A Memo on Computability in Time Petri Net

Louchka Popova-Zeugmann

Humboldt-Universität zu Berlin Institut of Computer Science Unter den Linden 6, 10099 Berlin, Germany

> CS&P 2005 Ruciane-Nida, Poland September 28-30 2005

1

Berlin - Brandenburger Tor

-1

Louchka Popova-Zeugmann

A Memo on TPN

Outline

Definitions Petri Net Time Petri Net

Main Property State Space Reduction

Applications

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Conclusion

문 문 문

・ロト ・回ト ・ヨト

Petri Net Time Petri Net

Petri Net

Example

4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Petri Net Time Petri Net

Petri Net

Main Property Applications Conclusion Petri Net Time Petri Net

Time Petri Net

Definition (informal)

4

・ロト ・回ト ・ヨト ・ヨト

Main Property Applications Conclusion Petri Net Time Petri Net

Time Petri Net

Definition (informal)

-1

・ロト ・回ト ・ヨト ・ヨト

Main Property Applications Conclusion Petri Net Time Petri Net

Time Petri Net

Definition (informal)

-1

・ロト ・日 ・ ・ モ ・ ・ モ ・

Main Property Petri Net Applications Time Petri Net Conclusion

Time Petri Net

-1

▲ロト ▲圖ト ▲屋ト ▲屋ト

Main Property Petri Net Applications Time Petri Net Conclusion

Time Petri Net

Louchka Popova-Zeugmann A Memo on TPN

Main Property Applications Conclusion Petri Net Time Petri Net

Time Petri Net

Main Property Applications Conclusion Petri Net Time Petri Net

Time Petri Net

Main Property Applications Conclusion Petri Net Time Petri Net

state

Definition (state)

z = (m, h) is called a **state** in a TPN Z iff:

-1

・ロト ・回ト ・モト ・モト

Main Property Applications Conclusion Petri Net Time Petri Net

state

Definition (state)

- z = (m, h) is called a **state** in a TPN Z iff:
 - m is a p-marking in Z.

3

・ロト ・回ト ・モト ・モト

Main Property Applications Conclusion Petri Net Time Petri Net

state

Definition (state)

- z = (m, h) is called a **state** in a TPN Z iff:
 - ▶ *m* is a *p*-marking in *Z*.
 - ► *h* is a *t*-marking in *Z*.

3

Petri Net Time Petri Net

Definition (state changing)

4

・ロト ・回 ト ・ヨト ・ヨト

Louchka Popova-Zeugmann A Memo on TPN

Petri Net Time Petri Net

Definition (state changing)

Let Z be a TPN, and z = (m, h), z' = (m', h') be two states.

3

Petri Net Time Petri Net

Definition (state changing)

Let Z be a TPN, and z = (m, h), z' = (m', h') be two states. Then

$$z=(\mathit{m},\mathit{h})$$
 can change into $z'=(\mathit{m}',\mathit{h}')$

3

Petri Net Time Petri Net

Definition (state changing)

Let Z be a TPN, and z = (m, h), z' = (m', h') be two states. Then

$$\mathsf{z}=(\mathit{m},\mathit{h})$$
 can change into $\mathit{z}'=(\mathit{m}',\mathit{h}')$ by

firing a transition

3

Petri Net Time Petri Net

Definition (state changing)

