solution of ODEs is not feasible due to the problem compjeXfiualitative models consider the steady
state of a biochemical network, where the kinetic pararsetee supposed to be constant. All these
gualitative models are based on some graph-theoreticatipsn of the system topology, or structure,
which is defined in case of stoichiometric models by the knataichiometric equations. In biology,
the qualitative analysis is basically used to derive allsfie pathways through a network, especially
the minimal ones, but without any explicit validation olijee in mind. In [7] we have proposed to take
advantage of the explicitly given system structure to \&bdhe model for self-consistency or sensible
biochemical interpretation, using approved graph theesyilts.

Typically, quantitative and qualitative models are haddis separate ones. In this paper, we bridge
the gap between quantitative and qualitative models anty aptimed version of directed bichromatic
multigraphs, the time Petri nets [17], for modelling andlgsia of molecular biological systems. So, we
introduce another intermediate step by way of a first quatité model, which is still discretely treatable.
We demonstrate, how to develop quantitative models of l@ogbal networks in a systematic manner,
starting from the underlying qualitative one. For this msp, we exploit the well-established structural
Petri net analysis technique of transition invariants [#8jich may be interpreted as a characterisation of
the system’s steady state behaviour. For the analysis digiied quantitative model, given as time Petri
net, we present a structural technique to decide the tirpertient realisability of a transition sequence,
esp. of a transition invariant, given by its Parikh vectooribver, the shortest and longest time length
for a transition sequence can be calculated. All steps ofiimeonstrated approach consider systems of
integer linear inequalities. The techniques employed isbirstheir solution or the solution of a related
linear program. The crucial point is the total avoidance of atate space construction in the whole
approach. Therefore, the presented technology may besdpgio to infinite systems, i.e. unbounded
Petri nets.

This paper is organised as follows. The next two sectione givintroduction into qualitative and
guantitative modelling of biochemical networks using Pets, followed by a discussion of the quanti-
tative analysis techniques applied. Afterwards, it is cketl how the proposed approach can be applied
to a representative case study, the sucrose breakdowngathithe potato tuber [10], [11]. Finally, we
summarise some related work and give conclusions, comgradso an outlook.
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2. Qualitative Modelling

Living organisms require a continuous influx of free energycarry out their various functions. The
term metabolism alludes to the overall process, througlthviniing systems acquire and utilise the free
energy they need. During this process many chemical remctake place, usually catalysed by special
enzymes, by which chemical compounds are converted in&r atiemical compounds. Refering to the
processes’ purpose, these involved primary chemical camgmare called metabolites. Additionally,
there exist auxiliary compounds, which are generally sapddo be ubiquitous ones and available in
sufficient quantities. Despite of the complexity of theiteimal processes, living systems maintain -
under normal conditions - a steady state, where all primady auxiliary compounds have reached a
dynamic concentration equilibrium, i.e. the concentraiof all compounds are permanently reproduced
in a constant amount due to the constant reaction rates.

Obviously, the steady state and the steady state behavieuuadamental characteristics of any
network. This explains why network evaluation typicallgrss with the steady state assumption, before
taking into account also transient state behaviour, whightrbe caused, e.g., by a change of the living
conditions. In this paper, the steady state behaviour wiltdnsidered only.

Metabolic networks, often also called metabolic pathwagssist of numerous networked enzymatic
reactions, transforming input compounds, the educts, evaral intermediate compounds into output
compounds, the products. We have here an infinite continfloxisf chemical compounds. The steady
state is maintained by a sophisticated mesh of metabolicalonechanisms. In metabolic pathways the
chemical reactions of metabolites, given by their stoiotétric equations, are usually known, whereas
the metabolite concentrations and other reaction-spegifantitative parameters are often unknown.
Therefore it makes obviously sense to start with a qual#atiodel.

To derive a qualitative Petri net model of the biochemicdlvoek behaviour under the steady state
assumption, each biochemical compound (metabolitesliayxtompounds) is assigned to a place. The
relations between biochemical compounds are establishetidmical reactions. They are represented
by transitions, modelling the biochemically atomic evenfbe corresponding arc multiplicities reflect
the given stoichiometric numbers of the reactions’ stainfetric equations, compare Figure 1.

