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Streszczenie.ln this paper we consider a class of Time Petri nets definedrbgtaral restrictions.
Each Time Petri net which belongs to this class has the ptpgeat their liveness behaviour does
not depend on the time. Therefore, the Time Petri net is linemits skeleton is live.

1. Introduction

Petri nets have been used to describe and study concuretrsy/for more than forty-five years. At
first glance, time and concurrence do not seem to have mucbniimon. But if one looks closer, the
opposite is the case. There are endless examples fromediffareas showing this. For this reason, a
large variety of time dependent Petri nets have been intediand well studied. One of the first such
nets is the Time Petri net (TPN), introduced in [10].

TPNs are derived from classical Petri nets. Additionalbgletransitiort is associated with a time
interval [a¢, b]. Here,a, andb; are relative to the time, whehwas enabled last. Whehbecomes
enabled, it cannot fire beforg time units have elapsed, and it has to fire not later thaiime units
unlesst was disabled in between by the firing of another transitidme firing of a transition itself takes
no time. The time interval is designed by real numbers, baiiriterval bounds are nonnegative rational
numbers. It is easy to see (cf. [4]) that w.l.0.g. the inteb@inds can be considered as integers only.
Thus, the interval bounds andb; of any transitiort are natural numbers, including zero and< b; or
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by = 0. a is calledearliest firing timeof the transitiort (short: e f¢(t)) andb;, thelatest firing timeof
t (short:1ft(t)) .

Every possible situation in a given TPN can be described &etelp by a state = (m, h), consisting
of a (place-) markingn and a transition marking. The (place-) marking, which is a place vector (i.e.
the vector has as many components as places in the consitieM)l is defined as the marking notion
in classical Petri nets. The time marking, which is a tramsivector (i.e. the vector has as many
components as transitions in the considered TPN), desctif@time circumstances in the considered
situation. In general, each TPN has an infinite number oéstathus, the central problem for analysis
of a certain TPN is knowledge about its state space.

In [7] it is shown that the state space can be characterizeatrically and that knowledge about
the reachable integer-states, i.e. states whose time mgarkire (nonnegative) integers, is sufficient to
determine the entire behavior of the net at any point in tidmethe case that somfts = oo, then a
subset of all reachable integer-states, the so-called et @ssential-states, expresses the net behaviour
(cf. [5]). A reachability graphRG(Z) for a TPNZ can be defined in such a way that its vertices are
the reachable integer-states or the reachable essdatied;srespectively. The edges are defined by the
triples(z,t,2') and(z, 1, 2’), 7 € N, wherez Y5 2/ andz = 2/, respectively. This graph is finite if
and only if the set of the reachable markings of the net isffinihe calculation of a single integer-state
is very easy.

Actually, a reachability graph for TPN was first introduceg Berthomieu and Menasche in [2]
respectivaly Berthomieu and Diaz in [1]. They provide a rodtfor analyzing the qualitative behavior
of the net based on the computing of certain subsets of rbkchtates, called state classes. However, the
essential-states method is exponentially better in waist cbut in the case that in a TPN the concurrence
is rather low, then the state-classes method compute assmedichability graph.

A further way to analyze a TPN is the translation into a timetbematon and then to apply the
analyzing algorithms used there (cf. [9]).

The most important behavioral properties of a TPN (and of aaBMell) are the reachability, the
boundedness, the liveness, and the reversibility (cf.)[Ijese properties are decidable for an arbitrary
classical PN, but not for an arbitrary TPN in general. Thesoeafor this is the nonequivalence of the
classical PNs respectively the equivalence of the TPNstdthingmachines (cf.[6]). However, there are
restricted classes of TPN for which the properties are @étéd In [6] three structural and one dynamical
restricted classes of TPNs are given for those the livenedsgm is equivalent to the liveness problem
of its skeleton, which means the TPN considered without tiamel therefore it is decidable. The first
class is the set of all arbitrary TPNs witffit(¢) = 0 for all transitionst. The next one is the set of all
arbitrary TPNs withl f¢(¢) = oo for all transitionst. The third structural restricted class is the set of
TPNs which satisfied three conditions: 1. the skeleton isreeigdized EFC nét 2. [f(t) > 0 for all
transitionst, and 3. Min(p) < Max(p)* for all placesp.

This paper is organised as follows. In the next section walfsome basic notions. In the third
section we introduce first some new notions and give severahrks. Afterwards, we proof some
structural properties of the new defined class of PNs. THdllswed by the proof of the main property
that each TPN is time-independent live for which the skelésa generalized ESIft(t) > 0 for all its
transitionst, and Min(p) < Maz(p)* for all its placesp. Finally, we summarize the results and give
some remarks including future outlook.

