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Definition

I transition sequence: σ = (t1, · · · , tn)

I run: σ(τ) = (τ0, t1, τ1, · · · , τn−1, tn, τn)

I feasible run: z0
τ0−→ z∗0

t1−→ z1
τ1−→ z∗1 · · ·

tn−→ zn
τn−→ z∗n

I feasible transition sequence : σ is feasible if there ex. a
feasible run σ(τ)
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State Space Reduction

Parametric Description of the State Space

Let Z = [P,T ,F ,V ,m0, I ] be a TPN and σ = (t1, · · · , tn) be a
transition sequence in Z .
δ(σ) = [mσ,Σσ,Bσ] is the parametric description of σ, if

I m0
σ−→ mσ

I Σσ(t) is a sum of variables,
Σσ is a parametrical t−marking

I Bσ is a set of conditions (a system of inequalities)

Obviously

I z0
σ−→ (mσ,Σσ) =: zσ,

I StSp(Z ) =
⋃
σ

zσ.
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State Space Reduction

Example

σ = (t4, t3)

σ = (e) =⇒ δ(σ) =

{(

 0
1
1

 ,


x1

]
]
x1

) | 0 ≤ x1 ≤ 3 }.

σ = (t4) =⇒ δ(σ) =

{(

 1
1
0

 ,


x1 + x2

]
x2

]

) | 2 ≤ x1 ≤ 3, x1 + x2 ≤ 5
0 ≤ x2 ≤ 4,

}.

σ = (t4, t3) =⇒ δ(σ) =

{(

 0
1
1

 ,


x1 + x2 + x3

]
]
x3

) |
2 ≤ x1 ≤ 3, x1 + x2 ≤ 5
2 ≤ x2 ≤ 4, x1 + x2 + x3 ≤ 5
0 ≤ x3 ≤ 3

}.
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σ(τ) := z0
0.7−→ t1−→ 0.0−→ t3−→ 0.4−→ t4−→ 1.2−→ t2−→ 0.5−→ t3−→ 1.4−→ z
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σ = (t1t3t4t2t3)

mσ = (1, 2, 2, 1, 1)
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Example ( continuation )

Σσ =



x4 + x5

x5

x5

x5

x0 + x1 + x2 + x3 + x4 + x5

]

 and
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Example ( continuation )

Bσ = {

0 ≤ x0, x0 ≤ 2, x0 + x1 + x2 ≤ 5
0 ≤ x1, x2 ≤ 2, x2 + x3 ≤ 5
1 ≤ x2, x3 ≤ 2, x0 + x1 + x2 + x3 ≤ 5
1 ≤ x3, x4 ≤ 2, x0 + x1 + x2 + x3 + x4 ≤ 5
0 ≤ x4, x5 ≤ 2, x0 + x1 + x2 + x3 + x4 + x5 ≤ 5
0 ≤ x5, x0 + x1 ≤ 5 x4 + x5 ≤ 2

}.
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Example ( continuation )

The run σ(τ) with
σ(τ) =

z0
0.7−→ t1−→ 0.0−→ t3−→ 0.4−→ t4−→ 1.2−→ t2−→ 0.5−→ t3−→ 1.4−→ (mσ,



1.9
1.4
1.4
1.4
4.2
]

)

is feasible.
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(mσ,



1.0

1.0

1.0

1.0

4.0

]

)

︸ ︷︷ ︸
z0

σ(?)−→ bzc

(mσ,



1.9

1.4

1.4

1.4

4.2

]

)

︸ ︷︷ ︸
z0
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(mσ,



2.0

2.0

2.0

2.0

5.0

]

)

︸ ︷︷ ︸
z0

σ(?)−→ dze
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Example ( continuation )

The runs
σ(τ∗1 ) := z0

1−→ t1−→ 0−→ t3−→ 1−→ t4−→ 1−→ t2−→ 0−→ t3−→ 1−→ bzc

and

σ(τ) = z0
0.7−→ t1−→ 0.0−→ t3−→ 0.4−→ t4−→ 1.2−→ t2−→ 0.5−→ t3−→ 1.4−→ z

σ(τ∗2 ) := z0
1−→ t1−→ 0−→ t3−→ 0−→ t4−→ 2−→ t2−→ 0−→ t3−→ 2−→ dze

are feasible in Z , too.
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1.0

1.0

1.0

1.0

4.0

]

)

︸ ︷︷ ︸
z0

σ(τ∗
1

)
−→ bzc

≤

(mσ,



1.9

1.4

1.4

1.4

4.2

]
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2.0
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Corollary

I Each feasible t-sequence σ in Z can be realized with an
”integer” run.

I Each reachable p-marking in Z can be found using ”integer”
runs only.

I If z is reachable in Z , then bzc and dze are reachable in Z ,
too.

I The length of the shortest and longest time path between two
arbitrary p-markings are natural numbers.
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Theorem

Let Z be a FTPN.
The set of all reachable integer states in Z is finite

if and only if

the set of all reachable p−markings in Z is finite.

Remark: The theorem can be generalized for all TPNs (applying a
further reduction).
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Reachability Graph

Definition (informal)

=⇒ The reachability graph is a directed graph.
1st level of reduction
=⇒ The reachability graph is a weighted directed graph.

