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1. Introduction

1.1. Motivation

Times and priorities are important concepts which are feetly used in real-world systems. Such
systems can be built, e.g, with thdessage Scheduled SystéWSS) architecture [5] that we have de-
veloped. MSS supports composability of real-time systelhensures that every component meets its
contracted specification on its real-time behavior. The M&®itecture relies on standard priority-based
scheduling methods, e.g., [1]. In order to prove the fornoatectness of the MSS architecture we need
a way to deal with priorities and times.

The correctness of an MSS system can be mapped to the ndrabdiéy of certain states. In [7]
and [6] we presented a formal specification of MSS’ behavaselal on prioritized Duration Petri nets
(DPN), and a tool-supported way to generate the specifitédioa desired system instance, respectively.
In [3], we showed how a non-reachability proof can be conelliah a DPN. As a next step, we present
in this paper the extension of our method to systems wittrifige.

Frequently, non-reachability proofs in extended Petrs rmee done by proving the non-reachability
in the underlying classic Petri net. However, this apprdadls in cases like MSS where the system’s
correctness relies on the restriction introduced by tinteiorities.

In this paper we present an approach that allows to provereacihability in the Priority Duration
Petri net (PDPN) itself. For that purpose, we give a stateatgu and a number of firing conditions
that lead to a system of equations and inequalities. Thiesyprovides a sufficient condition to prove
non-reachability.

The remainder of this paper is organized as follows: Theak#tis section names the state of art.
Section 2 provides the definitions needed. In Section 3, wigedfrom the definitions a state equation,
priority conditions and conditions for maximal steps thapgort an algebraic reasoning about PDPN.
We show in Section 4 how to apply our methods and prove a nachebility in an example net. The
paper concludes with some final remarks.

1.2. Related Work

The question of reachability and non-reachability raiseséveral problems which can be described by
Petri nets. In general, the state space of a Petri net istmfiDifferent methods have been developed in
order to prove certain properties without computing respvking the whole state space of the net.

One approach in classical Petri nets is the computing ofriemts. There, it is relatively easy to
obtain place or transition invariants using the state eguatf the net (cf. [8]).

But, if the Petri net is a time dependent one or uses prigritiee state space becomes smaller. In
this case, the use of the state equation of the skeleton ienptreasonable, because this state equation
does not take into account the additional constraints ohéte

There exists quite a range of possibilities to represerggiin Petri nets. Times can be assigned to
transitions, places and tokens (cf. [9]); for each caserakgemantics exist. In this work we consider
an extension to Duration Petri nets (also called Timed Petis). Duration Petri nets were defined by
Ramchandani [4]. Here, times are assigned to transitiodglascribe a delay in the process of firing.

Also, priorities are an often used concept in Petri nets.allgupriorities will be assigned to transi-
tions or to tokens. We use the first alternative.



M. Werner, L. Popova-Zeugmann, J. Richling/ A Method to @fden-Reachability in PDPN 1003

There exist approaches to analytically deal with time andriies in stochastic Petri nets, cf.
e.g., [2]. The reachability graph of stochastic Petri nétéssame as the graph of the underlying classical
Petri net and therefore reachability analysis for this kifidPetri nets is purchased on the reachability
graph of the classical reachability graph preferably. I tlon-stochastic area, there exist quite a few
simulation tools that consider time and priorities.

However, to the best of our knowledge, there exists no acalyBpproach to evaluate non-
reachability in non-stochastic prioritized time-depeshéetri nets.

2. Definitions

2.1. Notation

This subsection introduces the basic notations we use ipa@per. N andR denote the set of natural
numbers and rational numbers, respectivaly. = N\ {0} denotes the set of natural numbers with@ut
andQ denotes the set of nonnegative rational numbers.

M(m,n) is the set of all matrices with rows andn columns. A superscript in parentheses distin-
guishes different matrices. For the arbitrary mai%) € M(m,n), Agk”) is thei-th row andAFf) is the
j-th column of the matrix.

Let M be a finite set|M | is the number of elements dff. Let @ be a finite multiset (bag) id/.
kq(m) with m € M denotes the multiplicity ofr, i.e., how many instances ot are inQ.

