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1. Introduction

1.1. Motivation

Times and priorities are important concepts which are frequently used in real-world systems. Such
systems can be built, e.g, with theMessage Scheduled System(MSS) architecture [5] that we have de-
veloped. MSS supports composability of real-time systems.It ensures that every component meets its
contracted specification on its real-time behavior. The MSSarchitecture relies on standard priority-based
scheduling methods, e.g., [1]. In order to prove the formal correctness of the MSS architecture we need
a way to deal with priorities and times.

The correctness of an MSS system can be mapped to the non-reachability of certain states. In [7]
and [6] we presented a formal specification of MSS’ behavior based on prioritized Duration Petri nets
(DPN), and a tool-supported way to generate the specification for a desired system instance, respectively.
In [3], we showed how a non-reachability proof can be conducted in a DPN. As a next step, we present
in this paper the extension of our method to systems with priorities.

Frequently, non-reachability proofs in extended Petri nets are done by proving the non-reachability
in the underlying classic Petri net. However, this approachfails in cases like MSS where the system’s
correctness relies on the restriction introduced by time and priorities.

In this paper we present an approach that allows to prove non-reachability in the Priority Duration
Petri net (PDPN) itself. For that purpose, we give a state equation and a number of firing conditions
that lead to a system of equations and inequalities. This system provides a sufficient condition to prove
non-reachability.

The remainder of this paper is organized as follows: The restof this section names the state of art.
Section 2 provides the definitions needed. In Section 3, we derive from the definitions a state equation,
priority conditions and conditions for maximal steps that support an algebraic reasoning about PDPN.
We show in Section 4 how to apply our methods and prove a non-reachability in an example net. The
paper concludes with some final remarks.

1.2. Related Work

The question of reachability and non-reachability raises for several problems which can be described by
Petri nets. In general, the state space of a Petri net is infinite. Different methods have been developed in
order to prove certain properties without computing resp. knowing the whole state space of the net.

One approach in classical Petri nets is the computing of invariants. There, it is relatively easy to
obtain place or transition invariants using the state equation of the net (cf. [8]).

But, if the Petri net is a time dependent one or uses priorities, the state space becomes smaller. In
this case, the use of the state equation of the skeleton is notvery reasonable, because this state equation
does not take into account the additional constraints of thenet.

There exists quite a range of possibilities to represent times in Petri nets. Times can be assigned to
transitions, places and tokens (cf. [9]); for each case several semantics exist. In this work we consider
an extension to Duration Petri nets (also called Timed Petrinets). Duration Petri nets were defined by
Ramchandani [4]. Here, times are assigned to transitions and describe a delay in the process of firing.

Also, priorities are an often used concept in Petri nets. Usually, priorities will be assigned to transi-
tions or to tokens. We use the first alternative.
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There exist approaches to analytically deal with time and priorities in stochastic Petri nets, cf.
e.g., [2]. The reachability graph of stochastic Petri net isthe same as the graph of the underlying classical
Petri net and therefore reachability analysis for this kindof Petri nets is purchased on the reachability
graph of the classical reachability graph preferably. In the non-stochastic area, there exist quite a few
simulation tools that consider time and priorities.

However, to the best of our knowledge, there exists no analytical approach to evaluate non-
reachability in non-stochastic prioritized time-depended Petri nets.

2. Definitions

2.1. Notation

This subsection introduces the basic notations we use in ourpaper. N andR denote the set of natural
numbers and rational numbers, respectively.N+ = N\{0} denotes the set of natural numbers without0,
andQ+

0 denotes the set of nonnegative rational numbers.
M(m,n) is the set of all matrices withm rows andn columns. A superscript in parentheses distin-

guishes different matrices. For the arbitrary matrixA(k) ∈ M(m,n), A
(k)
i is thei-th row andA(k)

.j is the
j-th column of the matrix.

Let M be a finite set.|M | is the number of elements ofM . Let Q be a finite multiset (bag) inM .
κQ(m) with m ∈ M denotes the multiplicity ofm, i.e., how many instances ofm are inQ.

En = (ei,j) ∈ M(n, n) denotes the (unit-)matrix withei,j =

{

1 i = j

0 otherwise
and

On = (oi,j) ∈ M(n, n) the (zero-)matrix withoi,j = 0 ∀i, j.
The relationr(1) 6≥ r(2) of the two vectorsr(1), r(2) ∈ M(m, 1) means, that there exists at least one

i, i ∈ {1, . . . ,m} with r
(1)
i < r

(2)
i .