Let Z be a TPN, and z = (m, h), z' = (m', h') be two states. Then

$${f z}=({\it m},{\it h})$$
 can change into ${f z}'=({\it m}',{\it h}')$ by

3

Petri Net Time Petri Net

Time Net

Example

-2

Louchka Popova-Zeugmann

A Memo on TPN

Petri Net Time Petri Net

Time Net

Example

-= >

Louchka Popova-Zeugmann

A Memo on TPN

Petri Net Time Petri Net

Time Net

Example

.= >

A Memo on TPN

Petri Net Time Petri Net

Time Net

Example

Louchka Popova-Zeugmann

A Memo on TPN

-= >

Petri Net Time Petri Net

Time Net

Example

.= >

Louchka Popova-Zeugmann

A Memo on TPN

Petri Net Time Petri Net

Time Net

Example

.= >

A Memo on TPN

Main Property Applications Conclusion Petri Net Time Petri Net

Time Net

Example

.= >

Petri Net Time Petri Net

Time Net

Example

Louchka Popova-Zeugmann

A Memo on TPN

Main Property Applications Conclusion Petri Net Time Petri Net

Time Net

Example

.= >

A Memo on TPN

Main Property Applications Conclusion Petri Net Time Petri Net

Time Net

Example

A Memo on TPN

nan

Petri Net Time Petri Net

Transition sequences, Runs

Definition

• transition sequence: $\sigma = (t_1, \cdots, t_n)$

3

Petri Net Time Petri Net

Transition sequences, Runs

Definition

- transition sequence: $\sigma = (t_1, \cdots, t_n)$
- ▶ run: $\sigma(\tau) = (\tau_0, t_1, \tau_1, \cdots, \tau_{n-1}, t_n, \tau_n)$

3

Petri Net Time Petri Net

Transition sequences, Runs

Definition

- transition sequence: $\sigma = (t_1, \cdots, t_n)$
- ▶ run: $\sigma(\tau) = (\tau_0, t_1, \tau_1, \cdots, \tau_{n-1}, t_n, \tau_n)$
- ► feasible run: $z_0 \xrightarrow{\tau_0} z_0^* \xrightarrow{t_1} z_1 \xrightarrow{\tau_1} z_1^* \cdots \xrightarrow{t_n} z_n \xrightarrow{\tau_n} z_n^*$

3

ヘロン 人間 とくほど くほとう

Petri Net Time Petri Net

Transition sequences, Runs

Definition

- transition sequence: $\sigma = (t_1, \cdots, t_n)$
- ▶ run: $\sigma(\tau) = (\tau_0, t_1, \tau_1, \cdots, \tau_{n-1}, t_n, \tau_n)$
- ► feasible run: $z_0 \xrightarrow{\tau_0} z_0^* \xrightarrow{t_1} z_1 \xrightarrow{\tau_1} z_1^* \cdots \xrightarrow{t_n} z_n \xrightarrow{\tau_n} z_n^*$
- feasible transition sequence : σ is feasible if there ex. a feasible run σ(τ)

・ロン ・日 ・ ・ 日 ・ ・ 日 ・

Petri Net Time Petri Net

Reachable state, Reachable marking, State space

Definition

► *z* is **reachable state** in *Z* if there ex. a feasible run $\sigma(\tau)$ and $z_0 \xrightarrow{\sigma(\tau)} z$

3

Petri Net Time Petri Net

Reachable state, Reachable marking, State space

Definition

- ► *z* is **reachable state** in *Z* if there ex. a feasible run $\sigma(\tau)$ and $z_0 \xrightarrow{\sigma(\tau)} z$
- The set of all reachable states in Z is the state space of Z (denoted: StSp(Z)).

・ロト ・回 ト ・ ヨト ・
State Space Reduction

Parametric Description of the State Space

Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \dots, t_n)$ be a transition sequence in Z.

 $\delta(\sigma) = [m_{\sigma}, \Sigma_{\sigma}, B_{\sigma}]$ is the parametric description of σ , if

State Space Reduction

Parametric Description of the State Space

Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \dots, t_n)$ be a transition sequence in Z. $\delta(\sigma) = [m_{\sigma}, \Sigma_{\sigma}, B_{\sigma}]$ is the parametric description of σ , if $\blacktriangleright m_0 \xrightarrow{\sigma} m_{\sigma}$

State Space Reduction

Parametric Description of the State Space

Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \dots, t_n)$ be a transition sequence in Z.

 $\delta(\sigma) = [m_{\sigma}, \Sigma_{\sigma}, B_{\sigma}]$ is the parametric description of σ , if

- $\blacktriangleright m_0 \stackrel{\sigma}{\longrightarrow} m_{\sigma}$
- Σ_σ(t) is a sum of variables,
 Σ_σ is a parametrical t−marking

State Space Reduction

Parametric Description of the State Space

Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \dots, t_n)$ be a transition sequence in Z.

