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On Time Petri Nets

By Louchka Popova

Abstract: This paper shows how to study boundedness and liveness of a finite Time Petri net in a
discrete way by using its reachability graph. The computation of the reachability graph defined here
is a recursive-enumerable process. The decidability of reachability for an arbitrary state in a finite and
bounded Time Petri net is shown here.

;

Time Petri nets, the subject of this paper, are based on the classical Petri nets defined
by C. A. Petri [10]. A (classical) Petri net is an abstract, formal model of a system with
asynchronous components. The major use of Petri nets is the modelling of systems of events
in which it is possible for some events to occur concurrently.

As classical Petri nets have limitations, they have been extended in numerous ways. Two
Petri net based models for representing concurrent systems with temporal constraints are
known as Time Petri nets ([9]) and Timed Petri nets ([12]).

Time Petri nets are Petri nets in which two times, a, and b (0 £ a £ b, a + ), are
associated with each transition. The times a and b, for transition ¢, are relative to the moment
at which ¢ was last enabled. Assuming that ¢ was last enabled at time ¢, then ¢ may fire
only during the interval [c + g, ¢ + b] and must fire at the time ¢ + b at the latest, unless
it is disabled before by the firing of another transition. Firing a transition takes no time.
With Time Petri nets, Merlin studies recoverability problems in computer systems and the
design of communication protocols ([9]).

Timed Petri nets are obtained from Petri nets by associating a firing time to each transition
of the net. The firing rule is modified considering the firing time and that a transition must
fire as soon as it is enabled to. Timed Petri nets are mainly used for performance evaluation
([12], [14], [4], [3] etc))

In this paper we consider Time Petri nets where the time is described by rational numbers.
In the first section we give a short explanation of what Petri nets are. In Section 2 Time
Petri nets are defined and some basic properties are shown. Integer-firing is studied in
Section 3. The notion “reachability graph” for a Time Petri net is defined in a discrete
way. Sections 4 and 5 deal with boundedness and liveness. In the last section we study the
reachability of an arbitrary state in a finite delay and bounded Time Petri net.

1. Petri nets. Notations

As usual, we will use the following notations: :

N denotes the set of natural numbers, N* is N \ {0}. @, is the set of nonnegative rational
numbers and R is the set of real numbers. T* denotes the language of all words over the
alphabet T, including the empty word e. Further, let f bea mapping where f: 4 - Bx C.

By f(a) we denote the first component of f(a) and by f(a) the second one.
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Let g be a given function from A to B. Then, the symbol $ defined a special value from
the set g(4). As usual, @ denotes the cardinal number of the set N. [a] is the maximal
integer, not greater than a, and <a> is defined as a — [a]. The other notations used in
this paper are the same as in [15].

Definition 1.1. The structure N = (P, T, F, V, m,) is called a (marked) Petri net iff

(1) P, T, F are finite sets with

PnT =,

PuT =+ (¥,

Fc (PxT)u (T xP),

dom(F)ucod(F) = PuUT; (net)
(2) V:F ->N*; (weight of the arcs)
(3) my: P > N. (initial marking)

The elements pe P are called places and te T transmons For each place p e P the set
Fp = {tlte T A tFp} respectively pF = {t|te T A pFt} is the set of the pretransitions
respectively posttransitions of p. Analogously, the set Ft respectively tF is called the set of
the preplaces resp. postplaces or inputplaces resp. outputplaces of t.

Definition 1.2. An injective mapping m: P — N is called a marking of N.

Definition 1.3. Each transition ¢ € T induces the markings ¢t~ and ¢+, which are defined
as follows:

- )f‘_ {V(p‘;'r) iff (p, ) € F
P= 0 otherwise

and

£ (p) e { vt p) iff(¢,p)eF
0 otherwise .

By At we denote t* — ¢,

Definition 1.4. Let N = (P, T, F, V,m,) be a Petri net, te T, and m be a marking,
The transition ¢t is enabled (may fire) by m iff t~ < m (cf. [15, p. 59)).

Definition 1.5.Let N = (P, T, F, V, m,) be a Petri net and let ¢ be an enabled transition
by the marking m. m’ is called the follower marking of miffm' = m + At.