Figure 1. Example light-induced phosphorylation - 2 NAB 2 H,O — 2 NADH + 2 HT + O,. Left - the core
model without environment behaviour, right - the core maaeiched by the producing and consuming boundary
transitions. Boundary transitions are given as flat onegialight their special meaning.
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This straightforward modelling principle has been appliec prosperous manner to a variety of
biological networks, see [27] for a bibliography of relateabers, and [6] for three representative case
studies. The Petri net structure mirrors the biochemicahok topology, and the incidence matrix of
the Petri net coincides with the stoichiometric matrix af thodelled metabolic system.

Following this construction principle, we get place-bastemodels (see Figure 1, left side), where
the input compounds appear as source nodes (no predeg¢essibibe output compounds as sink nodes
(no successors). Obviously, there is no initial markingemheach (re-) action may happen infinitely
often to make the model live. To animate permanently suctr@ammdel, opening the doors to standard
analysis techniques, we need an additional model compadoeatgscribe the environment behaviour of
the network under consideration, producing the input camgds and consuming the output compounds.
There are basically three styles, how such an environmévaviieur can be described, compare [6].

We use here a quite simple one, where the tokens for all inpupounds are generated by sup-
plemental input transitions (which are now the source nadéke net), while the tokens of all output
compounds are consumed by supplemental output trans{fi@e®ming the new sink nodes). Doing so,
the place-bordered models are transformed into tranditovdered ones (see Figure 1, right side). All
these input and output transitions work independently.r@fioge, no assumptions about the quantitative
relations between the single input/input, input/outpat autput/output compounds are made. Now, the
expected Petri net behaviour reflects all partial order secgs of chemical reactions from the input to
the output compounds respecting the given stoichiomettations. To be precise, the qualitative (i.e.
time-less) Petri net behaviour consists of all behaviowspate under any timing conditions.

Transitions without preplaces, i.e. without precondisiomay fire infinitely often (or with other
words, infinitely fast). Thus, they are obviously live antitakir immediate postplaces are unbounded.
Generally, the whole Petri net model is expected to be livcesaimultaneously unbounded in all places.
Consequently, no analysis methods can be applied, whiglorestate space construction. Sometimes,
the two expected properties (liveness, unboundednesd)ecdeduced by property-preserving structural
reduction rules.

In the following section we demonstrate, how to derive systically timing parameters from a
structurally decidable property of the qualitative modehich reflects the steady state behaviour. The
imposed time restrictions might make the model bounded.

3. Quantitative Modelling

To transform a qualitative model into a quantitative ond, refpresenting the steady state behaviour, we
exploit a fundamental behavioural, but structurally dablé Petri net property - the transition invariants,
which are called in the following T-invariants for short.

T-invariants, introduced 1973 in [13], are multi-sets @fnitions with a total zero effect on the
marking; with other words, if such a multi-set fires (in an eygpiate order), a given (appropriate)
marking is reproduced. Therefore, in the context of mefalf@étri nets, T-invariants stand for multi-
sets of chemical reactions, which are able to reproduceemglistribution of chemical compounds, e.g.
the steady state, and they will do so, if the token situatitowa the firing of all transitions involved.
Then, they are called to be realizable ones. Due to the fatatd reproduction, an observed behaviour,
establishing a T-invariant, may happen infinitely oftersuféng into cyclic system behaviour.



L. Popova-Zeugmann et al./ Time Petri Nets for Modelling Andlysis of Biochemical Networks 153

A T-invariant corresponds to a possible pathway throughnéttevork, which is defined by the net
representation of the T-invariant, i.e. a subnet of the wimetwork, consisting of the transitions belong-
ing to the T-invariant, all their pre- and post-places anhdrmals in between with their given multiplicities.
If all transitions belong to a T-invariant, we call the netwa@overed by T-invariants and all reactions
may contribute to some pathway.

To describe all possible behaviour in a given cyclic systimvould be obviously of great help to
have all system’s basic (cyclic) behaviour, the so-callédimal T-invariantst Minimal T-invariants
correspond to minimal multi-sets of transitions with thatstreproduction property, i.e. they do not
include any subset of transitions with the property on haiid. calculate T-invariants, we need the
incidence matrixXC of the net, which is a (caf®) x cardT")) - matrix with P for the set of places and
T for the set of transitions. An entry,(j) in the incidence matrix gives the token change on the place
by firing of the transitionj. We get all minimal T-invariants by determining the uniqudkfined basis
for all integer solutions of the following system of intedigiear inequalities:

