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Streszczenie.In this paper we consider a class of Time Petri nets defined by structural restrictions.
Each Time Petri net which belongs to this class has the property that their liveness behaviour does
not depend on the time. Therefore, the Time Petri net is live when its skeleton is live.

1. Introduction

Petri nets have been used to describe and study concurrent systems for more than forty-five years. At
first glance, time and concurrence do not seem to have much in common. But if one looks closer, the
opposite is the case. There are endless examples from different areas showing this. For this reason, a
large variety of time dependent Petri nets have been introduced and well studied. One of the first such
nets is the Time Petri net (TPN), introduced in [10].

TPNs are derived from classical Petri nets. Additionally, each transitiont is associated with a time
interval [at, bt]. Here,at and bt are relative to the time, whent was enabled last. Whent becomes
enabled, it cannot fire beforeat time units have elapsed, and it has to fire not later thanbt time units
unlesst was disabled in between by the firing of another transition. The firing of a transition itself takes
no time. The time interval is designed by real numbers, but the interval bounds are nonnegative rational
numbers. It is easy to see (cf. [4]) that w.l.o.g. the interval bounds can be considered as integers only.
Thus, the interval boundsat andbt of any transitiont are natural numbers, including zero andat ≤ bt or
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bt = ∞. at is calledearliest firing timeof the transitiont (short:eft(t)) andbt, the latest firing timeof
t (short: lf t(t)) .

Every possible situation in a given TPN can be described completely by a statez = (m,h), consisting
of a (place-) markingm and a transition markingh. The (place-) marking, which is a place vector (i.e.
the vector has as many components as places in the consideredTPN), is defined as the marking notion
in classical Petri nets. The time marking, which is a transition vector (i.e. the vector has as many
components as transitions in the considered TPN), describes the time circumstances in the considered
situation. In general, each TPN has an infinite number of states. Thus, the central problem for analysis
of a certain TPN is knowledge about its state space.

In [7] it is shown that the state space can be characterized parametrically and that knowledge about
the reachable integer-states, i.e. states whose time markings are (nonnegative) integers, is sufficient to
determine the entire behavior of the net at any point in time.In the case that somelf ts = ∞, then a
subset of all reachable integer-states, the so-called set of the essential-states, expresses the net behaviour
(cf. [5]). A reachability graphRG(Z) for a TPNZ can be defined in such a way that its vertices are
the reachable integer-states or the reachable essential-states, respectively. The edges are defined by the

triples (z, t, z′) and(z, τ, z′), τ ∈ N, wherez
t

−→ z′ andz
τ

−→ z′, respectively. This graph is finite if
and only if the set of the reachable markings of the net is finite. The calculation of a single integer-state
is very easy.

Actually, a reachability graph for TPN was first introduced by Berthomieu and Menasche in [2]
respectivaly Berthomieu and Diaz in [1]. They provide a method for analyzing the qualitative behavior
of the net based on the computing of certain subsets of reachable states, called state classes. However, the
essential-states method is exponentially better in worst case, but in the case that in a TPN the concurrence
is rather low, then the state-classes method compute a smaller reachability graph.

A further way to analyze a TPN is the translation into a timed automaton and then to apply the
analyzing algorithms used there (cf. [9]).

The most important behavioral properties of a TPN (and of a PNas well) are the reachability, the
boundedness, the liveness, and the reversibility (cf. [11]). These properties are decidable for an arbitrary
classical PN, but not for an arbitrary TPN in general. The reason for this is the nonequivalence of the
classical PNs respectively the equivalence of the TPNs to the Turingmachines (cf.[6]). However, there are
restricted classes of TPN for which the properties are decidable. In [6] three structural and one dynamical
restricted classes of TPNs are given for those the liveness problem is equivalent to the liveness problem
of its skeleton, which means the TPN considered without time, and therefore it is decidable. The first
class is the set of all arbitrary TPNs withlf t(t) = 0 for all transitionst. The next one is the set of all
arbitrary TPNs withlf t(t) = ∞ for all transitionst. The third structural restricted class is the set of
TPNs which satisfied three conditions: 1. the skeleton is a generalized EFC net1, 2. lf t(t) > 0 for all
transitionst, and 3.Min(p) < Max(p)1 for all placesp.

This paper is organised as follows. In the next section we recall some basic notions. In the third
section we introduce first some new notions and give several remarks. Afterwards, we proof some
structural properties of the new defined class of PNs. This isfollowed by the proof of the main property
that each TPN is time-independent live for which the skeleton is a generalized ES1, lf t(t) > 0 for all its
transitionst, andMin(p) ≤ Max(p)1 for all its placesp. Finally, we summarize the results and give
some remarks including future outlook.