This notion is defined in section 3.1
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2. Basic notations and definitions

We use the following notations in this papéfis the set of natural number;t := N\ {0}. Qf, resec-
tively Rg , is the set of nonnegative rational numbers, respectiviyset of nonnegative real numbers .
T* denotes the language of all words over the alph@bétcluding the empty word; [(w) is the length
of the wordw. The "floor” of a real number denoted by| | is the maximum of the set of integers that
are not greater than, respectively, the "ceiling” of- denoted by{r] is minimum of the set of integers
that are not smaller than

The definition of a (classical) Petri net is as follows:

Definition 2.1. The structure\' = (P, T, F,V,m,) is called aPetri net (PN) iff

1. P, T, F are finite sets with

PNT=0,PUT #0,F C(PxT)U(T x P)anddom(F) U cod(F) = PUT
2. V: F — NT (weight of the arcs)
3. m, : P — N (initial marking)

A marking of a PN is a functionrm : P — N, such thatn(p) denotes the number of tokens at the
placep. Thepre-setsandpost-setsof a transitiont are given by*t := {p | p € P A (p,t) € F} and
t*:={p|pe PA(tp) € F}, respectively. Analogously, there-setsandpost-setsof a placep are
givenby®p :={t |t € T A (t,p) € F}andp® := {tp | t € T A (p,t) € F}, respectively. Each
transitiont € T induces the marking~ andt™, defined as follows:

Fpy Ve ener L [ V) i) e F
b 0 iff (p,) & F 0 iff (t,p) ¢ F

Moreover,At denotes™ —¢~. A transitiont € T is enabled (may fire)at a markingn iff t= < m (i.e.
t~(p) < m(p) for every placep € P). When an enabled transitionat a markingmn fires, this yields
a new markingn’ given bym/(p) := m(p) + At(p) and denoted byn L /. Thus, the dynamical
behavior of a classical PN is characterized by firing trémsit that leads to change of the markings.

A markingm is areachableone in\ if there is a transition sequence which can fire starting@t
and ending atn. The set of all markings reachableis denoted byR .

Definition 2.2. The structureZ = (P, T, F,V, m,, I) is called aTime Petri net (TPN) iff

1. S(Z):=(P,T,F,V,m,)isaPN.
2. 1:T — Qf x (Qf U{oc}) andl;(t) < I»(t) for eacht € T, wherel(t) = (I1(t), I2(t)).

A TPNiis called finite Time Petri net (FTPN) iff: 7 — Q7 x Q.

I is theinterval function of Z, I,(t) and I»(t) the earliest firing time of ¢ (eft(¢)) and thelatest
firing time of ¢ (Ift(t)), respectively. It is not difficult to see (cf. [7]) that cadering TPNs with
I: T — Nx (NU{oco}) will not result in a loss of generality. Therefore, only suithe functions!
will be considered subsequently. Furthermore, conflicsedun the strong sense: two transitiengnd
to are inconflict iff *¢; N® t5 # (. The PNS(Z) is referred to as thekeletonof Z.
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Within this approach, the definition of a state is of fundatakimportance for the ensuing theory. A
state is characterized by a marking together with the moangtdcal time for enabled transitions or the
signt for the disabled transitions.

Definition 2.3. Let Z = (P, T, F,V,m,,I) be aTPN andh : T — R} U {#}. z = (m, h) is called a
statein Z iff

1. mis a reachable marking ifi(Z).
2.Vt ((teT Nt <m) — h(t) <LIft(t)).
BVt ((teT Nt £m) — h(t) =#).

Interpretation of the notion “state” is as follows Withinetimet, each transitionhas a clockh(t). If

t is enabled at a marking:, the clock oft h(t) shows the time elapsed sintdecame most recently

enabled. It is disabled atn, the clock does not work (indicated byt) = #). Thus, the vectok which

is a vector of clocks is actually a transition marking anddhlready defined notion “marking” is in fact

a place-marking. In the following we call the place-markinga p-marking and the transition-marking

h at-marking .

The statez, := (my, ho) With hy(t) := { 0 !ﬁ i = mo
# iff t7 L myg

Now the dynamic aspects of TPNs — changing from one stateaimbther by firing a transition or by

time elapsing — can be introduced:

is set as thénitial state of the TPNZ.

Definition 2.4. Let Z = (P, T, F,V,m,,I) be a TPN,f be a transition ifl” andz = (m,h), 2/ =
(m’, 1) be two states. Then

1. the transitiort is ready to fire in the state: = (m, k), denoted by N , iff
() t~ <mand
(i) eft(d) < n(i).
2. the stater = (m, h) is changedinto the state”’ = (m/, k') by firing the transition , denoted by
z — 2 iff
(i) is ready to fire in the state = (m, h)
(i) m' =m+ At and
# iff £’
(iy Vi (teT —HW({t):=< h(t) iff t—<mAt-<m/'A*tn*t=0 ).
0 otherwise

3. the statez = (m, h) is changedinto the statez’ = (m’,h') by the time elapsing 7 € R,
denoted by —— 2/, iff
(i) m' =mand
(i) Vi (t € T ANh(t) ## — h(t) + 7 <Ift(t) ) i.e. the time elapsing is possible, and
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h(t) +7 iff - <m/

(iy Vit (teT — KW() ::{ " ittt £ m’

The state: = (m, h) is called arinteger stateiff i(t) is an integer for each enabled transitioin m.