Here we have defined the Petri net and some closely related notions. A detailed
characterization of these nets is explained e.g. in [13], [15], [6].

‘ 2 Tlme Petn net state

In Petri nets, the time is mvolved only in the sense of a temporal sequence. Problems of
priorities and coercion to fire are not solvable here, in general. However, such constraints
can be well modelled by Time Petri nets. These problems are very often contained in real
systems.
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Definition 2.1. The structure (Z = (P, T, f, V, my, I) is called a (marked) Time Petri

net iff:
(1) (P, T,F,V,my) is a (marked) Petri net.

Q) I: T » Qyx QU {co}) with Ve(te T — (I(r) £ I(t) A I(t) < o0)).
By Z" we denote the Petri-net (P, T, F, V, my). I is called the time function of Z, I(t) and
[(1) the earlest firing time ( EFT) and latest firing time (LFT) of the transition ¢, respectlvely

In the following we will consider nets with a finite set of transitions.

Obviously, it is easier to study the behaviour of such time Petri nets whose EFT and
LFT are natural numbers. It may be shown that, for each TPN, we can find another TPN
whose EFT and LFT are natural numbers. We call such two nets time equivalent.

Definition 2.2. Let Z; = (P, T, F;, Vi, my,, I}) with i = 1,2 be two TPN. Z, and Z,
are time equivalent (notation: Z; = Z,) iff:

(1) zy=25.

(2) There exists such a constant ¢ # 0 that for each te T':
2.1) I,(5) = 0 < I,(t) = o,
22 I,())=0e1,) =0 and I,() =01, =0,

Iy .

ey PG i LO+O.
I, =

(24) —= a0 =c iff L)+ 0.

Definition 2.2 implies that the time unit in Z, is c-times shorter than the time unitin Z,.

Theorem 2.1. Let Z, bea TPN. Then there existsa TPN Z, with1,: T — N x (N u {o0})
and Z, and Z, are time equivalent.

Ideas of the proof. At first we compute the L.C.M. r of the denominators of all EFT,

and LFT, of the given TPN Z,. Then, we define EFT, resp. LFT, as the products of the
EFT, resp. LFT, with r.

In the following we always consider time functions I with cod(I) £ (N x N U {o0}).

Definition 2.3.Let Z = (P, T, F, V, m,, I) be a TPN. The mapping m: P — N is called
a marking in Z.

It is very easy to see that the total behaviour of a Time Petri net cannot be described
by the markings only. For this reason we define the notion of a “state”. By a state we will

understand the markings in dependence on the time. Before, we introduce the notion of a
“conflict”.

A more detailed discussion about conflicts can be found in [15], [13], [11].

Definition 2.4. Let Z be a TPN. Two transitions t, and t2 are in conflict iff
Ft,nFt, + .

_ Definition 2.5.Let Z = (P, T, F, V,mo, ) bea TPN and J: T - Q, U {$}.3 = (m, J)
1s called a state in Z iff:

(1) me Ry(my) (m is a reachable marking in ZV),
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QR Vt(teT At™ <Em—J@) £ I(t) and

B ViteT At"£m->J(t)=9).

We denote the function J as the situation of the watch.

How can we interpret a state in a Time Petri net now? In the net each transition ¢ has
a watch. The watch does not work (J(f) = $) at the marking m if ¢ is disabled at m.

If ¢t is enabled at m, the watch of ¢ shows the time (J(t)), elapsed since t was enabled. Of
course, this time is less that or equal to I(¢).

Definition 2.6. Let Z = (P, T, F, V,m,, I) be a TPN and let 3, = (mg, Jo) be a stéte
in Z. 3, is called an initial state of Z iff

0 iff ¢t~ <
To(0) = { Lo =T
$ otherwise

for each transition t.

Definition 2.7. Let Z = (P, T, F, V, my, I) be a TPN. The transition ¢ is ready to fire
in the state 3 = (m, J) iff:
(1) t7 =m (tis enabled by m in ZV),
@ I6)=J@.

The definition above means that a transition ¢ in a TPN Z is ready to fire at the marking

m if ¢ is enabled in the PN Z¥ at the marking m and the watch of ¢ shows the EFT of ¢
or a later time.

Now, we will explain the firing rules for the TPN.