2.2. Structural Descriptions

We begin with the usual definition of a Petri net:

Definition 2.1. (Petri net)
The structureN = (P, T, F, V,mo) is called a Petri net (PN) iff

1. P, T, F are finite sets withP∩T = ∅, P∪T 6= ∅, F ⊆ (P×T )∪(T×P ) anddom(F )∪cod(F ) =
P ∪ T

2. V : F −→ N+ (weight of the arcs)
3. mo : P −→ N (initial marking)

A marking of a PN is a functionm : P −→ N, such thatm(p) denotes the number of tokens at the
placep. The pre-sets and post-sets of a transitiont are given byFt = {p | p ∈ P ∧ (p, t) ∈ F} and
tF = {p | p ∈ P ∧ (t, p) ∈ F}, respectively. Each transitiont ∈ T induces the markingst− andt+,
defined as follows:

t−(p) =

{

V (p, t) iff (p, t) ∈ F

0 iff (p, t) 6∈ F
t+(p) =

{

V (t, p) iff (t, p) ∈ F

0 iff (t, p) 6∈ F
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A transitiont ∈ T is enabled (may fire) at a markingm iff t− ≤ m (i.e., t−(p) ≤ m(p) for every place
p ∈ P ). When an enabled transitiont at a markingm fires, this yields a new markingm′ given by

m′(p) := m(p) + t+(p) − t−(p). The firing is denoted bym
t

−→ m′.

Definition 2.2. (Duration Petri net (DPN))
The structureZ = (N,D) is called a Duration Petri net1 (DPN) iff:

1. S(Z) = N is a PN called theskeletonof Z.
2. D : T −→ Q+

0 (duration function).

di := D(ti) is the duration of transition’sti firing. It is easy to see, that without loss of generality we
may consider DPNs withD : T −→ N. Therefore, only such time functionsD will be considered
subsequently.

A DPN behaves similar to a PN with a maximal step semantic. However, the token(s) will reach the
post-set of a transition only after the delay of this transition is elapsed.

Definition 2.3. (time dimension)
d := max

t∈T
{D(t)} + 1 is called the time dimension of the DPN.

Definition 2.4. (Priority Duration Petri nets, (PDPN))
The structureZ = (N,Θ) is called a Priority Duration Petri net (PDPN) iff:

1. S(Z) = N a DPN called the skeleton ofZ
2. Θ : T −→ N (priority function).

θi = Θ(ti) denotes the priority of transitionti. Without loss of generality we assume that a higher
priority value means that the transition is preferred to a transition with a lower priority value.

Example 2.1. The PDPNZ1 which is used for illustration is shown in Figure 1.
The time dimension ofZ1is d = 3.

In order to describe the relation between tokens and time, weuse (as for DPN in [3]) the notion of atime
marking.

Definition 2.5. (time marking)
Let Z be a PDPN. A matrixm with m ∈ M(|P |, d) is a time marking inZ.

Definition 2.6. (initial time marking)
The time markingm(0) is an initial time marking, iffm(0)

.1 = m0 andm
(0)
i,j = 0 for i = 1 . . . |P | and

j = 2 . . . d.

Each column of the time marking matrix represents a (partial) marking of a place for different delays.
The first column represents the present, and thus the markingof the underlying PN skeleton. The second
column represents tokens which are on their way to the place and will arrive in one time unit. The same
is true for the third column with two time units, etc.

1Also called Timed Petri net.
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p1

p3p2

t2 t4t1 t3

2

d =21 d =23 d =02 d =24

q1=2 q3=1 q2=1 q4=3

3 2

Figure 1. Net from Example 2.1

Example 2.2. The net from Example 2.1 has the following initial time marking:

m(0) =






4 0 0

0 0 0

0 0 0






Let m(c) the marking of a PDPN in the classic notation, andm(t) the time marking variant. Then the
following is true:

∀i, i = 1 . . . |P |,m
(c)
i =

d∑

j=1

m
(t)
i,j

In the remainder of this paper,m denotes always a time marking.