 $\delta(\sigma) = [m_{\sigma}, \Sigma_{\sigma}, B_{\sigma}] \text{ is the parametric description of } \sigma, \text{ if}$ $m_0 \xrightarrow{\sigma} m_{\sigma}$

- ► Σ_σ(t) is a sum of variables, Σ_σ is a parametrical t-marking
- B_{σ} is a set of conditions (a system of inequalities)

State Space Reduction

イロト イヨト イヨト イヨト

Parametric Description of the State Space

Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \dots, t_n)$ be a transition sequence in Z.

 $\delta(\sigma) = [m_{\sigma}, \Sigma_{\sigma}, B_{\sigma}] \text{ is the parametric description of } \sigma, \text{ if} \\ \blacktriangleright m_0 \xrightarrow{\sigma} m_{\sigma}$

- ► Σ_σ(t) is a sum of variables, Σ_σ is a parametrical t-marking
- B_{σ} is a set of conditions (a system of inequalities)

Obviously

•
$$z_0 \xrightarrow{\sigma} (m_{\sigma}, \Sigma_{\sigma}) =: z_{\sigma}$$
,

State Space Reduction

イロト イヨト イヨト イヨト

Parametric Description of the State Space

Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \dots, t_n)$ be a transition sequence in Z.

 $\delta(\sigma) = [m_{\sigma}, \Sigma_{\sigma}, B_{\sigma}] \text{ is the parametric description of } \sigma, \text{ if} \\ \blacktriangleright m_0 \xrightarrow{\sigma} m_{\sigma}$

- ► Σ_σ(t) is a sum of variables, Σ_σ is a parametrical t-marking
- B_{σ} is a set of conditions (a system of inequalities)

Obviously

•
$$z_0 \xrightarrow{\sigma} (m_{\sigma}, \Sigma_{\sigma}) =: z_{\sigma}$$
,

•
$$StSp(Z) = \bigcup_{\sigma} z_{\sigma}.$$

State Space Reduction

Example

230

-1

▲ロト ▲圖ト ▲屋ト ▲屋ト

State Space Reduction

Example

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

-1

State Space Reduction

Example

$$\{\begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} x_1\\ \sharp\\ \sharp\\ x_1 \end{pmatrix}\} \mid 0 \le x_1 \le 3 \}.$$

4

▲ロト ▲圖ト ▲屋ト ▲屋ト

State Space Reduction

Example

Louchka Popova-Zeugmann A M

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

3

State Space Reduction

Example

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

3

DQA

Main Property Applications Conclusion

State Space Reduction

イロト イヨト イヨト イヨト

3

State Space Reduction

State Space Reduction

Example

State Space Reduction

State Space Reduction

Example

State Space Reduction

State Space Reduction

Example

State Space Reduction

State Space Reduction

Example

State Space Reduction

State Space Reduction

Example

State Space Reduction

State Space Reduction

Example

State Space Reduction

State Space Reduction

Example

State Space Reduction

State Space Reduction

Example

$$\sigma(\tau) := z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} z$$

State Space Reduction

State Space Reduction

Example

State Space Reduction

State Space Reduction

Louchka Popova-Zeugmann A Mo

A Memo on TPN

State Space Reduction

State Space Reduction

Example (continuation)

State Space Reduction

State Space Reduction

Example (continuation)

$$B_{\sigma} = \left\{ \begin{array}{lll} 0 \leq x_{0}, & x_{0} \leq 2, & x_{0} + x_{1} + x_{2} \leq 5 \\ 0 \leq x_{1}, & x_{2} \leq 2, & x_{2} + x_{3} \leq 5 \\ 1 \leq x_{2}, & x_{3} \leq 2, & x_{0} + x_{1} + x_{2} + x_{3} \leq 5 \\ 1 \leq x_{3}, & x_{4} \leq 2, & x_{0} + x_{1} + x_{2} + x_{3} + x_{4} \leq 5 \\ 0 \leq x_{4}, & x_{5} \leq 2, & x_{0} + x_{1} + x_{2} + x_{3} + x_{4} + x_{5} \leq 5 \\ 0 \leq x_{5}, & x_{0} + x_{1} \leq 5 & x_{4} + x_{5} \leq 2 \end{array} \right\}$$