Definition 2.8.Let Z = (P, T, F, V, m,, I) be a TPN. The state (m, J) changes into the
state (m', J') by the time duration t € Q, (notation: (m, J) % (m', J)) iff:
Hm=m,
Q Vtte T AJ@O *+$ > J(t) + t < 1),

i - <
) J'(0) = {J(t) + 1 iff ¢ Em
$ otherwise .

Definition 2.9. The state (m, J) changes into the state (m', J') by firing of t (notation:
(m, J)5 (m', J')) ift: '
(1) £ is ready to fire in (m, J),
Q) m =m + Af,

§ iff tT £m
G)VJWO=3J@ iff " <€mAt- &m AFtnFi=
0 otherwise .

The Time Petri net notion is more powerful than the PN notion. In PN we cannot test
whether an unbounded place is marked, but we can do so in TPN (cf. Fig. 1). This gives
us the possibility to simulate counter machines with TPN (cf. [15, p. 102—107)).

Definition 2.10. Let Z be a time Petri net. The smallest set of states 3z(30) which
involves the state 3, and is closed under the operations “change of states” in the sense of
Definition 2.8 and 2.9 is called the state structure of Z.
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Clearly, the state structure of a Time Petri net is the set of all states which are reachable
from the initial state 3.

Definition 2.11. Let Z = (P, T, F, V, my, I) be a Time Petri net. R,(m,) is called the
set of all reachable markings in Z iff

Rz(m) = {m| 3J ((m, J) € 32(;'0))} :
Obviously, the inclusion R;(mg) S R n(m,) is true.

Definition 2.12.

(A). Let 3, 3', be two states in the Time Petrinet Z = (P, T, F, V,my, I),we T*a sequence
of transitions, and ¢ e Qg™ ™**. Then the state 3 changes into the state 3 by w and &
(notation: 3 % 3) iff :

Basis: w = e, 3:383.
Step: 3523 il J3JF'GP 3 A B3 AT S3).

(B). Let Z = (P, T, F, V,mg, I) be a TPN and 3 € 3,(3,). Then the sequence we T* can

Jire at 3 in Z (notation: 3 %) if there exists a sequence of rational numbers ¢ and a state
3' € 32(30) and 3¢ 3. ,

(C).Let Z = (P, T, F,V,my, I) and 3 € 3,(3,). Then the sequence of transitions we T*
can integer-fire at 3 (notation: 3 ;%7 )iff there exist a sequence ¢ of integers such that3 % 3.

An important fact of the Time Petri nets is the following one: The Church-Rosser property
is valid in some, but not in all classes of Time Petri nets. In the net shown in Fig. 2 the
Church-Rosser property does not hold.

7 Fig. 2
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0 5
= ((1,1,0,0),( )) —f 1y ,() =:
3 bsf o (" 70,0):;? ) =3,

4 t,
‘ 0
&= //7,0,7,0),(0)1 (10 70)(05) )=:3
5 s ‘

e| T e
. )
}5 /(7,0,7,-0),}' Fig 3

There does not exist a 7’ € Q, with
34?35 O 359 3,.

Definition 2.13 and Theorem 2.2 consider a class of Time Petri nets where t
Church-Rosser property is valid: ‘

Definition 2.13. Let 9 be the set of all Time Petri nets with the property: If tw
transitions are enabled in a state then they are in conflict and have the same EFT (forme"
M = {Z| V3V, V1,3 € 3,(30) A t1€T At €T A ty,t, are enabled at 3 — Ft,n F
*= I A Ity = I1,)}). '

Theorem2.2.LetZ = (P, T,F, V, Mo, I) be a Time Petrinet from the class M and let
a) a state (m,J), we T*, 7' € Q™™ with

(m, )% (m', J")

be given.
Then:
VT(TEQO AT>0A (ma J)%) (m> J’) —\;,"> (M" 9"')——?

3-‘!’{ HJIII((m, J/) :VT) (ml’ J/I/) A (ml, JII) tli”_> (m/’ JII/)) .

(m,J) c {m,J')

W TI W Z-'//
’ " e

{m"/) Tm *—(m,,Jl”)

Fig. 4
We can prove the proposition by induction on len(w) (cf. [11]).