Definition 2.5. Let Z = (P, T, F,V,m,,I) be a TPN.

(a) The state = (m, h) is calledreachablein Z (starting at:) iff there exist states, 21, ..., zn, 2.,
transitionsty, ..., t,, and timesr; € R{,i = 1,...,n + 1 and it holds

T1 t1 ;T2 2} / Tn tn / Tn+l 4
20— Bl — 2] — B2 — Zg... — Zp — 2y, .

(b) The setRS = of all reachable states ifi (starting atz) is called thestate spaceof Z.

The set of all reachable states#n starting at: # =z, is denoted byRSz(z). It is easy to see that the
set of all reachablg-markings in a TPNZ is the setRz = {m | (m, h) € RSz}.

The sequence of transitiori$,, ..., ¢,) can fire in Z, starting atzy, because there is a sequence
(11,t1,...,7,t,). We denote such &ansition sequence ¢ = (t1,...,t,) feasible The sequence
o(r) = (m1,t1,...,Tn, tn) Which is a concrete execution efin Z is called a(feasible) runof o. Itis
clear that in a given TPN the state changes are achieveddatiing series of time elapsing and firing.
Obviously, for a given run the transition sequence is wefindel and for a given transition sequence
there are infinitely many runs in general.

At the end of this section we introduce the notlavenessfor TPNs. Actually, there are four levels
of liveness. We consider here only the so called 4-livengsBned by Lautenbach in [8]. This notion
will also be defined in a similar manner to the definition fag thassical PNs.

Definition 2.6. Let Z be a TPN and a reachable state.

() A transition tis live in the state iff
V2 (2 € RSz(z) — 32" (m" e RSz (m/) A 2" i>))

(i) ATPN Z islive iff all transitions are live inz.
(i) A TPN Z is deadlock-freeiff in each reachable state there is at least one transitwnich can

(i.e. it is ready to) fire irnz.

3. Time-independent liveness

3.1. Preliminaries

In this subsection we introduce some additional notionsciviaire not generally known but which are
important for the properties we will study here. Afterwardg recall some cases for “time-independent
liveness” in TPNs, known for more than 15 years, which weedipetus for the present work.
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A PN is calledhomogeneousf for each placep holds: V(p,t) = V(p,t') for all t,t' € p*, i.e. the
weights of all arcs fronp to its post-transitions are equal. When all of its arc weigre 1's then the PN
is anordinary one. AnExtended Free-Choice net (EFC)s an ordinary PN such that for all, p, € P
holds: Wherp; N py # 0 thenp} = p$. An Extended Simple net (ES)s an ordinary PN such that for
all p1,p2 € P holds: Wherp; N py # () thenp} C p$ orp§ C p3.

Now we introduce the notiongeneralized EFCandgeneralized ES

Definition 3.1. APNN = (P, T, F,V,m,) is called ageneralized EFCiff A is homogeneous and for
all p1,p2 € P holds: Wherp; N py # () thenp$ = p$.

Definition 3.2. APNN = (P, T, F,V,m,) is called ageneralized ESiff N is homogeneous and for
all p1,p2 € P holds: Wherp; N py # () thenp} C p$ orp§ C p3.

The next definition we introduce in order to define “time windd for transitions in conflict.

Definition 3.3. Let V' = (P, T, F,V,m,) be a PN ang a place inV. ThenMin(p) := max{eft(t) |
t € p*} andMazx(p) == min{lft(t) | t € p*}.

It is clear that in a generalized EFC with a placehich Min(p) is greater thaotMaz(p) there is a
transitiont € p® andt can never fire because another transition has to fire befmeomes ready to fire.
Thus, the transition is dead.

3.2. Some structural properies of generalized ES nets

In the following we always consider TPN& = (P, T\, F, V, my, I) which satisfy the three properties:
(V1) S(Z)is ageneralized ES net,

(V2) for every place € P holdsMin(p) < Mazx(p) and

(V3) for every transitiort € T it holds: Ift(¢) > 0.

First, we give some definitions and propositions for bettatarstanding the static structure of the
generalized ES Nets. Then we analyze the dynamic behavidie presumed TPNs.

Definition 3.4. A placep € P is of firstdegreeiff
Vge P:p*Ng* #0=p°* 2 q".
A placep € P is of n-th degree iffp® # () and

n = max {k | q° 2 p* A qis of k-th degreé + 1.
q€

Theorem 1. Definition 3.4 is well-defined.

%Also known as asymmetric choice net (cp. [11]).
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Proof: We have to show that a place can never be of two different dsgre

According to definition 3.4, a place is of first degree whehagitit has no post-transitions or there
is no place with a proper superset of post-transitions. &foeg, no place of first degree can be also of
higher degree.