2.3. Dynamics

A Priority Duration Petri net has a dynamical behavior that leads to a change of the marking. The notation
for a change from markingm(1) to markingm(2) is m(1) −→ m(2). In general, two kinds of changing
actions have to be distinguished:

• Firing of transitions.Firing transitions is similar to classical Petri nets, however, we allow a firing
of maximal sets of transitions only.

We denote firing of the set{t1, . . . , tk} by writing the set of transitions in action atop the arrow:

m(1) {t1,...,tk}
−−−−−−→ m(2). If there is a need for distinction, we denote a marking that is reached by

firing with a hat:m(1) {t1,...,tk}
−−−−−−→ m̂(2)

• Elapsing of time.A DPN (and thus a PDPN) may change its marking by elapsing of time. The
time elapsing happens synchronously for all transitions inthe net. It reduces the time a token has
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to wait till its delivery. In our notation, time elapsing affects the rowmi of the time markingm
corresponding to the placepi. An interaction between different places does not take place.

We denote elapsing ofτ time units by writing the number of time units beneath the arrow: m(1) −→
τ

m(2). If there is a need for distinction, we denote a marking that is reached be time elapsing by a
tilde: m(1) −→

τ
m̃(2).

In the following, we define the change actions in detail. We start with the elapsing of time. It is equivalent
to DPN, cf. [3]. To allow consideration about time, we define atransition clock vector:

Definition 2.7. (transition clock vector)
Let Z be a PDPN. Then, the vectorh ∈ M(|T |, 1) is called transition clock vector ofZ, iff
∀i (1 ≤ i ≤ |T | → hi ≤ D(ti))

An elementhi of h is non-zero if the related transition is firing, and zero otherwise. A hi 6= 0 shows
remaining time until the firing is finished. The pair(m,h) describes the state of the PDPN.

Now we are prepared to define time elapsing:

Definition 2.8. (time elapsing)
Let Z be a PDPN andm(1) andm(2) time markings inZ. The time markingm(2) is yielded fromm(1)

by time elapsing, iff

m
(2)
i,j :=







m
(1)
i,1 + m

(1)
i,2 , j = 1

m
(1)
i,j+1 , 2 ≤ j ≤ d − 1

0 , j = d

andh
(2)
i := max(0, h

(1)
i − 1)

In other words, all tokens in the time marking move one columnto the left, except the first column, that
accumulates the token from the first and second column, and the last column, which is filled with zero.
In addition, all non-zero clocks are decreased.

Firing is equivalent to the firing in DPN too, as long as the selection of transitions to fire is not
considered:

Definition 2.9. (firing)
Let Z be a PDPN andm(1) andm(2) time markings inZ. The time markingm(2) is yielded fromm(1)

by firing the set of transitionsB, iff

m
(2)
i,j :=







m
(1)
i,j −

∑

ts∈B
V (pi, ts) +

∑

ts∈B,
ds=0

V (ts, pi) , j = 1

m
(1)
i,j +

∑

ts∈B,
ds=j−1

V (ts, pi) , j > 1

and

h
(2)
i :=

{

D(ti) , ti ∈ B

h
(1)
i otherwise
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In other words, firing a transition removes a number of tokensfrom the first column of all places in the
firing transition’s pre-set and adds a number of tokens to a certain column of all places in the transition’s
post-set. The column to add corresponds to the delay of the transition (0: first column, 1: second column,
etc.) and the numbers of tokens correspond to the weight of arcs form and to the transition, respectively.

hi is working like an egg-timer: If a transitionti starts to fire, then its clock is set todi, i.e.,hi := di.
After then,hi is decreased by each time elapsing.

Until here, the definition of a PDPN does not differ from the definition of a DPN.2 The impact of the
priorities is in the notion of a step, i.e., the set of all token moves that happen before time elapses. For
PDPN, we use a modified maximal step, that considers priorities:

Definition 2.10. (prioritized maximal step)
Let Z be an PDPN.B ⊆ T is called a prioritized maximal step on the time markingm with the transition
clock vectorh iff

1. B ⊆ T

2.
∑

t∈B
t− ≤ m.1

3. ∀t(t ∈ B → h(t) = 0)

4. ∀t ∀t1

(

(
t ∈ B ∧ t1 6∈ B ∧ Ft ∩ Ft1 6= ∅ ∧ t−1 ≤ m.1 ∧ h(t1) = 0

)
→

(

Θ(t) ≥ Θ(t1) ∨ m.1 −
∑

t∈B
Θ(t)≥Θ(t1)

t− 6≥ t−1

))

5. ¬∃B∗ ((B∗ ⊃ B) ∧ (B∗ satisfies 1. – 4.))