1 i=j
0 otherwise

E, = (e;;) € M(n,n) denotes the (unit-)matrix with; ; = and

Op = (0;,5) € M(n,n) the (zero-)matrix withp; ; = 0 Vi, j.
The relation-() % () of the two vectors- () (2) € M(m, 1) means, that there exists at least one

i, 1€ {1,...,m} with ri(l) < 7“2(2).

2.2. Structural Descriptions
We begin with the usual definition of a Petri net:

Definition 2.1. (Petri net)
The structureV = (P, T, F, V,m,) is called a Petri net (PN) iff

1. P, T, F arefinite sets witiPNT = (), PUT # 0, F C (PxT)U(T x P) anddom(F)Ucod(F) =
PUT

2. V: F — NT (weight of the arcs)

3. m, : P — N (initial marking)

A marking of a PN is a functiomn : P — N, such thatn(p) denotes the number of tokens at the
placep. The pre-sets and post-sets of a transiti@re given byF't = {p | p € P A (p,t) € F} and
tF ={p|pe€ PA(tp) € F}, respectively. Each transitiane T induces the markings™ andt¢*,
defined as follows:

_. ) Vpt) iff (pt)eF ) Vit,p) iff (t,p)eF
t(m_{o it (p,t) & F tﬂm_{o it (t,p) & F
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A transitiont € T'is enabled (may fire) at a marking iff t= < m (i.e.,t~(p) < m(p) for every place
p € P). When an enabled transitianat a markingm fires, this yields a new marking:’ given by

m/(p) := m(p) + t*(p) — t~(p). The firing is denoted byn Lo

Definition 2.2. (Duration Petri net (DPN))
The structureZ = (N, D) is called a Duration Petri ne{DPN) iff:

1. S(Z) = N is a PN called thekeletorof Z.
2. D: T — Qf (duration function).

d; := D(t;) is the duration of transition’s; firing. It is easy to see, that without loss of generality we
may consider DPNs wittD : T" — N. Therefore, only such time function8 will be considered
subsequently.

A DPN behaves similar to a PN with a maximal step semantic. édew the token(s) will reach the
post-set of a transition only after the delay of this traosiis elapsed.

Definition 2.3. (time dimension)
d:= l?azz({D(t)} + 1 is called the time dimension of the DPN.
S

Definition 2.4. (Priority Duration Petri nets, (PDPN))
The structureZ = (N, ©) is called a Priority Duration Petri net (PDPN) iff:

1. S(Z) = N a DPN called the skeleton &f
2. © : T — N (priority function).

0; = O(t;) denotes the priority of transitiofy. Without loss of generality we assume that a higher
priority value means that the transition is preferred taagition with a lower priority value.

Example 2.1. The PDPNZ; which is used for illustration is shown in Figure 1.
The time dimension of;isd = 3.

In order to describe the relation between tokens and timeisedas for DPN in [3]) the notion oftame
marking

Definition 2.5. (time marking)
Let Z be a PDPN. A matrixn with m € M(|P|,d) is a time marking inz.

Definition 2.6. (initial time marking)
The time markingn(©) is an initial time marking, iffm'(f) = myg andmgg.) =0fori=1...|P|and
j=2...d.

Each column of the time marking matrix represents a (pamerking of a place for different delays.
The first column represents the present, and thus the maskihg underlying PN skeleton. The second
column represents tokens which are on their way to the pladendl arrive in one time unit. The same
is true for the third column with two time units, etc.

1Also called Timed Petri net.
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Figure 1. Netfrom Example 2.1

Example 2.2. The net from Example 2.1 has the following initial time maudi

C
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o o o
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Let m(®) the marking of a PDPN in the classic notation, antl) the time marking variant. Then the
following is true:

d
Viyi=1... \P\,mgc) = ngt])
j=1
In the remainder of this paper; denotes always a time marking.