C-z=0

x>0 ,

z#0
wherebyC is the incidence matrix, and is the Parikh vector (counting vector) of a transition firing
sequence in the net. Then, any cyclic system behaviour istdely state may be described by a non-
negative integer linear combination of minimal T-invat&n

In the given application setting, we distinguish two parée kinds of T-invariants. First, the two

transitions, modelling a reversible reaction, establiglags a trivial T-invariant. Second, among the non-
trivial T-invariants the so-called 1/O-T-invariants aréiem of special interest, which include boundary
transitions.

prod_A
[6.6]

con_C
[6,6]

prod_B
[3.3]

con_D
(2,2]

Figure 2. A transformation of a qualitative model into a ditative one. Let's assume the following transition
order:prod_A, prod_B, r1, con_C, con_D. The firing durations, given in brackets, are normalisetiétime unit
6, the least common multiple of the minimal T-invariant'drés.

Let us consider the example given in Figure 2, at first as tgiie Petri net. The initial marking
is empty. So, we look for T-invariants, reproducing the gmpirking. Obviously, there is just one
minimal T-invariant, given as Parikh vector (1, 2, 1, 1, 3hieh is an I/O-T-invariant, covering the net.

!In [25] they are called elementary modes.
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With other words, the given empty marking is reproducedyéf transitiongrod_A, r1, andcon_C fire
each ones, the transitign-od_B twice, and the transitionon_D three times, of course in accordance
with the partial order defined by the net structure.

Moreover, due to the steady state assumption, the entriagrohimal T-invariant’s Parikh vector
correspond to the relative firing rates of the involved titaorss to maintain - while firing continuously -
the given stable state. Refering again to the example inr€iguthe steady state is preserved as long as
prod_B fires two times andon_D fires three times as often as the other three transitionsarpetime
unit. Using a timed-transition model, relative firing rateay be simulated by adjusting the transition
times appropriately, as given in Figure 2 as interval timegsn(pare next section). To get integers, the
transition times are normalised to the time unit, which i®giby the least common multiple of all entries
in the minimal T-invariant (in the example, this time unibis

Generally, minimal T-invariants may overlap. If a givennisdion is involved in several minimal
T-invariants, the corresponding firing rate of this traosithas to satisfy the steady state demands of
all state-reproducing processes (pathways). Therefoeeappropriate firing rates of all transitions are
given by the vector sum of all minimal non-trivial T-invamis, reduced by the greatest common divisor
of all vector entries. Then, to get integer interval boureka(firing durations), which reflect accurately
all relative firing rates, the normalization time unit haf®chosen as the least common multiple of all
entries in the vector sum. This calculation procedure maged the computer representation accuracy.
In this case, the firing durations have to be approximatedogpiately.

The calculation of T-invariants requires only structuessoning. The state space does not have to
be generated. Therefore, the danger of the famous state sgplosion problem does not apply here.
However, solving the given system of linear inequalitiessgeaven above, is known to be of exponential
complexity.

Due to the transformation procedure, we expect a kind ohbetieal equivalence between the qual-
itative and the derived guantitative model. A natural eglgmce notion seems to be that the basic
behaviour, i.e. all minimal non-trivial T-invariants, dfe qualitative model is preserved in the quantita-
tive model. For this purpose, all minimal non-trivial T-amants, which are realizable in the qualitative
model, have to be still realizable in the quantitative modBb be precise, they have to occur in the
steady state part(s) of the whole behaviour of the quainttatodel, e.g. given by the terminal strongly
connected component(s) of its reachability graph. Howeawethe next section, a promising analysis
technique is introduced to check the time-dependent eddlity of a given T-invariant, which does not
construct the reachability graph. Especially, if the firdwations had to be approximated, this analysis
technique might be used to get the approximation approved.

4. Quantitative Analysis

To make the paper self-contained, we refresh here the meimital results used for the approach
presented in this paper.