Let p € P be a place ofn-th andn-th degree, whereas andn are greater than 1. Then w.r.t.
definition 3.4 it holds:

3¢m € P : q,, is of (m — 1)-th degreen ¢,,,* 2 p® andfr € P : ¢,,°* 2 r* 2 p* and
3¢, € P : q, is of (n — 1)-th degree\ ¢,* 2 p* anddr € P: q,* 2 r° D p°. (1)

Then the inclusio) # p® C ¢,,* N ¢,* follows immediately and because of property (V1) and wgl.o.
alsog,,® C ¢,°. Sincep® C ¢.,,° € ¢,° and (1) hold the inclusion can be no proper. This leads to

g =¢@ =VreP:(r* Cq.* o r*Cq’) =
m = max {k|r® 2 gn® Arisof k-th degreé = max {k|r* 2 q,* Arisof k-th degreé = np
re re

Lemma 3.1. Two placesp,q € P of same degree with at least one common post-transition theve
same set of post-transitions.

Proof: Letp andq be two places withp® N ¢* # (). Because of (V1) the subset relatiph C ¢° or
q® C p*®is true. If the inclusion would be a proper, meaning w.L¢ @ p°®, then w.r.t. definition 3.4
would be of higher degree than Thus, the inclusion cannot be proper and therefdre- ¢°. O

Lemma 3.2. Let a transitiont € T have a pre-place of-th degree. Then for everywith 1 < i < nt
has a pre-place afth degree.

Proof: The proof will be done by induction. The initial step is teli
Inductive step: Let a plage € *t be of (n + 1)-th degree. Then according to definition 3.4 there is a
placep,, € P of n-th degree witht € p* C p?. This impliesp,, € *t. O

Definition 3.5. A transition t € T is of n-th degreeiff

n = max {k | p is of k-th degreé.
peE®t

Lemma 3.3. For every two transitions, t € T"and a common pre-plagec °sn*t of k-th degree holds
Vie NVge®t:1<i<kAqisofi-thdegree= ¢ € °®s.
Proof: Letq € °t be a pre-place afth degree withl < i < k. Theng is a pre-place of because of

{5,t} Cp* Cq* = q € °®s. O

Definition 3.6. 1. Two transitions, ¢ € T are instatic conflict (short: s () ¢) iff they have a common
pre-place, i.e.

s(t:<=°*snN®t#£0.
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2. Atransitions € T is dominating a transitiont € 7' w.r.t. a set of placed/ C P (short:t <y s)
iff s andt are in static conflict and the set of pre-places odlative to)M is a proper subset of the
set of pre-places dfrelative toM i.e.

t<ps<=sO0tAN*sNMC*tNM.

3. Two transitionss, t € T areequivalentw.r.t. a set of placed/ C P (short: s ~,, t) iff they have
the same pre-places relativetd, i.e.

s~ytie=°*sNM="tNM.

It is clear that each transitione 7 is always in conflict with itself.

Lemma 3.4. The relation( is an equivalence relation ovér.
Proof: Reflexivity and symmetry follow immediately from definitiéh6. Letr, s,t € T be transitions

with r (j s ands () t. Then there exist common pre-plageandg with p € *r N *s of m-th degree and
g € ®°s N °t of n-th degree. Then, due to lemmas 3.2 and 3.3 the followingshold

dp e *rn®s:pisofl-thdegree anddqg € *s N *t : ¢ is of 1-th degree
Now, applying lemma 3.1 we obtain

sep*Ng® ={rst}Cp*=¢ = 0#{p, ¢} C*rnN®t=1r(t.

Lemma 3.5. The relation~; is an equivalence relation ovérfor every subsef/ C P.

Proof: The relation~),; is an equivalence relation, since the equality) of sets is an equivalence
relation. O

Lemma 3.6. The relation<, is transitive for every\/ C P.

Proof: This holds because of the transitivity of the subset rafatio). O

Lemma 3.7. For every two transitions, t € T which are in static conflict it holdst ~e; sV t <e; s.

Proof: Lets andt be in static conflict. Hence, it hold$s N *¢ # () and therefore alsp # *sN ¢ C °t.
There are two cases to be considered:

Case 1: ®*s N °t = °t. Then according to the definition 3.6 (subitem (3)) it folkw ~e; s.

Case 2: *s N °t C °t. Then according to the definition 3.6 (subitem (2)) it folkaw <., s. O



J.P. Bachmann and L. Popova-Zeugmann / Time-independeenéss in Time Petri Nets 9

3.3. When the skeleton is live, then the TPN is live as well

Definition 3.7. A placep € P is live in a statez iff p has a pre-transition € *p which is live inz, i.e.
pisliveinz <3t *p:tislivein z.
A placep € P is dead in the stateiff all of its pre-transitions are dead i i.e.

pisdeadinz ;<= Vt € *p : tis dead inz.

Lemma 3.8. Let = € RS: be a reachable state. Then there is a state RS:z(z) such that every
transition and, therefore, every place is either dead eritithat state, i.e.