2.3. Dynamics

A Priority Duration Petri net has a dynamical behavior tkatls to a change of the marking. The notation
for a change from marking:*) to markingm® is m™) — m®). In general, two kinds of changing
actions have to be distinguished:

e Firing of transitions.Firing transitions is similar to classical Petri nets, hearewe allow a firing
of maximal sets of transitions only.
We denote firing of the sdftt4, . .., ¢} by writing the set of transitions in action atop the arrow:
@ Lt @) i there is a need for distinction, we denote a marking teaeached by
firing with a hat:m (1) Ld 5 2)

e Elapsing of time.A DPN (and thus a PDPN) may change its marking by elapsingnwé.tiThe
time elapsing happens synchronously for all transitionthénet. It reduces the time a token has
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to wait till its delivery. In our notation, time elapsing atfits the rown; of the time markingn
corresponding to the plagg. An interaction between different places does not takeeplac

We denote elapsing oftime units by writing the number of time units beneath thewrrm () —

T

m® . If there is a need for distinction, we denote a marking teaeached be time elapsing by a
2)

tilde: m™ — Mm@,
T
In the following, we define the change actions in detail. Veigtstith the elapsing of time. Itis equivalent
to DPN, cf. [3]. To allow consideration about time, we defirteaasition clock vector:

Definition 2.7. (transition clock vector)
Let Z be a PDPN. Then, the vectare M(|T'|,1) is called transition clock vector ¢, iff
Vi(1<i<|T|— hy < D(t))

An elementh; of h is non-zero if the related transition is firing, and zero otlise. Ah; # 0 shows
remaining time until the firing is finished. The péin, i) describes the state of the PDPN.
Now we are prepared to define time elapsing:

Definition 2.8. (time elapsing)
Let Z be a PDPN and:(") andm(® time markings inZ. The time markingn(® is yielded fromm(!)
by time elapsing, iff

mp) £ miy =1
mg) = mglj)ﬂ ,2<j<d-1 andhz(?) := max(0, hgl) -1)
0 ,j=d

In other words, all tokens in the time marking move one columthe left, except the first column, that
accumulates the token from the first and second column, anthsh column, which is filled with zero.
In addition, all non-zero clocks are decreased.

Firing is equivalent to the firing in DPN too, as long as theestbn of transitions to fire is not
considered:

Definition 2.9. (firing)
Let Z be a PDPN and:(") andm(® time markings inZ. The time markingn(® is yielded fromm(!)
by firing the set of transitions, iff

) = S V(pits) + X Vitap) j=1

ts€B ts€B,
2 _ *< o

1 .
mi + S Vit ) >

and
h(2) — D(tz) ,t; €B
v n otherwise
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In other words, firing a transition removes a number of toldems the first column of all places in the
firing transition’s pre-set and adds a number of tokens tataioecolumn of all places in the transition’s
post-set. The column to add corresponds to the delay ofdhsitron (O: first column, 1: second column,
etc.) and the numbers of tokens correspond to the weighteffarm and to the transition, respectively.

h; is working like an egg-timer: If a transitiofy starts to fire, then its clock is setd, i.e., h; := d;.
After then,h; is decreased by each time elapsing.

Until here, the definition of a PDPN does not differ from théiiéion of a DPN? The impact of the
priorities is in the notion of a step, i.e., the set of all tokaoves that happen before time elapses. For
PDPN, we use a modified maximal step, that considers pgeriti

Definition 2.10. (prioritized maximal step)
Let Z be an PDPNB C T'is called a prioritized maximal step on the time markingvith the transition
clock vectorh iff

1. BCT

2. Z t— <m;
teB

3. Vi(t € B— h(t) = 0)

4. VtVt1<(t€B/\t1 B AN FtNFt; 0 A t7 <mi A h(t;) =0) —

<@(t) > O(t) Vma — ;B vz tf))

O(t)>6(t1)

5. =3B* ((B* D B) A (B* satisfies 1. — 4)

In other words, Definition 2.10 describes a maximal (5) sdtanisitions (1) which are enabled (2) and
not in the process of firing (3), that contains no lower ptiped transition as long as it could contain a
higher prioritized transition instead (4).