In other words, Definition 2.10 describes a maximal (5) set oftransitions (1) which are enabled (2) and
not in the process of firing (3), that contains no lower prioritized transition as long as it could contain a
higher prioritized transition instead (4).

Example 2.3. Consider the nets in Figure 2. Assumed, no firing is in progress, the net in Figure 2(a)
allows the prioritized maximal stepB = {t1, t2} only. In Figure 2(b), the prioritized maximal step is
B = t4, t6. t5 is not inB, since it is in conflict with the higher prioritizedt4, cf. Definition 2.10, item 4.

Please note, that in general more than one prioritized maximal step may exist.

Since we allow zero-time transitions (i.e.di = 0), it is possible that more than one prioritized maximal
step takes place before a time unit may elapse. Thus, we definea global step that includes all firing
actions that take place before time elapses.

Definition 2.11. (global step)
Let Z be an PDPN with the time markingm. G is a multiset (bag) that is constructed in the following
way:

2However, a DPN as defined in [3] does not allow zero-time delays. But—as also discussed there—it is easy to extend the
definition in the way used in the current paper.
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q1=3 q2=2 q3=1

t1 t2 t3

(a)

q1=3 q2=2 q3=1
t4 t5 t6

(b)

Figure 2. Prioritized maximal step

1. G = ∅
2. If there exists a prioritized maximal stepB 6= ∅, thenG := G + B; else the construction is ready.
3. m andh are changed according to Definition 2.9 by firing the setB.

Continue with 2

A global stepG is a multiset yielded by addition of the prioritized maximalstepsB1, . . . ,Br where

m(∗) B1−→ m(1) B2−→ · · ·
Br−→ m(r). SinceG is a multiset, it may include more than one instances of a

certain transition. However, this is only true, if this transition has a zero-time delay. Obviously, a global
step may be an empty set.

The dynamical behavior of a PDPN is marked by a strict alternation of firing with global steps and
time elapsing:

m(0) G1−→ m̂(1) −→
1

m̃(1) G2−→ · · ·
Gn−→ m̂(n) −→

1
m̃(n)

Without loss of generality, we use one time unit for the time elapsing. However, each common factor
of all transition delays would be possible.

Since the number of elapsed time units after a firing is constant for a PDPN and in our considerations
always1, we skip in the following the notion of the elapsed time. I.e., a firing sequence(G1,G2,G3)
means the alternating sequence of firing and time elapsing(G1, 1,G2, 1,G3) or (G1, 1,G2, 1,G3, 1).

Definition 2.12. (reachability)
Let Z be a PDPN. A time markingm′ is reachable inZ iff there exists a sequenceσ = (G1, . . . ,Gα) of
global steps such that

m(0) G1−→ m̂(1) −→
1

m̃(1) G2−→ m̂(2) −→
1

m̃(2) . . . −→ m′

σ may end either with firing, or with time elapsing.

3. State Equation and Firing Conditions

In this section we introduce some further concepts that support an algebraic reasoning about PDPN.
Especially, we present a state equation and few firing invariants that are valid in every PDPN.

The structure of a PDPN as given by Definition 2.4 may be described by an incidence matrix.
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Definition 3.1. (incidence matrix)
Let Z be a PDPN. The matrixC ∈ M(|P |, d · |T |) is called the incidence matrix ofZ, iff C :=

(C(1), C(2), . . . , C(|T |)) with C(k) ∈ M(|P |, d),k ∈ {1, . . . , |T |} andC(k) = (c
(k)
i,j ) where

c
(k)
i,j :=







V (tk, pi) − V (pi, tk) , dk = 0, j = 1

−V (pi, tk) , dk > 0, j = 1

V (tk, pi) , (dk > 0), 0 < j − 1 = dk

0 , otherwise

I.e., a submatrixC(i) describes how the transitionti is connected with places. If the transition has a
zero-delay (di = 0), only the first columnC(i)

.1 is used. It includes differences of the weights of all arcs
to the places and thesefrom the places. If the transition has a delay (0 < di < d), the first column
includes the weightsfrom the places and thedi + 1-th column the weightsto the places.