Vt € T : tisdeadinz’ v tis live in 2/ and ¥
Vp € P:pisdeadiny Vv pislive in 2. (3)

Proof: Letz € RSz be a reachable statec T an arbitrary transition and Iétbe not live inz. Then
there exists a stat¢t € RSz(z) such that is dead inz!. Beacause of the finiteness of the Fethere is
an € N such that there is no transition which is not livezih This means that every transition is either
dead or live inz". Hence, (2) is true for’ := 2". Property (3) follows immediately from (2) because of
definition 3.7. 0

Definition 3.8. Let z € RS: be a reachable state(r) = ryt1 71 ... t,, 7, be a feasible run with:
if 7,=0 thenn=20 4)

and 0 1 t1 0T 1 t2 0T 1 t3 Tn—1 1 0
Z——>ZO——>2’1——>21 —_)22—%22—_)...—_)2,”71

n

1

tn Tn
— Zp T 2

where for the states' = (m}, h}) holds

VieN:0<i<n— hzl(tzurl) = |ft(ti+1).

Theno(7) is called aforced run starting fromz. Furthermoreg () is a forced run, passing the tinae

iff n
Z T; = €.
=0

Property (4) claims that the forced run consists of a minimahber of transitions in order to pass the
timee > 0.

Lemma3.9. Let Z = (T, P, F, V,m, I) be a deadlock-free Time Petri net such that only the resstnict
(V3) holds. Then for every reachable state RSz and every time= > 0 there is a feasible rua(r)

n
witho = ¢1...t,, 7 = 19...7, @and starting at and it holds>_ 7, = e. Even more, it is possible to

=0
find a forced run starting from € RSz passing the time > 0.
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Proof: Let7 := Itni:p{lft(t)} be the smallestft in Z andz; = (m1, h1) € RSz be a reachable state.
S

Successively, transitions reaching their latest firingetimill fire. After that, as much time as possible
will be passed. If more thajY’| transitions will have been fired, then at leastime will have passed.
This process will be repeated as much as needed, thus thiewitoloe done by nested recursion. The
counter variable for the outer recursion will band the one for the inner recursion will e

Fori > 1 successively se¥? := {t € T | h;(t) = Ift(t)} and lett) € M? be an arbitrary transition
whose clock reached its latest firing time. Thenaget= ! and letz} € RSz (z;) be the state defined by

0
9

2 =z = (my, hy).

This describes the outer recursion.
With the inner recursion a statg := =" will be constructed such that no clock of an enabled
transition is at its latest firing time. So, fgr> 1 set

M= {t eT|hi(t) = Ift(t)} c M 5)

and lett/ € M/ be a transition whose clock is at its latest firing time. Femthore, set” := o) 't/

~ , Pt . P .
and letz/ ! be the state defined by — z/™'. Obviously, the setd/? will be smaller with each step,

thusM," = () for an; € N. That is the way a statg = (1, hi) = 2" will be reached after firing
oi=oli =1 t?i_l. (6)

7

Now, a certain amount of time can be passed.rget 0 and

i—1

T;:=min{ e — ZTk, max {Ift(t) - ~Z-(t)} (7)
teT
k=0 R 2%

and letz;, = (mgy1, hiy1) be the state defined by 75 2; = 2, 1.

BecauseZ is deadlock-free there is always a transittoa 7' such thaﬂii(t) = # holds. Hence, this
definition is well-defined. Ifr; = 0 then Z};lo T = e is true because of (7) and because of the basic
property ¥t € T : h;(t) < Ift(t)V hi(t) = #). Otherwisei will be incremented and the process is going
to be continued. Nowy := o109 ... 0;_17;_1 IS a feasible and forced run starting frompassing
the timee.

This process brings a finite feasible run starting fronvhich can be seen by the following. There
aren; transitions firing in every rua;7;. After that the timer; is passed. (5) and (6) imply; < |T'| and
Vi>1:1<n,thus s

FeN:|T| <) np<2T]. (8)
k=1
The left unequation of (8) implies that there is a transiticn o . .. o; which fires at least twice in that
run, thus its clock has been reset and the second time it firegllatest firing time. Then

i—1
S 7= Ift(f) > 7
k=1
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holds. The right unequation of (8) implies that the run isténBy repeating that proceas:= [;] +1
times, the number of transitions which fired is not greatenth([Z| + 1) |T]. Furthermore, there is at
least the time- passed, since

e (o) o foas ) :

Lemma 3.10. Let z° = (m®, h°) € RS be a reachable state &, t* € T be an arbitrary transition and
*t* = {p1,...,pn} be the set of the pre-placesf‘ordered/indexed” by descending degree, i.e.

Vie NVjeN:1<i<j<nAp;isofcth degreeA p; is of d-th degree—= ¢ > d.

Furthermore, lef\/y = 0 andM; := {p1,...,p;} be for eachl < i < n.
If there is ani with 0 < ¢ < n such that

Vp € *t*\ M; : pislivein 2, 9
Vp € M; : m°(p) > V(p,t*) and (10)
VteT:t()t" = ho(t) = 0V ho(t) = #, (12)

then there is a statg"™! € RSz(2) andt* is ready to fire in state” !,

Proof: The proof is done by induction.