<ロ> <四> <四> <日> <日</p>

-2

State Space Reduction

State Space Reduction

Louchka Popova-Zeugmann A Memo on TPN

State Space Reduction

・ロト ・回 ト ・ヨト ・ヨト

3

State Space Reduction

State Space Reduction

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

3

State Space Reduction

State Space Reduction

State Space Reduction

3

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

State Space Reduction

State Space Reduction

3

・ロン ・回 と ・ ヨン ・ ヨン

State Space Reduction

State Space Reduction

3

・ロト ・四ト ・ヨト ・ヨト

State Space Reduction

・ロト ・回 ト ・ヨト ・ヨト

3

State Space Reduction

State Space Reduction

State Space Reduction

3

State Space Reduction

State Space Reduction

3

<ロト <回ト < 三ト < 三ト

State Space Reduction

State Space Reduction

Corollary

 Each feasible t-sequence σ in Z can be realized with an "integer" run.

3

State Space Reduction

State Space Reduction

Corollary

- Each feasible t-sequence σ in Z can be realized with an "integer" run.
- Each reachable p-marking in Z can be found using "integer" runs only.

프 > 프

・ロト ・回ト ・ヨト

State Space Reduction

State Space Reduction

Corollary

- Each feasible t-sequence σ in Z can be realized with an "integer" run.
- Each reachable p-marking in Z can be found using "integer" runs only.
- If z is reachable in Z, then [z] and [z] are reachable in Z, too.

글 > 그글

・ロト ・回ト ・ヨト
State Space Reduction

State Space Reduction

Corollary

- Each feasible t-sequence σ in Z can be realized with an "integer" run.
- Each reachable p-marking in Z can be found using "integer" runs only.
- If z is reachable in Z, then [z] and [z] are reachable in Z, too.
- The length of the shortest and longest time path between two arbitrary p-markings are natural numbers.

・ロト ・回ト ・ヨト

State Space Reduction

State Space Reduction

Example (State Space Reduction)

3

・ロト ・回 ト ・ヨト ・ヨト

Louchka Popova-Zeugmann A Memo on TPN

State Space Reduction

State Space Reduction

Example (State Space Reduction)

3

・ロト ・回ト ・ヨト ・ヨト

Louchka Popova-Zeugmann A Memo on TPN

State Space Reduction

State Space Reduction

Theorem

Let Z be a FTPN. The set of all reachable integer states in Z is finite

if and only if

the set of all reachable p-markings in Z is finite.

3

State Space Reduction

State Space Reduction

Theorem

Let Z be a FTPN. The set of all reachable integer states in Z is finite

if and only if

the set of all reachable p-markings in Z is finite.

Remark: The theorem can be generalized for all TPNs (applying a further reduction).

・ロト ・回 ト ・ ヨト ・

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Reachability Graph

Definition (informal)

-1

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Reachability Graph

Definition (informal)

-1

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs

T-Invariants

Reachability Graph

Definition (informal)

-1

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Reachability Graph

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Reachability Graph

Definition (informal) Reduced State Space 1st level of reduction

3

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Reachability Graph

Definition (informal)

1st level of reduction

 \implies The reachability graph is a weighted directed graph.

・ロト ・回 ・ ・ ヨ ・ ・

글 > 그글

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs **T**-Invariants

Reachability Graph

Definition (informal)

1st level of reduction

 \implies The reachability graph is a weighted directed graph.

・ロト ・回 ・ ・ ヨ ・ ・

1

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Reachability Graph

Definition (informal)

2nd level of reduction

 \implies The reachability graph is a weighted directed graph.

・ロト ・回 ・ ・ ヨ ・ ・

토 > 토

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Reachability Graph

Definition (informal)

2nd level of reduction

 \implies The reachability graph is a weighted directed graph.