1This notion is defined in section 3.1
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2. Basic notations and definitions

We use the following notations in this paper:N is the set of natural numbers,N+ := N \ {0}. Q+
0

, resec-
tively R+

0
, is the set of nonnegative rational numbers, respectively the set of nonnegative real numbers .

T ∗ denotes the language of all words over the alphabetT , including the empty wordε; l(w) is the length
of the wordw. The ”floor” of a real numberr denoted by⌊r⌋ is the maximum of the set of integers that
are not greater thanr, respectively, the ”ceiling” ofr denoted by⌈r⌉ is minimum of the set of integers
that are not smaller thanr.

The definition of a (classical) Petri net is as follows:

Definition 2.1. The structureN = (P, T, F, V,mo) is called aPetri net (PN) iff

1. P, T, F are finite sets with
P ∩ T = ∅, P ∪ T 6= ∅, F ⊆ (P × T ) ∪ (T × P ) anddom(F ) ∪ cod(F ) = P ∪ T

2. V : F −→ N+ (weight of the arcs)
3. mo : P −→ N (initial marking)

A marking of a PN is a functionm : P −→ N, such thatm(p) denotes the number of tokens at the
placep. Thepre-setsandpost-setsof a transitiont are given by•t := {p | p ∈ P ∧ (p, t) ∈ F} and
t• := {p | p ∈ P ∧ (t, p) ∈ F}, respectively. Analogously, thepre-setsandpost-setsof a placep are
given by•p := {t | t ∈ T ∧ (t, p) ∈ F} andp• := {tp | t ∈ T ∧ (p, t) ∈ F}, respectively. Each
transitiont ∈ T induces the markingt− andt+, defined as follows:

t−(p) =

{

V (p, t) iff (p, t) ∈ F

0 iff (p, t) 6∈ F
t+(p) =

{

V (t, p) iff (t, p) ∈ F

0 iff (t, p) 6∈ F
.

Moreover,∆t denotest+ − t−. A transitiont ∈ T is enabled (may fire)at a markingm iff t− ≤ m (i.e.
t−(p) ≤ m(p) for every placep ∈ P ). When an enabled transitiont at a markingm fires, this yields

a new markingm′ given bym′(p) := m(p) + ∆t(p) and denoted bym
t

−→ m′. Thus, the dynamical
behavior of a classical PN is characterized by firing transitions that leads to change of the markings.

A markingm is areachableone inN if there is a transition sequence which can fire starting atm0

and ending atm. The set of all markings reachable inN is denoted byRN .

Definition 2.2. The structureZ = (P, T, F, V,mo, I) is called aTime Petri net (TPN) iff

1. S(Z) := (P, T, F, V,mo) is a PN.
2. I : T −→ Q+

0
× (Q+

0
∪ {∞}) andI1(t) ≤ I2(t) for eacht ∈ T , whereI(t) = (I1(t), I2(t)).

A TPN is called finite Time Petri net (FTPN) iffI : T −→ Q+
0
× Q+

0
.

I is the interval function of Z, I1(t) and I2(t) the earliest firing time of t (eft(t)) and thelatest
firing time of t (lf t(t)), respectively. It is not difficult to see (cf. [7]) that considering TPNs with
I : T −→ N × (N ∪ {∞}) will not result in a loss of generality. Therefore, only suchtime functionsI
will be considered subsequently. Furthermore, conflict is used in the strong sense: two transitionst1 and
t2 are inconflict iff •t1 ∩

• t2 6= ∅. The PNS(Z) is referred to as theskeletonof Z.
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Within this approach, the definition of a state is of fundamental importance for the ensuing theory. A
state is characterized by a marking together with the momentary local time for enabled transitions or the
sign♯ for the disabled transitions.

Definition 2.3. LetZ = (P, T, F, V,mo, I) be a TPN andh : T −→ R+
0
∪ {#}. z = (m,h) is called a

state in Z iff

1. m is a reachable marking inS(Z).
2. ∀t ( (t ∈ T ∧ t− ≤ m) −→ h(t) ≤ lf t(t)).
3. ∀t ( (t ∈ T ∧ t− 6≤ m) −→ h(t) = #).