Base: At the beginning set = 7 andz,"! = 2°. The assumptions for the next step in the recursion are
made of (10) and (11).

Step: (i — 1) — i: First setj = 1. In every case of the following case dfferentiation wherés not
ready to fire the assumptions

Vp € M1 : m§+1(p) > V(p,t*) andm§'+1(pi) > m;(pz) and 12)
VEe T t(t" = hi(t) =0V hj(t) = # (13)

will be prooved fpr every reached pdir, j). This especially implies (10) and (11). The plagss live
in 2/, sincei > 7 and (9) holds, meaningt; € *p; : ¢; is live in 2}, wherefore there is a feasible run
starting fromzji.f1 and firingt; at the end. This increases the number of tokeng;on

N L A :

367 1 25y —> 25 = (Mg, hy) Amj(pi) > mG_1(pi).

Case 1:Vt € a; : *t N M; # (), meaning the number of tokens did not decrease on placks.ofhen
setzl = (i, hi) := £ andg? == &%
Case 2:3t € a; : *tN M; # 0. In this case a transition with a pre-placedf must have been firing

Py Si 020 170 126 bfi bai
durings}. Seto; =7 *¢% “77... "5 P7; forab € N. Then

ElaeN:1§a§b=>'(af§)ﬂMi7é®/\(Vc€N:1§c<a=>'(cf§-)ﬂMi:®),

i.e. “! is the first transition o&”; which has a pre-place dff;. W.r.t. lemma 3.3 this transition has also

p: as a pre-place. Defing, := 71 1% 171 . ~1{i and the state! = (i}, h}) by 2% — Zi.
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In both cases a stat is reached fulfilling (12) (substitute:, , by /).
The following case differentiation constructs a stetes RSz (2}) which fulfills (13), as well.

Case 1:In Z the assumption (13) is already fulfilled. Then sgt= (m}, n}) := L.

Case2:3teT:t(jt' A ﬁ;(i) > 0. Due to Lemma 3.9 there exists a forced sjrwith

G o
Z; = z; = (mj, hj).

passing the time Ift)) — B;(E) starting fromz!. Remark that all transitions of fire at their latest firing
time during.

Case 2.1:h!(t) = Ift(Z). This means that the transitidnwhich impedes the asumptions (13) for the
next firing is ready to fire ire}. V¢ € o : *t N M; = () holds sinces, is a forced run starting frora.
The firing oft could decrease the number of tokens of a plack/pf

Case 2.1.1:°t N M; # . For all states’s’ = (Smé,sﬁé) which has been reached duriag the
assumption

holds. This face, lemma 3.3 and V2 brings < “m} = (t*)~ < *m}, whereforehi(t) = hi(t*).

Finally ¢* is ready to fire iz because of eft*) < Ift(f) = £} (f) which holds because of V3. In this
case the proof is done.

Case 2.1.2°t N M; = (). ThenV1 < k < i : p, ¢ *t holds. The assumptions (12) and (13) for the next
step of the recursion are fulfilled witf &R z5. In this case set} := 5% d'1.

Case 2.2:h(t) < Ift(f) v hj(f) = #. In this case a transition which is in static conflict witfired
during 6§ meaningdt € 6§ ()t Setaj = Tot171 ... L7 Then

Elt_a€6§»:faQt*/\V1§b<a:°t_bﬂ°t*:@ (14)
holds because of lemma 3.4. Then deﬁr;te: Totl ... Tao1 andzji. = (T’n;-, h;) by 2; SER z;

Case 2.2.1*t, N M; # 0. For all states} = (*1n},* 7z§.) reached during’

holds analogously to case 2.1.1. In addition lemma 3.3 andoi®s wherefore,, <° 7”71; = (t*)” <°
mi holds for these states. Skf(f,) = hi(t*). Finally, ¢* is ready to fire inz! because eft*) <
Ift (£,) = hi(t,) holds. In this case the proof is done.

Case 2.2.2:°t, N M; = . Define the state’ by 2/ ta, 2. The assumptions (12) and (13) are then
fulfilled in 2% since (14) holds. Then set := &/5,.
By successively repeating this process for- 1 until mé-(pi) > V(p;,t*) holds, a feasible run

o' = o ...0} starting fromz{ is reached or a state is reached during that process in whistready
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to fire. This process will finish after finite steps since thenber of tokens om; raise for increasing.
Let 2! be the state defined by

2 gt
These steps will be repeated foe (z + 1),...,n. Thent* fires or a state™ ! is reached in which
t* is enabled and
VteT:t()t" = h"T ) =0V h"Ti(t) = # (15)

holds. Letos/ be a forced run passing the time(ef starting fromz"*!. ThenVt € of : *tN*t* = ()
holds since (V3) and (15) is fulfilled. Let’ = (m/, hf) be the state defined by

f
o
PLaR ANy

Then(t*)~ < m/ and eftt*) = A/ (t*) holds, i.e.t* is ready to fire in/. O

Lemma3.11. Letz = (m,h) € RS be a reachable state # andt* € T be an arbitrary transition.
Then if each pre-place of ¢t* is live thant* is live, as well.