Example 2.3. Consider the nets in Figure 2. Assumed, no firing is in pragré®e net in Figure 2(a)

allows the prioritized maximal ste8 = {t1,t2} only. In Figure 2(b), the prioritized maximal step is

B = t4,1g. t5 iS NOt in B, since it is in conflict with the higher prioritized, cf. Definition 2.10, item 4.
Please note, that in general more than one prioritized nabdtep may exist.

Since we allow zero-time transitions (i.&; = 0), it is possible that more than one prioritized maximal
step takes place before a time unit may elapse. Thus, we defjt@bal step that includes all firing
actions that take place before time elapses.

Definition 2.11. (global step)
Let Z be an PDPN with the time marking. G is a multiset (bag) that is constructed in the following
way:

2However, a DPN as defined in [3] does not allow zero-time del&But—as also discussed there—it is easy to extend the
definition in the way used in the current paper.
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(@) (b)

Figure 2. Prioritized maximal step

1.G=0
2. If there exists a prioritized maximal st (), theng := G + B; else the construction is ready.
3. m andh are changed according to Definition 2.9 by firing the/Set

Continue with 2

A global stepgG is a multiset yielded by addition of the prioritized maxinsépsh,, ..., B, where

m® Bl B B () Sinceg is a multiset, it may include more than one instances of a
certain transition. However, this is only true, if this ts#tion has a zero-time delay. Obviously, a global
step may be an empty set.

The dynamical behavior of a PDPN is marked by a strict altesnaof firing with global steps and
time elapsing:
0) 91, () _, 51 92, In, s(n) _, 5(0)

1 1

Without loss of generality, we use one time unit for the tifagpsing. However, each common factor
of all transition delays would be possible.

Since the number of elapsed time units after a firing is com$tet a PDPN and in our considerations
always1, we skip in the following the notion of the elapsed time. ,l&firing sequencég;, G2, Gs3)
means the alternating sequence of firing and time elagsind, G», 1,Gs) or (G1,1,G2,1,Gs, 1).

m(

Definition 2.12. (reachability)
Let Z be a PDPN. A time marking:’ is reachable i iff there exists a sequenee= (G, ...,G,) of
global steps such that

m©@ 2L 5@ om0 22 50 —m® -

1

o may end either with firing, or with time elapsing.
3. State Equation and Firing Conditions
In this section we introduce some further concepts that aipgn algebraic reasoning about PDPN.

Especially, we present a state equation and few firing iamsithat are valid in every PDPN.
The structure of a PDPN as given by Definition 2.4 may be desdrby an incidence matrix.
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Definition 3.1. (incidence matrix)
Let Z be a PDPN. The matriX € M(|P|,d - |T|) is called the incidence matrix of, iff C =

(CW,c@, ...,y with 0®) € M(|P|,d).k € {1,...,|T|} andC®) = (c{")) where

) Vi) dp>0,5=1
Y Vit ) (dy >0),0<j—1=dy
0 , otherwise

l.e., a submatrixC'(V) describes how the transition is connected with places. If the transition has a
zero-delay {; = 0), only the first cquer.(f) is used. Itincludes differences of the weights of all arcs
to the places and thedeom the places. If the transition has a deldy € d; < d), the first column

includes the weightsom the places and thé + 1-th column the weightso the places.

Example 3.1. The incidence matrix of Example 2.1 in Figure 1 is:

-2 0 0 -1 0 0 0 0 0 0 2
C= 0 01 0 00 -1 0 0 00
0 00 1 00 0 -1 0 0

Figure 3. Aloop in a Petri net

Please note, that—similar to a classic Petri net—a loop (e arcs(p, t) and(t, p) with the same
weight, cf. Figure 3) will not appear in the incidence matiixthe transition has a zero-time delay.
However, if the transition in the loop has a non-zero deltfyX 0) both arcs will be represented in the
incidence matrix.

Next, we define a bag matrix to represent global steps.