3. Integer-fire
In this section we will show that each reachable state is integer-reachable, too.

Definiti'ozn_,3_.1, Let Z = (P, T, F, V,m, I) be a Time Petri net. Z is said to be of finit
delay iff o - ‘

Vi(te T - I(t) < o).
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In the sequel we will consider Time Petri nets of finite delay (FDTPN)

Definition 3.2.Let Z = (P, T, F, V, mg, I) be a Time Petri net and let3 = (m,J)bea
state from 3;(3). 3 is called an integer-state iff:

Vite T At™ Sm—>J(t)e ]N). B

Time Petri nets have an infinite number of states in general. However, only a finite
number of integer-states belongs to each marking of an FDTPN.

Our aim is to show that each enabled transition ¢ is integer-enabled. More prec1sely

If 30 = 3, — ... = 3, > is given then there exist integer-states 3;,i = 1, ..., n, with

30 =303 2 %"
By the way, we will see that the integer-state j; is situated “near” the state 3,.
Lemma 3.1. Let a and b be two nonnegative numbers with a = b. Then, it holds:
[a—b]<[a] —[b] <[a—0b] +1.
Proof. Let a = [a] + <a> and b = [b] + <b>. Then

[a — b] = [[a] — [b] + <a> — <b>] = (1)
—
eN .

Case 1. €<a> > <b> . — Then:
0= <a> — <b> < 1

and consequently

(1) = [a] - [5],

B [a - 5] = [a] - [5].

Hence :
[a—b] =[a] — [b] <[a—b] +1

is true.

Case 2. <a> < <b>». — Then
-l < <a>» — <b> <0
and consequently it holds

. (1) =[a] —[p] -1,
[[a—b]]=[[a]]—[[b]]—-1<[[a]]—-[[b]].

Hence, the inequality
{[a—b]]<[[a]]—-[[b]]=[[a-b]]+1

holds in this case.
Thus, the lemma is true.
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Lemma 3.2. Let t; be a nonnegative rational number for each i. Further, let

for=to,  Fos=[ro], g =t achual globad bn
=.Zi: 1, i=0,..,n, f.;=0 % M@MW\«W

iyl

Then, we have

() % =[f] — fi-i foreach i=0,...,n;
Q@ fi=1[f] foreach i=0,...n;

3) Zf =fi—fi =) =[] for Osksl;

&-

Proof.

SR -]]—[[f—ﬂl]]—[[f]] T
. j};}’ N

(2) Foreachi = 1,...,n it holds:

A b= Tt L) = i = LA

Y- % 0= fi- s - [ci].

i=k j=0 acc
def.

M~
fall
i

k-1

,ik T 5 [A] = A= = |[Z T+ Zl: 71}] - |[k§ Tj]‘

j=0 _I=k

H__J
eN

according
to the
supposition
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(5) According to Lemma 3 1, it holds
[fe— fe-1] = /el - [fe- 1]]<([ff. fiedl + 1.

Furthermore, we have: N P T

[ - heil = Fi—Jier = >’;f,.

acc. acc. j=k
to (2) to (3)

Hence, (5) is true.

Theorem 3.1. Let Z = (P, T, F,V,my, I) be a Time Petri net and let

30:0 30_2)31 51‘”—)32 *On 1ty 3n

Then, the following is true:
For each i = 1, ..., n there exist integer-states 3i 0= (m}, J)), 3! :== (m!, J}) with
’ n e n 4 ’

1) 30530 31731 32 - B n ™

2) m; =mj, m—-m*—m

3) t is ready to fire in 3] if t is ready to fire in 3¥
H s mE o [JFO] S 70 < [FO] + 1

Proof. The theorem will be proved by induction on n. Let 35 = 30.

Basis.i = 0. %-l W Coupbencted an Aa MS,Z ;
ad (1): We have L

l/t

30 70 30

Obviously, 3, and 35 are integer-states.
Further, it holds:

Jo) = %y = [#] <1, < I(0),
ie.
Vi(t™ < my - J(t) < I(1)).
ad (2): Because of 3, = 3,
my = my = my = mg

is true.
ad (3): Let t be ready to fire in 3*, that means

Js@®) = I(t) and I(t) S J§(@) = 1.

