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Let Z be a TPN, and z = (m, h), z = (m', i) be two states.
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Then

z = (m, h) can change into Z/ = (m’, i) by
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» transition sequence: o = (t1,- - , t)

» run: o(7) = (70, t1, 71, , Th—1, tn, Tn)

. T t1 T t, T
» feasible run: 2z -5 z5 —> z1 — z - =5 z, 5 Zk

» feasible transition sequence :

o is feasible if there ex. a
feasible run o(7)
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» z is reachable state in Z if there ex. a feasible run o(7) and
a(7)
20— Z
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» z is reachable state in Z if there ex. a feasible run o(7) and
a(7)
z0—> 2

» The set of all reachable states in Z is the state space of Z
( denoted: StSp(Z) ).
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» Each feasible t-sequence o in Z can be realized with an
"integer” run.
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» Each feasible t-sequence o in Z can be realized with an
"integer” run.

» Each reachable p-marking in Z can be found using "integer”
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» Each feasible t-sequence o in Z can be realized with an

"integer” run.

» Each reachable p-marking in Z can be found using "integer”
runs only.

» If z is reachable in Z, then |z]| and [z] are reachable in Z,
too.
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Corollary

» Each feasible t-sequence o in Z can be realized with an
"integer” run.

» Each reachable p-marking in Z can be found using "integer”
runs only.

» If z is reachable in Z, then |z| and [z| are reachable in Z,
too.

» The length of the shortest and longest time path between two
arbitrary p-markings are natural numbers.
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Let Z be a FTPN.
The set of all reachable integer states in Z is finite

if and only if
the set of all reachable p—markings in Z is finite.
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Let Z be a FTPN.
The set of all reachable integer states in Z is finite

if and only if
the set of all reachable p—markings in Z is finite.

further reduction).

Remark: The theorem can be generalized for all TPNs (applying a













= The reachability graph is a directed graph.
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Let Z= (P, T,F,V,I, my) be an arbitrary TPN.

Then the following problems can be decided /computed

without knowledge of its RG, amongst others:
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Input:

Output:
Solution:

The time function [/ is fixed,

o is an arbitrary transition sequence.
Feasibility of o in Z7

Solve a linear system of inequalities in Ry .
(polyn. running time)
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Input:

Output:
Solution:

The time function / is not fixed,

o is an arbitrary transition sequence.
Feasibility of o in Z for a fixed 17

Solve a linear system of inequalities in Q(J{.
(polyn. running time)
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Result 3:

Input:

Output:
Solution:

The time function / is fixed,

o is an arbitrary transition sequence.
min / max-length of o.

Solve a linear program in Rar.
(Actually, the solution is in N.)
(polyn. running time)
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Input:

Output:

Solution:

The time function / is not fixed,

o is an arbitrary transition sequence,

A is an arbitrary real number.

Existence of a fixed / and a run o(7) in Z
and the length of o(7) < \?

Solve a system of linear equalities in Qg .
(polyn. running time)
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Input: The time function [ is not fixed,
o1 = (o, t') is a arbitrary t-sequence and
o2 = (o, t") is a arbitrary t-sequence.
QOutput:  Existence of a fixed / so that o7 is feasible in Z

and o> is not feasible in Z7?
Solution: Solve

max{< ¢/, x >| A" x < b} <min{< " x >| A" - x < b"}.

linear program in Qf linear program in Qf
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Let Z= (P, T,F,V,Il,m,) be a bounded TPN. Additionally the
following problems can be decided/computed with the knowledge

of its RG, by means of prevalent methods of the graph theory,
amongst others:

«O>» «4F» «=)» « =
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Result 6:

Input:

Output:

Solution:

z and Z' - two states (in Z).

— Is there a path between z and z’ in RG(Z)?
— If yes, compute the path with the shortest time length.

By means of prevalent methods of the graph theory,
e.g. Bellman-Ford algorithm (the running time is

O(IV]-|E]) and RG(Z) = (V, E) )




Input: m and m’ - two p—markings (in Z).
Output: - Is there a path between m and m'?
Solution:

— If yes, compute the path with the shortest time length.

for computing all-pairs shortest paths.

The running time is polynomial, too.
«O>» 4F» «=)» «=) = N

By means of prevalent methods of the graph theory,




Ip(z,7) ==

The longest path between two states (vertices in RG(Z)) z and
Z"is Ip(z,Z") with
o

,if a cycle is reachable starting on z
before reaching z’

o\T
m(axZT,- , else, where z 2t}
o\T i

Zl




Definitions Reachability Graph

Main Property Time Paths in arbitrary TPNs
Applications Time Paths in bounded TPNs
Conclusion T-Invariants

Bounded Time Petri Nets

Input: z and Z' - two states (in Z).

Output: - Is there a path between z and 2z’ in RG(Z)?
— If yes, compute the path with the longest time length.

Solution: By means of prevalent methods of the graph theory,
e.g. Bellman-Ford algorithm (polyn. running time).
or by computing all strongly connected components
of RG(Z). (linear running time)
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Input: m and m’ - two p-markings (in Z).
Output: - Is there a path between m and m'?
Solution:

— If yes, compute the path with the longest time length.

By means of prevalent methods of the graph theory,
for computing all-pairs longest paths
in the graph RG(Z).




The transition sequence o is a feasible T-invariant in a TPN Z if
for each marking m in Z holds: m -2 m.

«Or 4F» «=)» « =) = .
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Result 10:

Input: A TPN Z.
QOutput: - Is there a T—Invariance ¢ in Z7?
— If yes, compute o.
Solution:

— Solve the linear system of equations C - x = 0 for x € N.
for the Petri Net S(Z).

B, in Rg.

— o is feasible, then solve the linear system of inequalities
«O>» 4F» «=)» «=) = N

— Decide feasibility of a T-invariant o with Parikh(o) = x




—

Remark: The reachability graph of a TPN is not used for
computing the feasible T-invariants of Z

feasible T-invariants for unbounded nets can be computed!
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net behaviour.

» The "integer—states” in a TPN are the supporters of the the

«O0)>» «Fr < «E» =
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net behaviour.

=

Definition of a RG using the "integer—states”
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» The "integer—states” in a TPN are the supporters of the the




» The "integer—states” in a TPN are the supporters of the the
net behaviour.

—
Definition of a RG using the "integer—states”.

» The minimal and the maximal time length of a path between
two markings in a TPN are natural numbers (if finite)
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» The "integer—states” in a TPN are the supporters of the the
net behaviour.
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Conclusion

» The "integer—states” in a TPN are the supporters of the the
net behaviour.
—
Definition of a RG using the "integer—states”.

» The minimal and the maximal time length of a path between
two markings in a TPN are natural numbers (if finite)
—
it can be computed in polynomial/linear time (with res. to the
RG)
» T—Invariances of an arbitrary TPN can be computed without
knowledge of its RG.
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