Time Petri Nets (TPN) are classical Petri nets, where a timerval [a;, b;] IS associated to each
transition ¢, wherebya; and b; are relative to the time, whehwas enabled last. Whenbecomes
enabled, it can not fire befokg time units have elapsed, and it has to fire not later thaime units,
unlesst got disabled in between by the firing of another transitiohe Tiring itself of a transition takes
no time. The time interval is designed by real numbers, litriterval bounds are non-negative rational
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numbers. It is easy to see (cf. [21]) that w.l.0.g. the irdébounds can be considered as integers only.
Thus, the interval bounds, andb; of any transitiont are natural numbers, including zero, and< b,
orb, = .

tl
[1,9]

t4
[2,3]

p2 p3

Figure 3. Z; - a Time Petri Net

Every possible situation in a given TPN can be described &etelp by a state = (m, h), consisting
of a (place) markingn and a time marking. The (place) marking, which is a place vector (i.e. the vecto
has as many components as places in the considered TPNijinsdlas the marking notion in classical
Petri nets. Thusn(p) gives the number of tokens in the plaeén the net. The time marking, which
is a transition vector (i.e. the vector has as many compsnantransitions in the considered TPN),
describes the time circumstances in the considered situafThe valueh(t) shows the time elapsed
since the transitiot became most recently enabled,tifs enabled at the marking:, andh(t) =
otherwise. As initial state we consider the state= (my, ho) with h(¢) = 0 for all transitionst, enabled
atmy.

In the netZ;, compare Figure 3, the initial statezg = ((0,1, 1), (0, ,4,0)). In the initial state, the
transitionst; andt, are enabled, but neithey nor ¢4 may fire because of their time restrictions. Thus,

zp can change into another state only as time elapses. For é&ath@ change of stateg REN 21 1S
feasible, where, is given bym, = my andh; = (1.3,4,4,1.3). Furthermoregz; can change into the

statez, with z; 20 z9, Where the state, is given bymy = m; andhy = (2.3,4,4,2.3). In 29 the
transitiont, can fire, yielding the state; with: ms = (1,1,0) andhs = (2.3,0,0,1). Now, as time
progresses by 2, statg changes into the statg, with my, = ms, hy = (4.3,2.0,2.0, ). Subsequently,
t; can fire andz4 is changed into a statg; with ms; = (2,0,0) andhs = (4,2.0,2.0,4). Thus, the

1.3 1.0 t 2.0 t . . .
sequence, —> 2 —— 29 —> 23 — 24 —= 25 IS executable irZ;. For more details and for formal
definitions cf. [21].

Out of all possible states, the so-called integer statdseibf special interest. A state= (m, h)
is an "integer” one, iffh(t) is an integer off for eacht. Considering the TPN/; again, the initial state
and the states are integer states, whereas the statess. z3 andz, are not.

The set of all reachable states for a certain TPN, i.e. the sf@ace of the net, is in general infi-
nite (and dense), of course. The state space can be definkd agion of all sets”, defined below
recursively:
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Basis: Cp := {z | I7(r € Rf Azg — 2)}
Step: LetC be already defined. Thei¥ is derived fromC by firing ¢
(formally C -5 "), iff

C':={z]|3zn3zIr(nn € C AT E R(J{ A 21 N 29— 2)}.

However, in [22] it is shown that the state space can be gieeametrically. For this purpose, each
setC is given parametrically by one state, whereby the time marks defined parametrically. For
example, considering the TP again, the se’y has the parametric form

Co = {((07 L, 1)7 (‘Tlvﬂuﬂvml)) | 0<z < 3}

After firing t4 from an arbitrary state, belonging &, the set”; will be achieved, and’; has the
parametric form

Cl = {((17170)7(3:1 +$27ﬂ7$27ﬂ)) | 2 <z §37$1 + 129 < 570 < 9 §4}

The parametric statg0, 1, 1), (z1, 1, {, 1)) defines the seafy, and the parametric statél, 1,0), (z; +
x9, 1, z2,1)) defines the sef;. The parametet; in Cj has to satisfy the constraiit< z; < 3, and the
parameters, x5 in C1 have to satisfy the three constraiftsl z; < 3,z1+x9 < 5,0 < z9 < 4. Atthe
same time(y is the parametric description of the empty transition sagagandC; is the parametric
description of the transition sequente Thus, the parametric description for the transition sagee
t4,t3 is given by the following system of linear inequalities ($LI

2<z21<3
1+ 22 <95
{((0,1,1), (21 + @2 + 33, 8, 1, 23)) | 2< 22 <4 }-
z1+xo+a3<5H
0<z3<3

(SLI-1)

Accordingly, fort,, t3,t4 the parametric description is

2<x1 <3

T1+x2 <5

2<x9<4
{((1,1,0), (1 + 22 + 23 + 24), 24, 1)) | @1+ 20 +23<5 b

2<x3<3

T1+xo+23+734 <D

0<z4 <14

(SLI-2)

For exact definition cf. [22].
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Moreover, in [21] it is proven that the knowledge of the nébdédour in the reachable integer states
is sufficient to determine the entire behaviour of the netvatyetime. The set of the integer states is
finite, if and only if the time net is bounded. Thus, when a TBKdunded, qualitative and quantitative
analyses can be done using the integer states only. Howe\@se of unbounded TPN or if the state
space exceeds the available memory capacity, a lot of greparan be studied using the parametric
description only.