・ロト ・回 ・ ・ ヨ ・ ・

글 > 그글

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Reachability Graph

Definition (informal)

2nd level of reduction

 \implies The reachability graph is a weighted directed graph.

・ロト ・回 ・ ・ ヨ ・ ・

글 > 그글

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Example (The FTPN Z_2 and its reachability graph(s))

3

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Example (The FTPN Z_2 and its reachability graph(s))

3

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Example (The FTPN Z_2 and its reachability graph(s))

3

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Example (The infinite TPN Z_3 and its reachability graph $RG(Z_3)$)

3

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Arbitrary Time Petri Nets

Let $Z = (P, T, F, V, I, m_o)$ be an arbitrary TPN. Then the following problems can be decided/computed without knowledge of its RG, amongst others:

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

・ロト ・回 ・ ・ ヨ ・ ・

글 > 그글

Arbitrary Time Petri Nets

Result 1:

- **Input:** The time function *I* is fixed,
 - σ is an arbitrary transition sequence.
- **Output:** Feasibility of σ in *Z*?
- **Solution:** Solve a linear system of inequalities in \mathbb{R}_0^+ . (polyn. running time)

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

・ロト ・回 ト ・ ヨト ・

글 > 그글

Arbitrary Time Petri Nets

Result 2:

- **Input:** The time function *I* is not fixed, σ is an arbitrary transition sequence. **Output:** Feasibility of σ in *Z* for a fixed *I*?
- **Solution:** Solve a linear system of inequalities in \mathbb{Q}_0^+ . (polyn. running time)

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

・ロト ・回 ト ・ ヨト ・

글 > 그글

Arbitrary Time Petri Nets

Result 3:

- **Input:** The time function I is fixed, σ is an arbitrary transition sequence.
- **Output:** min / max-length of σ .
- **Solution:** Solve a linear program in \mathbb{R}_0^+ . (Actually, the solution is in \mathbb{N} .) (polyn. running time)

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Arbitrary Time Petri Nets

Result 4:

Input:	The time function <i>I</i> is not fixed,
	σ is an arbitrary transition sequence,
	λ is an arbitrary real number.
Output:	Existence of a fixed I and a run $\sigma(\tau)$ in Z
	and the length of $\sigma(\tau) \leq \lambda$?
Solution:	Solve a system of linear equalities in \mathbb{Q}_0^+ .
	(polyn. running time)

3

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

・ロト ・回 ト ・ ヨト ・

∃ ⊳

Arbitrary Time Petri Nets

Result 5:

Input: The time function *I* is not fixed, $\sigma_1 = (\sigma, t')$ is a arbitrary t-sequence and $\sigma_2 = (\sigma, t'')$ is a arbitrary t-sequence. **Output:** Existence of a fixed *I* so that σ_1 is feasible in *Z* and σ_2 is not feasible in *Z*? **Solution:** Solve

$$\underbrace{\max\{ < c', x > \mid A' \cdot x \le b'\}}_{\text{linear program in } \mathbb{Q}_0^+} < \underbrace{\min\{ < c'', x > \mid A'' \cdot x \le b''\}}_{\text{linear program in } \mathbb{Q}_0^+}.$$

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Bounded Time Petri Nets

Let $Z = (P, T, F, V, I, m_o)$ be a bounded TPN. Additionally the following problems can be decided/computed with the knowledge of its RG, by means of prevalent methods of the graph theory, amongst others:

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Bounded Time Petri Nets

Result 6:

Input: z and z' - two states (in Z).

Output: – Is there a path between z and z' in RG(Z)?

- If yes, compute the path with the shortest time length.

A B > A B > A B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A

Solution: By means of prevalent methods of the graph theory, e.g. Bellman-Ford algorithm (the running time is $\mathcal{O}(|V| \cdot |E|)$ and RG(Z) = (V, E))

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Bounded Time Petri Nets

Result 7:

Input: m and m' - two p-markings (in Z).

Output: – Is there a path between m and m'?

- If yes, compute the path with the shortest time length.

・ロト ・ 日 ト ・ ヨ ト ・

Solution: By means of prevalent methods of the graph theory, for computing all-pairs shortest paths. The running time is polynomial, too.