Due to I (t) € N and the inequality above, I(t) < [r,] = J4(2) follows that means ¢t is ready
to fire in 3.

ad (4): Let t~ < m¥ = m,. Obviously, here it is true that

[T3@] = [r0] = T5(t) < [eo] + 1 = [J4®)] + 1.

Step. We assume that (1), (2), (3) and (4) are true for i and show that they are true for
i + 1, too.
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ad (1): The existence of 3/, , has to be shown where

! n
Bi+1 Far Bi+1-

Let t€ T be a transition with t~ < m;, ,. Therefore:

Jiv100 + 14y =T, () S 1(0).

Case 1. J%,(t) < I().
Then — (r @I+ £ TH D

[ie:® + 100,] + 1 2 100, (1)
because I(t) € N: | .
LetJ;, () = lf 7;, that means t became enabled at my_, and since then it has kept this
property. Hence,l b’; the induction hypothesis it holds that
i+1
HO=Y . ,

Hence, it follows

() = ,H(tmm:jfg lz 11441}%.(94—5”%4:

= A+ 7% @)= T0).

Case 2. JX () = I(v.
Then J#,,(t) is a natural number and therefore it holds that

i+1

> t;eN,
j=k
That means:
i+1 i+1
J:’+1(t) = Jiv1(0) + Z = ) Tj
i Jj=k Lemma3.2 ji=2
i =J§k+1(t)=f(t)-
ad (2): Obvious.
i+1
ad (3): Let t* be ready to fire in 3% ,. Then: t~ < miyqand I(t) < J¥%,(0) = ), T; 1.
j=k

i+1 i+1
I(t) £ Y. ;. Since I(t)e N, it holds: I(f) < l[z er].
j=k
Now, by Lemma 3.25, it follows that

[Z }I Z jz+1(t),

j=k- A,

A -

ie. tis ready to fire in 3,+1, too -
ad (4): The result follows by Lemma 3.2.5.
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Theorem 3.1 is very important for the theory of Time Petri nets of finite delay.
Then, due to this theorem it is possible to make a discrete analysis of boundedness and
liveness.

4. Boundedness

Definition 4.1. The graph EG,(3,) is called a reachability graph of the Time Petri net

Z iff its nodes are the integer-states from 32(3,) and its arcs are defined by the triples (3,7, 3)
resp. (3, t, 3), where 3 3’ resp. 3% 3. trip

Definition 4.2. Let Z = (P, T, F, V, mg, I) be a Time Petri net.

a) A place p € P is called bounded (at 3,) iff there exists a natural number K with m(p) £ K
for each marking m € R,(3,),

b) the net Z is bounded (at 3,) iff all places p are bounded (at 3,).

According to [15] the reachability graph of a Petri net is finite if and only if the net is
bounded. This result is true for Time Petri nets of finite delay, too (see the example given
in Figs. 5 and 6).

Theorem 4.1. Let Z = (P, T,F,V,my, I) be an FDTPN. Z is bounded if and only if
EG(30) is finite.

£gr7 [727

nD )

Fig. 5

17 J. Inform. Process. Cybern. EIK 27 (1991) No. 4
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Proof. (necessity). Let Z be a bounded net. Then the set Rz(m,) is finite. Hence,
the set

{313€ 32(30) A 3 an integer-state}

is finite, too. Consequently, the set of the nodes of the reachability graph EG;(3) is
finite, too. i

(sufficiency). Let Z be a Time Petri net of finite delay and let EG(3,) be finite.
Then, the set of markings reachable from 3, by integer-states only, is finite. Ac-
cording to Theorem 3.1, R,(3,) is finite, too. This implies (Definition4.1) that Z is
bounded. ,

Thus, we proved that the boundedness of FDTPN is recursive-enumerable. It is not
difficult to prove that boundedness is invariant under time-equivalence.

5. Liveness in Time Petri nets

Definition 5.1. Let Z = (P, T,F,V,myI) be a Time Petri net, 3632(30) and
teT. ‘
1. t is called live in 3 iff:

V3’3 € 326) = 33"(G" € 3.(3) A tis ready to fire in 3”).
2. t is called dead in 3 iff:

V3'(3 € 32(3) — t is not ready to fire in 3').

