Beispiel:

Lösen Sie folgende Lineare Optimierungsaufgabe:

$$3x_1 + 2x_2 \longrightarrow \max$$

$$\begin{cases} x_1 + x_2 \le 2 \\ 2x_1 - x_2 \le 2 \\ x_1 + x_2 \ge 1 \\ 2x_1 - x_2 \ge 1 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Lösung:

Aus den Nebenbedingungen in (P) erhalten wir:

$$M_1: \begin{cases} x_1 + x_2 + u_1 = 2\\ 2x_1 - x_2 + u_2 = 2\\ x_1 + x_2 - u_3 = 1\\ 2x_1 - x_2 - u_4 = 1\\ x_i \ge 0, u_j \ge 0. \end{cases}$$

Ein zulässiger Basispunkt ist nicht ohne weiteres angebbar bzw. es ist nicht ohne weiteres klar, ob $M=\emptyset$ ist. Deshalb führen wir die künstlichen Variablen y_1 und y_2 ein:

$$M_2: \begin{cases} x_1 + x_2 + u_1 = 2\\ 2x_1 - x_2 + u_2 = 2\\ x_1 + x_2 - u_3 + y_1 = 1\\ 2x_1 - x_2 - u_4 + y_2 = 1\\ x_i \ge 0, u_j \ge 0, y_r \ge 0. \end{cases}$$

Damit haben wir die Hilfsaufgabe H zu lösen, um festzustellen, ob $M=\emptyset$ oder $M\neq\emptyset$. Für den Fall, daß $M\neq\emptyset$ ist, werden wir auch einen zulässigen Basispunkt finden:

(H):

$$\min\{y_1 + y_2 \mid M_2\}$$

$$= \frac{1}{\left(\max\{-y_1 - y_2 \mid M_2\} \right)}$$

D.h. wir lösen die LOA max { -y_1 -y_2 | M_2 }

Wir haben:

Basisvariablen: u_1, u_2, y_1, y_2

Nichtbasisvariablen: x_1, x_2, u_3, u_4

Weitere Vorbereitungen: Die Zielfunktion muß als Funktion der Nichtbasisvariablen dargestellt werden!

Dazu:

$$y_1 = 1 - (x_1 + x_2 - u_3)$$

$$y_2 = 1 - (2x_1 - x_2 - u_4)$$

Damit ist:

$$ZF = -(y_1 + y_2) =$$

$$= -(1 - (x_1 + x_2 - u_3) + 1 - (2x_1 - x_2 - u_4)) =$$

$$= -(1 - x_1 - x_2 + u_3 + 1 - 2x_1 + x_2 + u_4)) =$$

$$= -2 - (-3x_1 + u_3 + u_4), \text{ d.h.}$$

$$d_{00}=-2,\,d_{0,x_1}=-3,\,d_{0,x_2}=0,\,d_{0,u_3}=1,\,d_{0,u_4}=1.$$

Jetzt können wir das erste Simplextableau für (H) aufstellen:

		x_1	x_2	u_3	u_4	Q
	-2	-3	0	1	1	
u_1	2	1	1	0	0	2
u_2	2	2	-1	0	-0	1
y_1	1	1	1	-1	0	1
y_2	1	2	-1	0	-1	1/2

		$y_2 \qquad x_2$	u_3	u_4	Q
	-1/2	3/2 - 3/2	1	-1/2	
u_1	3/2	-1/2 3/2	0	1/2	1
u_2	1	-1 0	0	1	
y_1	1/2	-1/2 3/2	-1	1/2	1/3
x_1	1/2	1/2 - 1/2	0	-1/2	

		y_2	y_1	u_3	u_4	
	0	1	1	0	0	
u_1	1	0	-1	1	0	
u_2	1	-1	0	0	1	
x_2	1/3	-1/3	32/3	-2/3	1/3	
x_1	2/3	1/3	1/3	-2/3 -1/3	-1/3	

Dieses Tableau ist optimal und der Wert der Zielfunktion ist 0. Folglich ist $M \neq \emptyset$ und als zulässiger Basispunkt für die Originalaufgabe ergibt sich:

$$\overline{x} = \begin{pmatrix} \overline{x}_1 \\ \overline{x}_2 \\ \overline{u}_1 \\ \overline{u}_2 \\ \overline{u}_3 \\ \overline{u}_4 \\ \overline{y}_1 \\ \overline{y}_2 \end{pmatrix} \in M_2, \text{ und damit } \begin{pmatrix} \overline{x}_1 \\ \overline{x}_2 \\ \overline{u}_1 \\ \overline{u}_2 \\ \overline{u}_3 \\ \overline{u}_4 \end{pmatrix} \in M_1, \text{ d.h. } \begin{pmatrix} 2/3 \\ 1/3 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

Damit ergibt sich:

Basisvariablen für die ursprüngliche Aufgabe: x_1, x_2, u_1, u_2 , Nichtbasisvariablen für die ursprüngliche Aufgabe: u_3, u_4 .

Wir haben ZF: $3x_1 + 2x_2$.

Damit das erste Tableau aufgestellt werden kann, müssen wir die Zielfunktion als Funktion der Nichtbasisvariablen darstellen:

$$-\frac{2}{3}u_3 + \frac{1}{3}u_4 + x_2 = \frac{1}{3} \Longrightarrow x_2 = \frac{1}{3} + \frac{2}{3}u_3 - \frac{1}{3}u_4$$

$$-\frac{1}{3}u_3 - \frac{1}{3}u_4 + x_1 = \frac{2}{3} \Longrightarrow x_1 = \frac{2}{3} + \frac{1}{3}u_3 + \frac{1}{3}u_4$$

Jetzt setzen wir x_1 und x_2 in die Zielfunktion ein:

$$ZF = 3x_1 + 2x_2 =$$

$$=3(\frac{2}{3}+\frac{1}{3}u_3+\frac{1}{3}u_4)+2(\frac{1}{3}+\frac{2}{3}u_3-\frac{1}{3}u_4)=$$

$$= 2 + u_3 + u_4 + \frac{2}{3} + \frac{4}{3}u_3 - \frac{2}{3}u_4 =$$

$$=\frac{8}{3}+\frac{7}{3}u_3+\frac{1}{3}u_4$$
, d.h.

$$d_{00} = \frac{8}{3}, d_{0,u_3} = -\frac{7}{3}, d_{0,u_4} = -\frac{1}{3}$$
:

		u_3	u_4
	8/3	-7/3	-1/3
x_1	2/3	-1/3	-1/3
x_2	1/3	-2/3	1/3
u_1	1	1	0
u_2	1	0	1

		u_1	u_4
	5	7/3	-1/3
x_1	1	1/3	-1/3
x_2	1	2/3	1/3
u_3	1	1	0
u_2	1	0	1

		u_1	u_2
	16/3	7/3	1/3
x_1	4/3	1/3	1/3
x_2	2/3	2/3	-1/3
u_3	1	1	0
u_4	1	0	1

Offensichtlich ist dieses Tableau optimal, und es gilt:

$$\overline{x} = \begin{pmatrix} 4/3 \\ 2/3 \end{pmatrix}$$
, ZF=16/3.