Example 3.1. The incidence matrix of Example 2.1 in Figure 1 is:

C =






−2 0 0 −1 0 0 0 0 3 0 0 2

0 0 1 0 0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 −1 0 0






d =0i

vi

vi

Figure 3. A loop in a Petri net

Please note, that—similar to a classic Petri net—a loop (i.e., two arcs(p, t) and(t, p) with the same
weight, cf. Figure 3) will not appear in the incidence matrix, if the transition has a zero-time delay.
However, if the transition in the loop has a non-zero delay (di > 0) both arcs will be represented in the
incidence matrix.

Next, we define a bag matrix to represent global steps.

Definition 3.2. (bag matrix)
Let G be a (maximal or global) step andκG(ti) = κGi

the multiplicity of transitionti in G. The matrix
G ∈ M(d · |T |, d) is called the bag matrix ofG iff

G = (gi,j)i=1...d·|T |
j=1...d

=









G(1)

G(2)

...

G(|T |)









andG(s) = κGs · Ed
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Obviously, the submatrixG(s) is the zero-matrix if the transitionts does not belong to the global stepG.

Example 3.2. Let us consider the stepG = {t1, t2, t2} in Z1 (Figure 1):

G =









G(1)

G(2)

G(3)

G(4)









with

G(1) =






1 0 0

0 1 0

0 0 1




 G(2) =






2 0 0

0 2 0

0 0 2






G(3) =






0 0 0

0 0 0

0 0 0




 G(4) =






0 0 0

0 0 0

0 0 0






i.e.: G =




































1 0 0

0 1 0

0 0 1

2 0 0

0 2 0

0 0 2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0




































Next, we define a progress matrix that allows us to describe the impact of time elapsing to the time
marking.

Definition 3.3. (progress matrix)
Let Z be a PDPN. The matrixR ∈ M(d, d) is called the progress matrix ofZ, iff

ri,j :=

{

1 if (i = j = 1) or (i = j + 1)

0 otherwise

Example 3.3. In Example 2.1 the progress matrixR of the netZ1 is R =






1 0 0

1 0 0

0 1 0




.

Finally, we define a Parikh matrix that represents a sequenceof steps and time units.

Definition 3.4. (Parikh matrix)
The matrixΨ ∈ M(|P |, d) is called Parikh matrix of the sequenceσ = (G1, . . . ,Gn), iff

Ψσ :=
n∑

i=1

G(i) · Rn−i
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Using the introduced elements, we can formulate a state equation for PDPNs:

Theorem 3.1. (state equation)
Let Z be a PDPN,σ = (G1, . . . ,Gn) a firing sequence inZ, m(0) the initial time marking ofZ and

m(0) G1−→ m̂(1) −→
1

m̃(1) G2−→ m̂(2) −→
1

. . .
Gn−→ m(n). Then it holds:

m(n) = m(0) · Rn−1 + C · Ψσ (1)

To prove Theorem 3.1 let us consider following lemmata:

Lemma 3.1. Let Z be a PDPN,m(1) a reachable time marking inZ andm(1) −→
1

m(2). Then it holds

m(2) = m(1) · R.

Proof:
m

(2)
i,j = m

(1)
i,j · R

Case 1: j = 1  

d∑

s=1

m
(1)
i,s · rs,1 = m

(1)
i,1 · 1 + m

(1)
i,2 · 1 =

acc.def
m

(2)
i,1

Case 2: d > j ≥ 2  

d∑

s=1

m
(1)
i,s · rs,j = m

(1)
i,j+1 · 1 =

acc.def
m

(2)
i,j

Case 3: j = d  

d∑

s=1

m
(1)
i,s · rs,j = 0 = m

(2)
i,j

ut

Lemma 3.2. LetZ be a PDPN andm(1) G
−→ m(2), G = {ti1 , . . . , tiq}. Then holds:m(2) = m(1)+C ·G.

Proof:
We considerm(2)

i,j .
Case 1: j = 1
According to Definition 2.9 and Definition 2.11 the followingis true:

m
(2)
i,1 = m

(1)
i,1 − κGs

∑

ts∈G

V (pi, ts) + κGs

∑

ds=j−1=0
ts∈G

V (ts, pi) .