Definition 3.2. (bag matrix)
Let G be a (maximal or global) step ang(¢;) = xg, the multiplicity of transitiont; in G. The matrix
G € M(d-|T|,d) is called the bag matrix o iff
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Obviously, the submatrig(®) is the zero-matrix if the transitiofy does not belong to the global stgp

Example 3.2. Let us consider the stap = {t1, t2,t2} in Z; (Figure 1):

00
1
00 1
1 0 0 2 0 2 0
@ GU=[010 GO =1 0
G
G G ith v i.e..G
= Wi l.e.. =
G®3)
GW
GO =000 GH=]000 000
00 0 000 000
000
0
000

Next, we define a progress matrix that allows us to describaripact of time elapsing to the time
marking.

Definition 3.3. (progress matrix)
Let Z be a PDPN. The matrig € M(d, d) is called the progress matrix &f, iff

1 if (i=j=1)or(i=j+1)
Tij = )
" 0 otherwise

Example 3.3. In Example 2.1 the progress matiikof the net”; is R =

S ==
= o O
o O O

Finally, we define a Parikh matrix that represents a sequeisteps and time units.

Definition 3.4. (Parikh matrix)
The matrix¥ € M(|P|,d) is called Parikh matrix of the sequenee= (Gy,...,G,), iff

U, = zn: G . gn—i
=1
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Using the introduced elements, we can formulate a stateiequfar PDPNSs:

Theorem 3.1. (state equation)
Let Z be a PDPNg = (G4,...,G,) afiring sequence i, m(© the initial time marking ofZ and

m© 5L, 5 1) — w1 92, 5 (2) — . S, ™), Then it holds:

m™ =mO . g1y ., 1)

To prove Theorem 3.1 let us consider following lemmata:

Lemma 3.1. Let Z be a PDPNm(Y a reachable time marking i andm () — m®. Then it holds
m® —m® . R,

R
2 1
m; ;= m; -R
. (1) (1) 1) (2)
) . 1 1 1
Casel: j=1 ~ E Mg Ts =g Lt mey -1 acedef P
. ; } : m) _ (2)
Case 2: d> J Z 2 m "Tsj = ,]+1 -1 acc:lef mi,j

Case3: j=d ~ Zm Tej=0=my
O

Lemma 3.2. LetZ be aPDPN aneh™) %5 m® G = {t;,, ... ,ti,}- Thenholdsm® = mM+C-G.

Proof:
We considelmfj).
Cael j=1

According to Definition 2.9 and Definition 2.11 the followimgtrue:

mg?l) = m — Rg, Z V plv + KRG Z V s;pz) .

ts€G ds=j—1=0
ts€g

Therefore, it is sufficient to show that

d-|T|

> cingii=—kg, Y V(pits) + kg, Y Vitepi) .
=1

ts Eg fSE:C(/)
s
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Let us consider the bag matrix. The first columrG ; of Gis G.; = (91, ¢®@, ..., gTHT where
¢'®) is ad-dimensional vector with

0 = (g, g®) k=1,...|T| andg®) = { " ifj=1
g (917 9a7) el 0  otherwise

That meansg*) is the d-dimensional vecto(g, ,0,...,0)" if t;, € G and thed-dimensional zero-
vector otherwise.
Hence,
&|T| T d |T| )
Sewan=X 3 el ol =ra Xl 5w Vot 3 Viter)
k=11=1 k=1 for j=1 tLEG dg,=0
tp€G
Case2: j>2
&|T)|
Obviously, now we have to show that] ¢; s gs; = kg, ». V(ts,pi) . We consider thg-th column
s=1 dp=j—1

of the bag matrixG, the vectorG ;.

7| K s=k
G =gV, g@ . gTDywith g® = (¢ .. ¢"NT vEandg® ={ "9
J=6"9 g ) 9" = (g1 gq )" v gs 0 otherwise

i.e.g® =(0,...,0)if tx ¢ Gandg® = (0,...,kg,,0,...,0)T,if t; € G.
N——

k.
d ! -
d
Now we can compute
d|T| |T| )
Z Cll gl’] /{gk Z ’-7 acc.;f 3.1 /{gk Z V(tk’pl)
k=1 for j>2 dp=j—1

tp€G

Now we can prove Theorem 3.1 by induction:

Proof:
Proof by induction om.
Basis n = 1.