3 is called live in Z iff all transition t € T are live in 3.
3 is called dead in Z iff each transition t € T is dead in 3.
t is called live resp. dead in Z iff ¢ is live resp. dead in 3.
Z is called live resp. dead iff 3, is live resp. dead in Z.

SN W

In general, there is absolutely no relation between liveness in a Time Petri net Z and in
the Petri net Z".

Examples. For the Time Petri nets given in Figs. 7, 8 and 9, the following assertions
hold true:

'SU

Fig. 7. Time Petri net Z,
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Z,:

Fig. 8. Time Petri net Z,

rz37

Py Fig. 9. Time Petri net Z,

1) tyis live in 3¢ = (mg, Jo) in Z;— — e
t, is not live at m, in Z¥.
2) t, is not live in 3o = (m, J,) in Z,;
t, is live at m, in Z3.
3) t3is dead in 3, in Z3; t5 is not dead at m, in ZY.
4) t, is live in Z,;
t, is not live in Z¥.
5) t, is not live in Z,;
t, is live in Z5%.
6) 30 is live in Z;
my is not live in ZY.
7) 30 is not live in Z,;
my is live in Z5.
8) Z, is live;
ZY is not live.
9) Z, is not live;
ZY is live.
Analogously to Petri nets, the proof of the liveness of Time Petri nets can be carried out
on the reachability graph of the net. For this reason we define the notion of a “language
of a Time Petri net”.

Definition 5.2. L, is called the language of the Time Petrinet Z = (P, T, F, V, m, I)
iff

LZ(zo) = {WlW eT* A 30 :’—)} .

17*

E ol 0 g - v B A P S 33 S A PPN S S — S ——
T
o
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Definition 5.3. The language Lg, 0 of the reachability graph EG,(3,) of the Time
Petri net Z is defined as follows:

Lig,go = {Wiwe T* A 302} .

Definition 5.4. The language L0 T€SP. Lig_ ) is called live iff
VwVi(we L, resp. Lgg, Gy ANLtET
> Juue T* A wut e(Lzresp. Ly, (50)))) .

Theorem 5.1. Let Z = (P, T, F, V,my, I) be a Time Pétri net. Then
L2y = Lec, o) -

Proof. (=) L4y S Lgg, 4 follows immediately by Theorem 3.1,
(<) The inequality

Lgc, 60 E L)

follows by Definitions 5.2 and 5.3. 7
Theorem 5.2. Let Z be a Time Petri net. L, is live if and only if Z is live.

Proof. (necessity). Let the language L, be live. We will show that the Time Petri net Z
is live, too.

Let te T be a transition and let 3¢ 3z(30) be a state. It is sufficient to show that there
exists a state 3’ € 3,(3,) and that ¢ is ready to fire in 3.

Because of 3 € 3,(30), there exists a we T* with 30 > 3. According to Definition 5.2 it

. holds:we Lz

Since Ly, is live, there exists a u € T* such that wut e Lz, Consequently, there exist
states (3;, .-, 3i,...(,,) With

t I Y e, ./
du B T i 3,235

Hence, 3' € 3;, and ¢ is ready to fire in 3.

(sufficiency). Let Z be a live Time Petri net. Now, we want the language Ly, to become
live, too. Let w e Lz, and t € T be given. Then, it is sufficient to show that thereisaue T
with we L, . Since we L, ,, and according to Definition 5.2 there exists a state

S 32(30) with 3% 3.

Furthermore, Z is live. As 3¢ 3z o) 18 valid and according to Definition 5.1, there exists a
state 3’ € 3, with ¢ ready to fire in 3.
Let ¢;

i» ---» £;, be such that
et S
We define: u := t,-; t;,- Therefore, it holds: u e T* and
syl @)

By (1) and (2), it follows that 303 3% 3% and, hence, Ly 5, is live (Definition 5.2 and 5.4).




On Time Petri Nets 241

Theorem 5.3. Let Z = (P, T, F,V,mg, I) be a Time Petri net. Then it holds: Z is live
if and only if

Vi(te T —

(1) 3G, 63) (G t,3) is an arc in EGz(so)))

(2) V3(3 is a node in EG,(3,) — @30 (W A ¢ = (30*; 3**) path in EG(30)
and (3%, t, 3**) arc in EG,(3,)) -

The proof follows immediately by Definitions 5.3 and 5.4.