Till now it was assumed that all valuég(t) are0 or §. It is easy to see that similar considerations
can be done starting with an arbitrary initial state. In tdse, the states belonging to the state dass
have to satisfy the following two conditions: The "old” catidn z; < min{lft(t) |t € T At~ < mg}
is kept and the inequality; > 0 is replaced by the conditiom; > max{ho(t) |t € T At~ < mg}.
Further it is clear that, because of the free choice of th&lrstate, now a path can be studied starting at
an arbitrary state. Of course it makes sense to start at haklgcone, but this is no restriction at all.

As already introduced in [8] we use the parametric desompbdf a given transition sequence in
two ways: first, in order to decide, if the sequence can fircha TPN; and second, applying linear
optimisation, to compute the shortest and longest timethteafthe sequence. For example, in order to
verify that the transition sequenégt; can fire in the TPNZ; we have to prove that the system of linear
inequalities (SLI-1) is solvable. Analogously, the unsdiiity of the linear systems of inequalities (SLI-
2) means that the transition sequerggs,t, can not fire in the TPNZ;. For computing the longest
time length for the sequence, t3 we have to solve theinear Program

X1+ T2 + r3 — max
subject to (SLI-1) .

In [8] it is shown that the shortest and the longest time ledgtween two markings: and' is an
integer one, if finite. This result is based on the algorithiven in [22]:

Leto = (t1,71,t2,79,...,Tn—1,ty) De a sequence between two given states in a TPN, where all
the timesr;,7 = 1,...,n — 1 arenonnegative real numbersThen, the algorithm finds two further
sequences; = (tl,Tl(l),tQ,TQ(D,...,TT(lljl,tn) andoy = (tl,rl(z),tg,rf),...,Tfjl,tn), where all the
timesTi(]), j=1,...,n — 1 areintegers and it holds for the time lengths of the three sequences:

the length otr; < the length ob < the length oty

The running time of this algorithm i€ (n?), whereas finding an integer solution of an inequality
system is a NP-hard problem, in general.

In this paper, TPNs are used to model metabolic systems.der oo give time windows for certain
pathways - not necessarily minimal ones, in the steady, ke shortest and longest time length are of
interest. These time windows characterize the duratiohefttwork’s transformation of the input into
the output compounds (network response duration). Moretive duration range of the transient state,
i.e. the shortest and longest time length of reaction sempseto enter the steady state, might be worth
being communicated. Please note, all the considered timmansaare relative ones.
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5. Case Study - Central Carbon Metabolism in the Potato Tuber

The accumulation of starch in tf&olanum tuberosurfpotato) tuber is a crucial point in biotechnology
[10]. The major flux in the potato tuber carbon metabolisnhédonversion of sucrose through hexose
phosphates into starch. Nearly all genes, believed to letirinvolved in the sucrose breakdown
transformation, have been cloned by transgenic approattmsever, some fundamental questions are
still open. A deeper understanding of the network behayiouderlaying the whole metabolism, might
be beneficial.

Sucrose delivered to the tuber can be cleaved in the cytgsoVbrtase to yield glucose and fructose,
or by sucrose synthase to yield fructose and UDP-glucos@éekgkinase, fructokinase, and UDPglucose
pyrophosphorylase hexosephosphates are produced, whkieluailibrated by the action of phosphoglu-
cose isomerase and phosphoglucomutase, and could lead teitstarch synthesis, to glycolysis, or to
sucrose synthesis through sucrose phospahate synthaseaose phosphate phosphatase.