We have to show that for(© % ;O holds:

1
mM =ml R+ C ¥, =m® +C-Yywith ¥, =) G0 g =GW . R* = gV
=1

Following, we have to proof thak(!) = m(© + C - G, That is true because of Lemma 3.2.
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Step We consider the firing sequeneé = (o, G,,11) with m(© 2 m() — 5 ) Intd (1),

1
We have to show that
n+1 ' '
m ) =m0 R4+ € U and ¥, = Y GO R
=1

Because of the induction hypothesis it holds:

m™ = O gt 4oLy, = mO . gl o4 oo <Z G .Rn—1> 2)
Because of Lemma 3.1 and resp. Lemma 3.2 it holds too:
m™ = m™ . R (3)
resp.
mt) — 50 4 oL gt (4)

From (2), (3) and (4) it follows:
it — 50 L oL gt — 50 R4 . gt
3)

=1

=mO R+ C- Y GURMI ) 0GBy

— m(O) . R™ +C- (Z G(i)Rn-i-l—i + G(n+1) . R(TH—I)—(TH—I))

i=1

n+1
=m . R"+C- <ZG IR~ )

=mOR" +C . v,

O
Corollary 3.1. (from Theorem 3.1)
Let Z be a PDPNg = (G4, ...,G,) afiring sequence i, m(© the initial time marking ofZ and
m© L, 51 — ) 22, @) — ... — m(™. Then it holds:
m™ =m® . R" 4 C.U,R (5)

Corollary 3.2. Letm() — m(® r e N*t. The following holds:

vj ((13jslPl Zmﬂ—Z 2) (6)

=1
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The following three remarks conclude directly from the Digfams 2.10 and 2.11:

Remark 3.1. (maximum condition for prioritized maximal steps)
Letin™ B, m@ . Thenitis true, that

vt ((t eTAR(E) =0) —m -3 i~ t) 7)
teB
Remark 3.2. (maximum condition for global steps)
Letm® £ m®. Then the following holds:
vt <(t €T, h(t) =0) »m? # t_) (8)

Remark 3.3. (priority rule)
Let Z be an PDPN witht;,t, € T, t; < t, ©(t;) > O(t2) andD(t1) < D(t2). Then the following
holds:

Vo <(U ={G1,...,Gn}) — Z kg, (t1) = Z K/gi(t2)> 9)
=1 i=1

Together with the state equation (Theorem 3.1), the threelitons above may be used to test non-
reachability in a PDPN, as demonstrated in the next section.

4. An Example

In this section, we show the application of our approachasdeconsider the PDPN from Figure 4. We
want to examine the following proposition:

Proposition 4.1. The PDPNZ in Figure 4 with the initial time marking:(”) = (29 9) will never reach
the time markingn* = (99 9).

For a DPN (i.e., in case the priorities would be ignored) tregking m* is reachable, i.e., the Propo-
sition 4.1 does not hold: Then, the sequence- {G1,G>,G3} with G; = {t1,t2,t3,t4,t4}, G2 = 0,
93 = {tQ}, i.e.,

{t1,ta},{ts,ta},{ta} 0 {t2}
(389) (398 — (30 L (@19 — (399 25 (389)
leads tom*. Please note, that the first global step consists of a nunilmeaximal steps:

{t1,t2} {t3,ta} {ta}
(898) == (389 == (188) — (489)-
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b

Figure 4. A example PDPN

We prove Proposition 4.1 by contradiction.

Proof:

Assume Proposition 4.1 is wrong. Then, there exists a segues {G1,Gs, ..., G, } with m©@ % m*,

However, we will show that each sequence that leadg ) ) has to start frong § § 9).

It is sufficient to consider the last action in the sequendg dle have to consider two cases.
e Case A: the last action of the sequence is an elapsing of &ntk,

e Case B: the last action of the sequence is a firing.