Examples demonstrating the properties shown in this paper are to be found in [11].

6. Reachability

The subject of this section is the reachability of an arbitrary state in a Time Petri net
If the given state is not an integer one, we will choose a new unit of measuring the time,
which is by so many times smaller as the time unit before so, that with the new time unit

the state is an integer state. Then, using the reachability graph of the net we can decide
whether the state is reachable or not.

Let Z = (P, T,F,V,myI) be an FDTPN and 3 = (m, J) a state. We w1ll transform Z
into the (time equivalent) TPN Z* as follows: Let

o | S iff t~xm
A -l
| 4

iff t~<m,
& where p, g, €iN,.
Let re= LCM. {2t < m}.

q,
Now we consider I* such that

e g
-+

I*Q=1@)-r,
@) =1I(@t)-r.

Obviously, it holds: I*(f) < N x Nforeacht e T.Let Z* be the TPN (P T,F,V,mg, I*).
Further, let

*()_{ iff J@)=$

J (t) r otherwise

T N
A e s s 2 R

hold for each te T.
It is clear that

J*: T >Nu{3}.

| Theorem 6.1. Let Z an FDTPN, 3 a state and Z* and 3* be defined like above. Then it
) » holds: 3 is reachable in Z if and only if 3* is reachable in Z*.

Proof. () Let 3 be reachable in Z. We aim at showing that 3* is reachable in Z*.
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Since 3 is reachable in Z, there exist states 3o, 315 31, ---» 3m 3w transitions ¢y, ..., t, and
time-durations o, ..., 7, € Q,, and it holds:

ey T W3 (1)

in Z.

Now, we will consider the states 3%, 3*, 3* and the time-durations 7}, which are defined
as follows:

=(m3.~a'];k)’ 3?‘——' (msi,f;"), T?‘=Ti'r,
where }
IO = { bW I0=3
Jg() - r otherwise,

o) = {EB iff Ji(t)=$

J;(t)-r otherwise.

. » A 3 | 1
Obviously, J#*(f) and J¥(t) have the value $ or they are rational numbers, and the time
durations t} are rational numbers, too. Furthermore, it is clear that 3¥ = 3,. Now, it is not
difficult to see, that the sequence

t1 A 12 A th A

¥y ok 2y % 5 % 2y 5% L It JIOPL 2

30 = 31 31 = 32 2% .- x 3n Iz 3 ( )
10 T1 12 Tn-1 Tn

is a sequence in Z*. Therefore, 3* is reachable in Z*.
(«) analogously.

|
i
|
i
|
|
¥
!
|

In Section 4 we have shown that a bounded FDTPN has a finite reachability graph.
Furthermore, for such nets we can prove whether an integer-state is reachable or not, that
means, we can decide whether 3* is reachable in Z* or not and, therefore, according to the
theorem above, we can decide whether 3 is reachable in Z or not.

Further, the following property is true for a Time Petri net:

Let 3 be an arbitrary state in a Time Petri net Z and let 3, 3 be such that

{ iff Jit)=13
[J@®)] otherwise
and

{ iff J@)=3
J@®] + 1 otherwise.

It is obvious that 3 and 3 are integer-states. In [11] it is shown that if the state 3 or 3 is
not reachable in Z, then 3 is surely not reachable in Z, too. Therefore, by studying the
reachability of a state 3 in a finite and bounded net we suggest first to prove if 3 and 3 are
reachable in Z. If this is true, then Z should be transformed into Z* and 3 into 3*. Now,

the reachability of 3* in Z* can be decided and, according to the theorem, the reachability
of 3 in Z is decidable.
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Concluding remarks

The result that the boundedness and liveness of a Time Petri net of finite delay can be
studied by its reachability graph can be implemented in a very convenient way.

Acknowledgement

The authoress wishes to thank P. Starke and the referees of this papers for many valuable
suggestions.

References

(1] Berthomieu, B., M. Menasche: An Enumerative Approach for Analyzing Time Petri Nets. In:
Proceedings IFIP 1983; R. E. 4. Mason (ed.); North-Holland, 1983; pp. 41 —46.

[2] Berthelot, G., R. Terrat: Petri-Nets Theory for Correctness of Protocols. IEEE Trans. Comm. Dec.
1982.