Proof: Letz" = (m° h") € RS:(z) be an arbitrary state reachable framin the following a state
will be constructed which fulfill the conditions of lemma 8.1

Case 1:If the condition (11) of lemma 3.10 is already fulfilled theat 8? := 2.

Case2:3t €T :1(t* Ah(f) > 0. Leto! be aforced run passing the time(fff — 1°(%) starting from

20, Define the state' by )
2025 2 = (mt Rh).

Case 2.1:h!(f) = Ift(t). The letz? be the state defined by L SLApS J (m?2, h?). In this state the
conditionVt € T : ¢ § t* = h%(t) = 0V h%(t) = # holds.
Case 2.2:h! (1) < Ift(t) v h'(t) = #. Definec! := rot171 ... t,7,. Then

Jta€ol it OPAVI<b<a:*tN°t" =0

Tot1...ta

must hold. In this case let> be the state defined by =% 22 In this state the assumption
VteT:t{t = h2(t) =0V h2(t) = # holds.

In every case? fulfills the assumptions for lemma 3.10 with= 0, wherefore there is a following
statez® € RSz(22) in which ¢ is ready to fire. O
Lemma 3.12. Let z € RS: be a reachable state #. Then ifft € T is dead inz the following holds:

Jp € °t 32’ € RS:(2) : pis dead iny'.

Proof: By lemma 3.8 there is a following staté € RSz(z) in which all transitions and places are either
dead or live, meaning

Vt € T : tisdead in’ v tislive in 2’ and

Vp € P:pisdeadiny v pislivein 2.

If all p € °t would be live inz’ then, by lemma 3.11 would be live inz’ in contradiction to the
assumptions. O
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Lemma 3.13. Letz = (m, h) € RSz be areachable state atide 7" be a transition with the properties:
Every pre-place of* is dead or live inz and at least one pre-placeofis dead inz. Then there is a state
z = (m,h) € R&(z) and it holds:

Jp € *t* : pisdead inz A m(p) < V(p,t*).
Proof: Let®t* = {p1,...,pn} be the set of the pre-placesfindexed by descending degree, i.e.
Vie NVjeN:1<i<j<nAp;isofcthdegreen p; is of d-ter degree—- c > d.
Furthermore, let
pm € *t" i ppisdeadine AVm <i < n:p;isliveinz

be the last (w.r.t. the indices) pre-placetbfvhich is dead i, let
Liy:={p; et |1<i<mAp;isliveinz}

be the set of pre-places which are liveziand have at least the same degreg,asnd eventually let
Ly:={p;e®t" |m<i<nApisliveinz}

be the set of pre-places which are liveziand have at most the same degreg,asFurthermore, w.l.0.g.
letVp € *t* : pis dead ine = m(p) > V(p,t*). Otherwise, the proof would already be done.

Due to the definitions of.; and L, there is a transitio; € °p, which is live in z for everyp; €
L, U Ly. Hence, a feasible rum; with z 2% 2, = (mq, h1) starting fromz exists such that the pre-
transitiont; of p; € Ly which is live inz occurs at leasV’ (p;, t*) times inc;. Following, the number of
tokens on the places € L; increased at leadf (p;, t*) times duringo!.

Case 1:3p; € Ly : mi(p;) < V(pi,t*). Then3t € o1 : p; € *t must hold. Due to lemma 3.3 the place
pm IS also a pre-place af Thus, the number of tokens @, in z; is less than the number of tokens on

D N 2.
Case 2:Vp, € L1 : ml(pi) > V(pi,t*).

Case 2.1Vt € T : t (j t* = h'(t) = 0V h'(t) = #. In this case the conditions for lemma 3.10 are
fulfilled with L, asM;. Thus, there is a stat¢ € RS:(z') in which ¢* is ready to fire. By firing* in
2% the number of tokens op,, decreases.

Case 2.2:3t € T : t () t* A hY(#) > 0. Then the forced rum, started at:', passing the time
Ift (£) — hl(f) achieves a state® = (m?, h?) € RS (z1), i.e. 2t 2% 22

Case 2.2.1n%(t) = Ift (¢). Thent is ready to fire in:2.

Case 2.2.1.2t N L; = 0. In this case the conditions of lemma 3.10 are fulfilled withas M in the
state followingz? by firing . Hence, there is a following staté such that* is ready to fire inz3.

Case 2.2.1.2t N Ly # (. Due to lemma 3.3p,,, is also a pre-place af thus the number of tokens on
pm decrease by firingin z2.

Case 2.2.2%(1) # Ift(Z). In this case a transitiohe o, which is in static conflict wittt had to fire.
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Case 2.2.2.7t N L; = (. In this case the conditions of lemma 3.10 are fulfilled withas M;. Thus
there is a state® € RS:(2?2) in whicht* is ready to fire. After the firing of* in 23 the number of tokens
onp,, decrease.