Therefore, it is sufficient to show that

d·|T |
∑

l=1

ci,lgj,l = −κGs

∑

ts∈G

V (pi, ts) + κGs

∑

ds=0
ts∈G

V (ts, pi) .
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Let us consider the bag matrixG. The first columnG.1 of G is G.1 = (g(1), g(2), . . . , g(|T |))T , where
g(k) is ad-dimensional vector with

g(k) = (g
(k)
1 , . . . , g

(k)
d ) k = 1, . . . , |T | andg

(k)
j =

{

κGk
if j = 1

0 otherwise

That means,g(k) is thed-dimensional vector(κGk
, 0, . . . , 0)T if tk ∈ G and thed-dimensional zero-

vector otherwise.
Hence,

d·|T |
∑

l=1

ci,l ·gl,1 =

|T |
∑

k=1

d∑

l=1

c
(k)
i,l ·g

(k)
l = κGk

|T |
∑

k=1

c
(k)
i,1 =

acc.def 3.1
for j=1

−κGk

∑

tk∈G

V (pi, tk)+κGk

∑

dk=0
tk∈G

V (tk, pi)

Case 2: j ≥ 2

Obviously, now we have to show that
d·|T |∑

s=1
ci,s ·gs,j = κGk

∑

dk=j−1

V (ts, pi) . We consider thej-th column

of the bag matrixG, the vectorG.j:

G.j = (g(1), g(2), . . . , g(|T |)) with g(k) = (g
(k)
1 , . . . , g

(k)
d )T

|T |

∀
1

k andg(k)
s =

{

κGk
, s = k

0 , otherwise

i.e. g(k) = (0, . . . , 0)
︸ ︷︷ ︸

d

if tk /∈ G andg(k) = (0, . . . , κGk

↑k.

, 0, . . . , 0)

︸ ︷︷ ︸

d

T , if tk ∈ G.

Now we can compute

d·|T |
∑

l=1

ci,l · gl,j = κGk

|T |
∑

k=1

c
(k)
i,j =

acc.def 3.1
for j≥2

κGk

∑

dk=j−1
tk∈G

V (tk, pi)

ut

Now we can prove Theorem 3.1 by induction:

Proof:
Proof by induction onn.

Basis: n = 1.
We have to show that form(0) G1−→ m(1) holds:

m(1) = m(0) · R0 + C · Ψσ = m(0) + C · Ψσ with Ψσ =
1∑

i=1

G(i) · Rn−i = G(1) · R0 = G(1)

Following, we have to proof thatm(1) = m(0) + C · G(1). That is true because of Lemma 3.2.
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Step: We consider the firing sequenceσ′ = (σ,Gn+1) with m(0) σ
−→ m̂(n) −→

1
m̃(n) Gn+1

−→ m̂(n+1).

We have to show that

m̂(n+1) = m(0) · Rn + C · Ψσ′ andΨσ′ =
n+1∑

i=1

G(i) · Rn+1−i

Because of the induction hypothesis it holds:

m(n) = m(0) · Rn−1 + C · Ψσ = m(0) · Rn−1 + C ·

(
n∑

i=1

G(i) · Rn−1

)

(2)

Because of Lemma 3.1 and resp. Lemma 3.2 it holds too:

m̃(n) = m̂(n) · R (3)

resp.
m̂(n+1) = m̃(n) + C · G(n+1) (4)

From (2), (3) and (4) it follows:

m̂(n+1) = m̃(n) + C · G(n+1) =
(3)

m̂(n) · R + C · G(n+1)

=
(2)

(

m(0) · Rn−1 + C ·

(
n∑

i=1

G(i)Rn−1

))

· R + C · G(n+1)

= m(0) · Rn + C ·

(
n∑

i=1

G(i)Rn+1−i

)

+ C · G(n+1) · Ed
︸︷︷︸

=R0

= m(0) · Rn + C ·

(
n∑

i=1

G(i)Rn+1−i + G(n+1) · R(n+1)−(n+1)

)

= m(0) · Rn + C ·

(
n+1∑

i=1

G(i)Rn+1−i

)

= m(0)Rn + C · Ψσ′

ut

Corollary 3.1. (from Theorem 3.1)
Let Z be a PDPN,σ = (G1, . . . ,Gn) a firing sequence inZ, m(0) the initial time marking ofZ and

m(0) G1−→ m̂(1) −→
1

m̃(1) G2−→ m̂(2) −→
1

. . . −→
1

m(n). Then it holds:

m(n) = m(0) · Rn + C · ΨσR (5)