[3] Diaz, M.: Modelling and Analysis of Communication and Cooperation Protocols Using Petri
Net Based Models. Comput. Networks 6 (1982) 6, 419 —444.

[4] Garg, K.: An Approach to Performance Specification of Communication Protocols Using Timed
Petrinets. In: 4th IEEE Conf. on Distributed Computing Systems; San Francisco 1984.

[5] Garg, K.: An Approach to Multiprocessor Performance Analysis Using Timed Petrinets Models.
In: Proceed. Internat. Conf. of Modelling, Techniques and Tools for Performance Analysis, May
1984. :

[6] Genrich, H. J., K. Lautenbach, P. S. T hiagarajan: An Overview of Net Theory. (LNCS). Springer,
1980.

[71 Menasche, M.: PAREDE: An Automated Tool for the Analysis of Time(d) Petri Nets. In: Proceed.
Internat. Workshop on Timed Petri Nets, Torino 1985; IEEE Computer Society Press, 1985;
pp. 162—169. ,

[8] Menasche, M., B. Berthomieu: Time Petri Nets for Analyzing and Verifying Time Dependent
Communication Protocols. In: Protocol Specification, Testing and Verification, ITI; H. Rudin,
C. H. West (eds.); North-Holland, 1983.

[9] Merlin, P.: A Study of the Recoverability of Communication Protocols. Ph. D. Thesis, Computer
Science Dept., University of California, Irvine, 1974.

(10] Petri, C. A.: Kommunikation mit Automaten. Schriften des Instituts fiir Instrumentelle Mathema-
tik Nr. 2, Bonn 1962.

[11] Popova-Zeugmann, L.: Zeit-Petri-Netze. Dissertation A, Humboldt-Universitit, Berlin, 1989.

[12] Ramchandani, C.: Analysis of Asynchronous Concurrent Systems by Timed Petri Nets. Project
MAC-TR 120, MIT, Febr. 1974. :

[13] Reisig, W.: Petri-Netze. Springer, 1982.

[14] Sifakis, J.: Performance Evolution of Systems Using Nets. In: Net Theory and Applications;
(LNCS); Springer, 1980; pp. 307—319.

[15] Starke, P. H.: Petri-Netze. Berlin 1980.

[16] Symons, F. J. W.: Representation, Analysis Verification of Communication Protocols. Telecom
Australia, Research Laboraties, 1980.

[17] Walter, B.: A Robust and Efficient Protocol for Checking the Availability of Remote Sites.
Comput. Networks 6 (1982), 173 —188. ‘

[18] Walter, B.: Timed-Petri-Nets for Modelling and Analyzing Protocols with Real-Time Charac-
teristics. In: Protocol Specification, Testing and Verification, III; H. Rudin, C. H. West (eds.);
North-Holland, 1983; pp. 149—159.

Kurzfassung

In diesem Artikel ist ein diskreter Weg zur Berechnung der Beschrinktheit und der Lebendigkeit
eines finiten Zeit-Petri-Netzes (nach Merlin) mittels des Erreichbarkeitsgraphen des Netzes gezeigt
worden. Die Berechnung des hier definierten Erreichbarkeitsgraphen is rekursiv-aufzihlbar. Die
Entscheidbarkeit der Erreichbarkeit eines beliebigen Zustandes in einem finiten und beschrinkten
Zeit-Petri-Netz wird bewiesen.




244 ' L. Popova

Pes3rome

B craTtee ykaszaH CIOCOO BBIYHCIIEHHS OTPAHMYEHOCTH M XMBYYECTH KOHEYHBIX BPEMEHHEBIX CETel
Ietpu (mo Mepauny) npu NOMOILIM UX IrpadOB AOCTHXUMOCTH. BRIYHUCIIEHHE ONIPENEIEHHBIX B CTAThE
rpa)0B HOCTHXKUMOCTH PEKYPCHBHO nepeuucaumo. Jloka3zaHa pa3peliMMOCTh JOCTHKUMOCTH IPO-
U3BOJIBHOTO COCTOSIHHMS B KOHEYHBIX M OIpaHHMYEHHBIX BpeMeHHBIX ceTsx Iletpu.
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