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Bounded Time Petri Nets

Definition

The **longest path** between two states (vertices in RG(Z)) z and z' is lp(z, z') with

$$lp(z, z') := \begin{cases} \infty & , \text{if a cycle is reachable starting on } z \\ & \text{before reaching } z' \\ \max_{\sigma(\tau)} \sum_{i} \tau_{i} & , \text{else, where } z \xrightarrow{\sigma(\tau)} z' \end{cases}$$

3

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Bounded Time Petri Nets

Result 8:

- **Input:** z and z' two states (in Z).
- **Output:** Is there a path between z and z' in RG(Z)?
 - If yes, compute the path with the longest time length.

イロン スピン メヨン

Solution: By means of prevalent methods of the graph theory, e.g. Bellman-Ford algorithm (polyn. running time). or by computing all strongly connected components of RG(Z). (linear running time)

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

Bounded Time Petri Nets

Result 9:

- **Input:** m and m' two p-markings (in Z).
- **Output:** Is there a path between m and m'?
 - If yes, compute the path with the longest time length.

イロト イヨト イヨト イヨト

Solution: By means of prevalent methods of the graph theory, for computing all-pairs longest paths in the graph RG(Z).

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

・ロト ・回 ト ・ ヨト ・

T-Invariants in an arbitrary Time Petri Nets

Definition

The transition sequence σ is a **feasible T-invariant** in a TPN Z if for each marking m in Z holds: $m \xrightarrow{\sigma} m$.

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

T-Invariants in an arbitrary Time Petri Nets

- Input: A TPN Z.
- **Output:** Is there a *T*–Invariance σ in *Z*?
 - If yes, compute σ .

Solution: – Solve the linear system of equations $C \cdot x = 0$ for $x \in \mathbb{N}$.

- Decide feasibility of a T-invariant σ with $Parikh(\sigma) = x$ for the Petri Net S(Z).
- σ is feasible, then solve the linear system of inequalities B_{σ} in \mathbb{R}^+_0 .

・ロト ・日下・ ・ ヨア・

Reachability Graph Time Paths in arbitrary TPNs Time Paths in bounded TPNs T-Invariants

・ロット (日) ・ (日) ・

∃ ⊳

T-Invariants in an arbitrary Time Petri Nets

Remark: The reachability graph of a TPN is not used for computing the feasible T-invariants of Z

feasible T-invariants for unbounded nets can be computed!

Conclusion

The "integer-states" in a TPN are the supporters of the the net behaviour.

3

・ロト ・回ト ・モト ・モト

Conclusion

The "integer-states" in a TPN are the supporters of the the net behaviour.

Definition of a RG using the "integer-states".

3
Conclusion

The "integer-states" in a TPN are the supporters of the the net behaviour.

Definition of a RG using the "integer-states".

 The minimal and the maximal time length of a path between two markings in a TPN are natural numbers (if finite)

・ロト ・回 ト ・ ヨト ・

E ▶

Conclusion

The "integer-states" in a TPN are the supporters of the the net behaviour.

Definition of a RG using the "integer-states".

 The minimal and the maximal time length of a path between two markings in a TPN are natural numbers (if finite)

it can be computed in polynomial/linear time (with res. to the RG) $\ensuremath{\mathsf{RG}}$

・ロット (日) ・ (日) ・

∃ ≥

Conclusion

The "integer-states" in a TPN are the supporters of the the net behaviour.

Definition of a RG using the "integer-states".

 The minimal and the maximal time length of a path between two markings in a TPN are natural numbers (if finite)

it can be computed in polynomial/linear time (with res. to the RG) $\ensuremath{\mathsf{RG}}$

 T-Invariances of an arbitrary TPN can be computed without knowledge of its RG.

イロト イヨト イヨト イヨト

-1

▲ロト ▲圖ト ▲屋ト ▲屋ト

-1

・ロト ・回ト ・ヨト ・ヨト

・ロト ・回ト ・ヨト ・ヨト

Thank you!

-1

Louchka Popova-Zeugmann A Memo on TPN