Corollary 3.2. Let m(1) −→
τ

m(2), τ ∈ N+. The following holds:

∀j

(

(1 ≤ j ≤ |P |) →
d∑

i=1

m
(1)
j,i =

d∑

i=1

m
(2)
j,i

)

(6)
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The following three remarks conclude directly from the Definitions 2.10 and 2.11:

Remark 3.1. (maximum condition for prioritized maximal steps)
Let m(1) B

−→ m(2). Then it is true, that

∀t



(t ∈ T ∧ h(t) = 0) → m
(1)
.1 −

∑

t̂∈B

t̂− 6≥ t−



 (7)

Remark 3.2. (maximum condition for global steps)
Let m(1) G

−→ m(2). Then the following holds:

∀t
(

(t ∈ T, h(t) = 0) → m
(2)
.1 6≥ t−

)

(8)

Remark 3.3. (priority rule)
Let Z be an PDPN witht1, t2 ∈ T , t−1 ≤ t−2 Θ(t1) ≥ Θ(t2) andD(t1) ≤ D(t2). Then the following
holds:

∀σ

(

(σ = {G1, . . . ,Gn}) →
n∑

i=1

κGi
(t1) ≥

n∑

i=1

κGi
(t2)

)

(9)

Together with the state equation (Theorem 3.1), the three conditions above may be used to test non-
reachability in a PDPN, as demonstrated in the next section.

4. An Example

In this section, we show the application of our approach. Please, consider the PDPN from Figure 4. We
want to examine the following proposition:

Proposition 4.1. The PDPNZ in Figure 4 with the initial time markingm(0) = ( 2 0 0
0 0 0 ) will never reach

the time markingm∗ = ( 0 0 0
0 0 0 ).

For a DPN (i.e., in case the priorities would be ignored) the marking m∗ is reachable, i.e., the Propo-
sition 4.1 does not hold: Then, the sequenceσ = {G1,G2,G3} with G1 = {t1, t2, t3, t4, t4}, G2 = ∅,
G3 = {t2}, i.e.,

( 2 0 0
0 0 0 )

{t1,t2},{t3,t4},{t4}
−−−−−−−−−−−→ ( 0 0 1

0 0 0 ) −→
1

( 0 1 0
0 0 0 )

∅
−→ ( 0 1 0

0 0 0 ) −→
1

( 1 0 0
0 0 0 )

{t2}
−−→ ( 0 0 0

0 0 0 )

leads tom∗. Please note, that the first global step consists of a number of maximal steps:

( 0 0 0
0 0 0 )

{t1,t2}
−−−−→ ( 0 0 0

3 0 0 )
{t3,t4}
−−−−→ ( 1 0 0

1 0 0 )
{t4}
−−→ ( 1 0 0

0 0 0 ) .
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p1

3

t1 d =01

q1=2 q3=3 q2=1

q4=1

d =22d =23

d =04

t2

t3

t4

p2

Figure 4. A example PDPN

We prove Proposition 4.1 by contradiction.

Proof:
Assume Proposition 4.1 is wrong. Then, there exists a sequenceσ = {G1,G2, . . . ,Gn} with m(0) σ

−→ m∗.
However, we will show that each sequence that leads to( 0 0 0

0 0 0 ) has to start from( 0 0 0
0 0 0 ).

It is sufficient to consider the last action in the sequence only. We have to consider two cases.

• Case A: the last action of the sequence is an elapsing of time,and

• Case B: the last action of the sequence is a firing.

In case A, i.e.,m̂(n) −→
1

m∗, it is easy to see that̂m(n) has to be( 0 0 0
0 0 0 ), because of Corollary 3.2 and

because a time marking can not contain any element smaller than zero.
To consider case B, we define:

• xi =
n−1∑

j=1
κGj

(ti) , i.e., xi is the number of firings of the transitionti
within the sequence{G1, . . . ,Gn−1}.

• αi = κGn(ti), i.e., αi is the number of firing of the transitionti
within Gn.

• yi =
n−2∑

i=j

κGj
(ti), i.e., yi is the number of firing of the transitionti

within the sequence{G1, . . . ,Gn−2}.

• βi = κGn−1(ti), i.e., βi is the number of firing of the transitionti
within Gn−1.