In case A, i.e.;n(™ — m*, itis easy to see thab(™ has to bg(399), because of Corollary 3.2 and

because a time marking can not contain any element smadlerziro.
To consider case B, we define:

n—1
ex; = ) kg, (t;), i.e.,z;isthe number of firings of the transition
j=1 within the sequencégG, ..., G, 1}.
o o; = kg, (ti), i.e., a; is the number of firing of the transitioty
within G,,.
n—2
ey, = ) kg, (ti), i.e.,y; is the number of firing of the transitioty
i=j within the sequencégy, ..., G, o}.
o 3 = Kg,_, (t:), i.e., f; is the number of firing of the transitioty
within G,,_1.

And of course, the following is true:

T = Yi + B (10)
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From Remark 3.3 we know:

Tl > T2, Y1 > Yo, 1 > g, andfy > (o (11)
We want to apply the state equation. In our example,
1 00 1 00 0 01 0 00 Lo Lo
C = ,R=|[1 0 oflandRi= |1 0
300 0 00 -1 0 0 -1 0 0
010 10
foralli > 1.

Inserted in (1), we get:

m* = 000 —mOR—1 4L C0.p
0 0 O

=mORr"1 4 C <Z GU)R"—Z')

i=1

n—2
~ @ (1) re (S () + oo (1) +ov)
y1 0 0 01 0 a; 0 0
y1 0 0 61 0 0 0 a3 O
yr 00 0 61 0 a;
y2 0 0 G 0 0 as 0 O
y2 0 0 G 0 0 0 a» O
:<200>+C w00 Lo B ool o
000 y3 0 0 B3 0 O as 0 0
ys 0 0 B3 0 ag
ys 00 0 G5 0 0 0 o
ys 0 0 Bs 0 O as O
ya 0 0 GBs 0 O 0 a4 O
ys 0 0 0 B4 O 0 0 ag
n+b+ar 0 0
v+ 51 aq
(2 0 0> Y1 f1
= +C :
0 00
Yya+Bi+as 0O
Ya+ Ba ag 0

Y4 Ba g

_ (2 00 . —y1—PB1—a1 —y2 — B2 —as+y3 B3 a3
0 0 3y1 +361 +301 —y3 =Bz —az3—ya—Ba—ags 0 O

@)

o o O
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000 _ 2-yp—br—ar—y2—Pr—ax+ys3 B3 o3
000 3y1 +361 +3c1 —y3 — B3 —a3—ys—Pa—ay 0 0

We get(; = 0 and therefore by (10):3 = y3. In addition, we getvs = 0. a3 = 83 = 0 means thats
does not fire during the last stép or during the step beforg;,, ;. Thus, aftelG,,

h(ts) = 0 (12)

Alsot4 does not fire during;,,, sincet4 has the same pre-condition#sbut a lower priority, i.e.qq = 0
Assumey; does fire duringj,,. Sinced; = 0, as = 0, and (12), maximum condition (8) is not met.
Therefore¢; does not fire during,,, thusa; = 0.
Following, because of (11§, = 0.
We have shown, that none of the transitigns. . . , ¢4 belong togG,,, i.e.,G,, = (. Thus, regarding

the state equation (1) fon(—1) 22 ()

Oq
m* = 000 =m-D . RO . Oa
0 00 @F
04
= ﬁl(n_l) -Eg+ Oy
)
ie.
1) _ 0 00
0 00
That concludes the proof. O

5. Conclusions and Future Work

Within this paper, we have provided an approach that all@vsdasoning about Priority Duration Petri
nets. We have given sufficient conditions to prove non-rahitity, and presented an example.

Currently, we are working on a big-scale application of oppraach: the correctness proof of the
Message Scheduled System architecture.

In order to reach this goal it is not sufficient to apply outigique just to one specific net, we have to
apply it to a class of nets describing generic MSS instarnthese nets can be automatically composed
out of basic building blocks using the technology preseirid6].

In general, the number of places, transitions and arcs d?iéN, modeling the MSS architecture,
is defined parametrically. This parametrically defined eptesents a class of PDPNs.

To proof correctness of the MSS architecture we must shotiritthis class of nets a specific error
state is not reachable if the MSS configuration specified éy#t is valid according to the rules of MSS.
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