Case 2.2.2.2t N Ly # (. Due to lemma 3.3p,, is also a pre-place dfand therefore the number of
tokens orp,, in z; is less than the number of tokens @ in z;.

Altogether the number of tokens @r), decreased. Sings,, is dead inz, the number of tokens on
pm Cannot be increased in a following state. Hence, by repg#tis process a state= (1, h) will be
reached after finite steps andp,,) < V (pm,t*) holds. O

Lemma 3.14. Let z € RSz be areachable state ahd T be a transition which is dead in Then there
is a statez’ = (m/, h') € RSz(z) such that the following holds:

Jp € *t :pisdead inz’ Am/(p) < V(p,t).

Proof: According to lemma 3.8 there is a staté € RSz (z) such that every transition and every place
is either dead or live in that state. Especiallis dead inz”. Due to lemma 3.12 it holds:

32" € RS:(2") CRS:(2) 3p € *t : pis dead inz".
Then because of lemma 3.13 it follows:

3 = (m/, 1) e RE(2") CRS:(z) Ip € *t : pisdead inz’ Am/(p) < V(p,t).

Lemma 3.15. Let z € Z be a reachable state. If all transitions are either dead®iriz, i.e.
Vte T :tisdeadinz Vv tislivein z,

then there is a staté € RSz(z) such that every transition which is dead in that state hag#laice
which has not enough tokens for the purpose of enablingrthisition, i.e.

Vte T :tisdeadiny’ = Jp € *t : pisdead inz’ Am/(p) < V(p,t).

Proof: Letz? = (m% h0) := zandT := {t € T : tis dead inz} be the set of all transition which
are dead in. Remark that, due to definition 3.7, all places are dead eritiv” too. The following
argumentatin will be repeated for> 0.

LetT; := {t € T : tisdead inz* A 3p € *t : pis dead inz' A m'(p;) < V(p;,t)} €T C T be the
set of all transitions which are dead ihand which have a pre-place, not enough marked for enabling
the appropriate transition. T \ T; + () then choose; € T \ T; and fix it. Due to lemma 3.14 there is a
statez't! = (m**1, ht1) € RS:(2%) such that

Jp € °t; - pis dead iz Am T (p) < V(p,t;)

holds. Hencet; ¢ Tjs C Tj41 > t; is true. i
Since the numbg:r of t~ransitions is finite the sequefiGgcy will be constant froni;, for an € N.
Due to constructiorl;,, = 7" holds. O



16 J.P. Bachmann and L. Popova-Zeugmann / Time-independeenéss in Time Petri Nets

Lemma 3.16. Let Z = (T, P, F,V,m, I) be a TPN with a live skeleton. Thefiis deadlock-free.

Proof: Every p-markingm of a reachable state € RS is also a reachable marking of the skeleton
S(Z). Assuming that there is a state= (m, h) and Z is dead inz concludes that no transition is
enabled inm. This is a contradiction to the liveness of the skeleton.

Theorem 2. For each TPN with the properies (V1), (V2) and (V3) it holdsh&.S(Z) is live thanZ
is live, as well.

Proof: Assume that the skeletd$( 2) is live but the TPNZ is not live.

Due to lemma 3.8 there is a statec RSz such that every transition and every place is either dead
or live in that state. Because of lemma 3.15 there is a state (m”,h”) € RSz(2’) such that every
transitiont € T which is dead irt” has a pre-place, dead iff and has not enough token for enabling
ie.dp et :m"(p) < V(p,t). Let

T:={teT:tisdeadin”} andP :=°T

be. SinceZ is deadlock-free it follows because of lemma 3.16 fAatT # (). Due to the construction
of T' it holds:
VteTIpetnP:m"(p) < V(pt).

Lett* e T be an arbitrary transition. Sincg&(Z) is live andm” is a reachable marking if(Z)
there is a transition sequenee= w; . .. w, such thatn” 2, ", isfeasible in the skeleton. Now, because
a pre-place of* exists which is dead in” and has not enough tokens for enablifighere is a transition

w; € o andw,; € T. Let: be minimal with this property, i.e.
w; €ETAVI<j<i:w;¢T.
Due to the same reasone foy € T it holds:
Jw; € wy ... wi—1 1 wj eT.

This is a contradiction to the minimality éfand thereforeZ has to be live. O

4. Conclusions

In this paper we manage to give an enlargement of the set oS MANch are time-independent live,
that means their liveness does not depend on the time. Tipempemlargement refers to the property
“generalized ES nets”. For more than fifteen years the prasftieen done for generalized EFC nets.
However, a generalization of the “old” proof for generallZ€S nets does not work.

It is important to know that the properties (V1), (V2) and {M&nnot be done weaker (cf. [6]).
Thus, for the future, we are looking for new time-indeperidee classes of TPNs: Especially we will
consider BFC nets, defined in [3] and generalize them in thees@manner as we have done with the
EFC nets and the ES nets. However, such a class will be defindgrtamic properties, which are not
decidable for TPNs in general.
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