And of course, the following is true:

xi = yi + βi (10)
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From Remark 3.3 we know:

x1 ≥ x2, y1 ≥ y2, α1 ≥ α2, andβ1 ≥ β2 (11)

We want to apply the state equation. In our example,

C =

(

−1 0 0 −1 0 0 0 0 1 0 0 0

3 0 0 0 0 0 −1 0 0 −1 0 0

)

, R =






1 0 0

1 0 0

0 1 0




 andRi =






1 0 0

1 0 0

1 0 0






for all i > 1.
Inserted in (1), we get:

m∗ =

(

0 0 0

0 0 0

)

= m(0)Rn−1 + C · Ψ

= m(0)Rn−1 + C

(
n∑

i=1

G(i)Rn−i

)

= ( 2 0 0
0 0 0 )

(
1 0 0
1 0 0
1 0 0

)

+ C

(
n−2∑

i=1

G(i)
(

1 0 0
1 0 0
1 0 0

)

+ G(n−1)
(

1 0 0
1 0 0
0 1 0

)

+ G(n)

)

=

(

2 0 0

0 0 0

)

+ C

























































y1 0 0

y1 0 0

y1 0 0

y2 0 0

y2 0 0

y2 0 0

y3 0 0

y3 0 0

y3 0 0

y4 0 0

y4 0 0

y4 0 0





























+





























β1 0 0

β1 0 0

0 β1 0

β2 0 0

β2 0 0

0 β2 0

β3 0 0

β3 0 0

0 β3 0

β4 0 0

β4 0 0

0 β4 0





























+





























α1 0 0

0 α1 0

0 0 α1

α2 0 0

0 α2 0

0 0 α2

α3 0 0

0 α3 0

0 0 α3

α4 0 0

0 α4 0

0 0 α4

























































=

(

2 0 0

0 0 0

)

+ C

















y1 + β1 + α1 0 0

y1 + β1 α1 0

y1 β1 α1

...

y4 + β4 + α4 0 0

y4 + β4 α4 0

y4 β4 α4

















=

(

2 0 0

0 0 0

)

+

(

−y1 − β1 − α1 − y2 − β2 − α2 + y3 β3 α3

3y1 + 3β1 + 3α1 − y3 − β3 − α3 − y4 − β4 − α4 0 0

)
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(

0 0 0

0 0 0

)

=

(

2 − y1 − β1 − α1 − y2 − β2 − α2 + y3 β3 α3

3y1 + 3β1 + 3α1 − y3 − β3 − α3 − y4 − β4 − α4 0 0

)

We getβ3 = 0 and therefore by (10):x3 = y3. In addition, we getα3 = 0. α3 = β3 = 0 means thatt3
does not fire during the last stepGn or during the step before,Gn−1. Thus, afterGn

h(t3) = 0 (12)

Also t4 does not fire duringGn, sincet4 has the same pre-condition ast3, but a lower priority, i.e.,α4 = 0

Assume,t1 does fire duringGn. Sinced1 = 0, α3 = 0, and (12), maximum condition (8) is not met.
Therefore,t1 does not fire duringGn, thusα1 = 0.

Following, because of (11),α2 = 0.
We have shown, that none of the transitionst1, . . . , t4 belong toGn, i.e.,Gn = ∅. Thus, regarding

the state equation (1) for̃m(n−1) Gn−→ m(∗)

m∗ =

(

0 0 0

0 0 0

)

= m̃(n−1) · R0 + C ·









Od

Od

Od

Od









= m̃(n−1) · Ed + Od

= m̃(n−1)

i.e.

m̃(n−1) =

(

0 0 0

0 0 0

)

That concludes the proof. ut

5. Conclusions and Future Work

Within this paper, we have provided an approach that allows for reasoning about Priority Duration Petri
nets. We have given sufficient conditions to prove non-reachability, and presented an example.

Currently, we are working on a big-scale application of our approach: the correctness proof of the
Message Scheduled System architecture.

In order to reach this goal it is not sufficient to apply our technique just to one specific net, we have to
apply it to a class of nets describing generic MSS instances.These nets can be automatically composed
out of basic building blocks using the technology presentedin [6].

In general, the number of places, transitions and arcs of thePDPN, modeling the MSS architecture,
is defined parametrically. This parametrically defined net represents a class of PDPNs.

To proof correctness of the MSS architecture we must show that in this class of nets a specific error
state is not reachable if the MSS configuration specified by the net is valid according to the rules of MSS.
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