2nd level of reduction
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Example (The infinite TPN Z3 and its reachability graph
RG (Z3))
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Arbitrary Time Petri Nets

Let Z = (P,T ,F ,V , I ,mo) be an arbitrary TPN.
Then the following problems can be decided/computed
without knowledge of its RG, amongst others:
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Arbitrary Time Petri Nets

Result 1:

Input: The time function I is fixed,
σ is an arbitrary transition sequence.

Output: Feasibility of σ in Z?
Solution: Solve a linear system of inequalities in R+

0 .
(polyn. running time)
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Arbitrary Time Petri Nets

Result 2:

Input: The time function I is not fixed,
σ is an arbitrary transition sequence.

Output: Feasibility of σ in Z for a fixed I?
Solution: Solve a linear system of inequalities in Q+

0 .
(polyn. running time)
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Arbitrary Time Petri Nets

Result 3:

Input: The time function I is fixed,
σ is an arbitrary transition sequence.

Output: min / max-length of σ.
Solution: Solve a linear program in R+

0 .
(Actually, the solution is in N.)
(polyn. running time)
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Arbitrary Time Petri Nets

Result 4:

Input: The time function I is not fixed,
σ is an arbitrary transition sequence,
λ is an arbitrary real number.

Output: Existence of a fixed I and a run σ(τ) in Z
and the length of σ(τ) ≤ λ?

Solution: Solve a system of linear equalities in Q+
0 .

(polyn. running time)
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Result 5:

Input: The time function I is not fixed,
σ1 = (σ, t ′) is a arbitrary t-sequence and
σ2 = (σ, t ′′) is a arbitrary t-sequence.

Output: Existence of a fixed I so that σ1 is feasible in Z
and σ2 is not feasible in Z?

Solution: Solve

max{< c ′, x >| A′ · x ≤ b′}︸ ︷︷ ︸
linear program in Q+

0

< min{< c ′′, x >| A′′ · x ≤ b′′}︸ ︷︷ ︸
linear program in Q+

0

.
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Bounded Time Petri Nets

Let Z = (P,T ,F ,V , I ,mo) be a bounded TPN. Additionally the
following problems can be decided/computed with the knowledge
of its RG, by means of prevalent methods of the graph theory,
amongst others:
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Bounded Time Petri Nets

Result 6:

Input: z and z ′ - two states (in Z ).

Output: – Is there a path between z and z ′ in RG (Z )?
– If yes, compute the path with the shortest time length.

Solution: By means of prevalent methods of the graph theory,
e.g. Bellman-Ford algorithm (the running time is
O(|V | · |E |) and RG (Z ) = (V ,E ) )
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Result 7:

Input: m and m′ - two p–markings (in Z ).

Output: – Is there a path between m and m′?
– If yes, compute the path with the shortest time length.

Solution: By means of prevalent methods of the graph theory,
for computing all-pairs shortest paths.
The running time is polynomial, too.
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Bounded Time Petri Nets

Definition

The longest path between two states (vertices in RG (Z )) z and
z ′ is lp(z , z ′) with

lp(z , z ′) :=


∞ , if a cycle is reachable starting on z

before reaching z ′

max
σ(τ)

∑
i

τi , else, where z
σ(τ)−→ z ′
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Bounded Time Petri Nets

Result 8:

Input: z and z ′ - two states (in Z ).

Output: – Is there a path between z and z ′ in RG (Z )?
– If yes, compute the path with the longest time length.

Solution: By means of prevalent methods of the graph theory,
e.g. Bellman-Ford algorithm (polyn. running time).
or by computing all strongly connected components
of RG (Z ). (linear running time)
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Bounded Time Petri Nets

Result 9:

Input: m and m′ - two p-markings (in Z ).

Output: – Is there a path between m and m′?
– If yes, compute the path with the longest time length.

Solution: By means of prevalent methods of the graph theory,
for computing all-pairs longest paths
in the graph RG (Z ).
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T-Invariants in an arbitrary Time Petri Nets

Definition

The transition sequence σ is a feasible T-invariant in a TPN Z if
for each marking m in Z holds: m

σ−→ m.
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T-Invariants in an arbitrary Time Petri Nets

Result 10:

Input: A TPN Z .

Output: – Is there a T–Invariance σ in Z?
– If yes, compute σ.

Solution: – Solve the linear system of equations C · x = 0 for x ∈ N.
– Decide feasibility of a T-invariant σ with Parikh(σ) = x

for the Petri Net S(Z ).
– σ is feasible, then solve the linear system of inequalities

Bσ in R+
0 .
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T-Invariants in an arbitrary Time Petri Nets

Remark: The reachability graph of a TPN is not used for
computing the feasible T-invariants of Z

=⇒

feasible T-invariants for unbounded nets can be computed!
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Conclusion

I The ”integer–states” in a TPN are the supporters of the the
net behaviour.

=⇒
Definition of a RG using the ”integer–states”.

I The minimal and the maximal time length of a path between
two markings in a TPN are natural numbers (if finite)

=⇒
it can be computed in polynomial/linear time (with res. to the
RG)

I T–Invariances of an arbitrary TPN can be computed without
knowledge of its RG.
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