Altogether, this metabolic network is characterised by Aénaical stoichiometric equations, seven
of them are reversible ones. For more details see [10]. Thesmonding Petri net, compare Figure 4,
consists of 17 places (10 primary compounds, among themnm# compoundSuc, and one output
compoundstarch, and 7 ubiquitous substances) and 25 transitions (9 for ehereversible reactions,
2.7 for the reversible reactions, one input transitipnSwuc, and one output transition starch). There
are 19 minimal T-invariants covering the net, for details Eel]. Seven of them are trivial ones, cor-
responding to the seven reversible reactions. The rentatmialve non-trivial T-invariants go into the
calculation of the transition firing rates, following thepapach sketched in section 3. The entries in the
vector sum of all minimal T-invariants vary between 6 and.ZBe least common multiple of all entries
in the vector sum exceeds the standard computer accuraayg, iMe have to skip this last normalization
step and the firing times have to be approximated by ratiamalbers. Doing so, we abandon the chance
to construct the integer state space, but our original tisgee to get structural methods based on the
state space’s parametric description - still works.

Using the parametric description approach, as summarizesgtion 4, it can be shown that all
minimal T-invariants are still realisable in the steadytestaf the derived time Petri net model. Doing
so, we can be sure that the derived timed model is self-densisMoreover, the time windows for the
durations of pathways of special interest can be calculasety linear programming.

As a next step it is planned to compare this quantitative TRMehand the calculated measures with
the quantitative model, given in [10] as a system of ordirdifferential equations.

6. Redated Work

The idea to represent chemical systems, consisting of damwmpounds and chemical reactions, by
net models has already been mentioned 1976 by C. A. Petrsipaper on interpretations of net theory
[20]. The first paper, really demonstrating the modellingra&ftabolic processes by Petri nets, appeared
1993 [24]. In the meantime, several research groups follidhis line. But a closer look on the literature
(see [27] for a bibliography) reveals that the majority opees, applying Petri nets for modelling and
analysis of biological systems, concentrate on quanéaspects. Typical examples of used Petri net
extensions are stochastic Petri nets [18], [19] and hybetti Pets [4], [14], [15], but also coloured
Petri nets [5] as well as discrete time extensions [12] haenkemployed for that purpose. Contrary,
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g_eSuc

eSuc

SucTrans

Inv

UDPglc

HK

StaSy(b)

starch

r_starch

Figure 4. The hierarchical Petri net model of the sucrosstaoch pathway in the potato tuber. The macro transi-
tions, given as two centered squares, hide each the two eomepitary transitions modelling reversible reactions.
The flat transitions depict the generating input or consgnaintput transitions, respectively. Shadowed nodes
stand for fusion nodes, modelling ubiquitous auxiliary stabces. The given marking reflects a state, where all
transitions are enabled.
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gualitative aspects are discussed only in a few papers,.gefd], [23], [6], [7]. No paper is known to
discuss and present an approach how to derive the quamitatbdel in a systematic manner from the
gualitative one.

Computations, similar to the ones discussed in sectionvg &lao been made for a slightly modified
time Petri net in [3]. There, the proofs are based on the arsaiyethod of time Petri nets, introduced in
[2] and further considered in [1].

7. Conclusions

In this paper we use time Petri nets to develop a discretefjtdable quantitative model for biochemical
networks. Our approach starts with the qualitative model #ue well-established structural analysis
method to computate the minimal transition invariants. eAftonverting the qualitative Petri net into
a quantitative one, we give a structural technique to prbeetime-dependent realisability of a given
transition sequence, and by this means of a transitioniaavarMoreover, we are able to calculate the
shortest and longest time length of transition sequendag linear programming. The crucial point of
the whole approach is the total avoidance of any state sgatstraction. Therefore, it may be applied
also to infinite systems, i.e. unbounded Petri nets.

Up to now, only such interval times are used, where lower gpkubounds are equal. This special
case is a result of the calculation procedure relying dgtoe the qualitative model. As soon as timing
parameters are also derived experimentally, intervaldiare recommendable to cope with unavoidable
measurement inaccuracies. That's why we deal with the menergl case right from the beginning.
It might be of interest whether the analysis techniques deuljoy severe simplification, if the given
application does indeed restrict itself to the special cade

The objective of our work is a general integrative approachmbdel and analyse biochemical net-
works qualitatively as well as quantitatively. Each kindmbdel contributes a different perspective
by providing different analysis techniques and relatedctmions. Thus, they are not competing, but
complementing each other.

In this paper, we explain our approach for a special metabeliwork of the central carbon metabolism
in the potato tuber. But it may be applied to other biochetmedworks of different types, e.g. signal
transduction pathways, too.
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