Interpretation of the notion “state” is as follows Within the net, each transitiont has a clockh(t). If
t is enabled at a markingm, the clock oft h(t) shows the time elapsed sincet became most recently
enabled. Ift is disabled atm, the clock does not work (indicated byh(t) = #). Thus, the vectorh which
is a vector of clocks is actually a transition marking and thealready defined notion “marking” is in fact
a place-marking. In the following we call the place-markingm a p-marking and the transition-marking
h a t-marking .

The statezo := (mo, ho) with ho(t) :=

{

0 iff t− ≤ m0

# iff t− 6≤ m0

is set as theinitial state of the TPNZ.

Now the dynamic aspects of TPNs – changing from one state intoanother by firing a transition or by
time elapsing – can be introduced:

Definition 2.4. Let Z = (P, T, F, V,mo, I) be a TPN,̂t be a transition inT and z = (m,h), z′ =
(m′, h′) be two states. Then

1. the transition̂t is ready to fire in the statez = (m,h), denoted byz
t̂

−→ , iff

(i) t̂− ≤ m and
(ii) eft(t̂) ≤ h(t̂).

2. the statez = (m,h) is changedinto the statez′ = (m′, h′) by firing the transition t̂, denoted by

z
t̂

−→ z′ , iff

(i) t̂ is ready to fire in the statez = (m,h)
(ii) m′ = m + ∆t̂ and

(iii) ∀t
(

t ∈ T −→ h′(t) :=











# iff t− 6≤ m′

h(t) iff t− ≤ m ∧ t− ≤ m′ ∧ •t ∩ •t̂ = ∅

0 otherwise

)

.

3. the statez = (m,h) is changed into the statez′ = (m′, h′) by the time elapsing τ ∈ R+
0

,
denoted byz

τ
−→ z′, iff

(i) m′ = m and
(ii) ∀t ( t ∈ T ∧ h(t) 6= # −→ h(t) + τ ≤ lf t(t) ) i.e. the time elapsingτ is possible, and
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(iii) ∀t
(

t ∈ T −→ h′(t) :=

{

h(t) + τ iff t− ≤ m′

# iff t− 6≤ m′

)

.

The statez = (m,h) is called aninteger stateiff h(t) is an integer for each enabled transitiont in m.

Definition 2.5. LetZ = (P, T, F, V,mo, I) be a TPN.

(a) The statêz = (m,h) is calledreachablein Z (starting atz0) iff there exist statesz1, z
′
1, ..., zn, z′n,

transitionst1, ..., tn and timesτi ∈ R+
0
, i = 1, ..., n + 1 and it holds

z0

τ1−→ z1

t1−→ z′1
τ2−→ z2

t2−→ z′2...
τn−→ zn

tn−→ z′n
τn+1
−→ ẑ.

(b) The setRSZ of all reachable states inZ (starting atz0) is called thestate spaceof Z.

The set of all reachable states inZ, starting atz 6= z0, is denoted byRSZ(z). It is easy to see that the
set of all reachablep-markings in a TPNZ is the setRZ = {m | (m,h) ∈ RSZ}.

The sequence of transitions(t1, ..., tn) can fire inZ, starting atz0, because there is a sequence
(τ1, t1, ..., τn, tn). We denote such atransition sequence σ = (t1, ..., tn) feasible. The sequence
σ(τ) = (τ1, t1, ..., τn, tn) which is a concrete execution ofσ in Z is called a(feasible) run of σ. It is
clear that in a given TPN the state changes are achieved by alternating series of time elapsing and firing.
Obviously, for a given run the transition sequence is well defined and for a given transition sequence
there are infinitely many runs in general.

At the end of this section we introduce the notionlivenessfor TPNs. Actually, there are four levels
of liveness. We consider here only the so called 4-liveness,defined by Lautenbach in [8]. This notion
will also be defined in a similar manner to the definition for the classical PNs.

Definition 2.6. LetZ be a TPN andz a reachable state.

(i) A transition t is live in the statez iff
∀z′

(

z′ ∈ RSZ(z) −→ ∃z′′ (m′′ ∈ RSZ (m′) ∧ z′′
t
−→ )

)

(ii) A TPN Z is live iff all transitions are live inz0.

(iii) A TPN Z is deadlock-free iff in each reachable state there is at least one transition twhich can
(i.e. it is ready to) fire inz.

3. Time-independent liveness

3.1. Preliminaries

In this subsection we introduce some additional notions which are not generally known but which are
important for the properties we will study here. Afterwards, we recall some cases for “time-independent
liveness” in TPNs, known for more than 15 years, which were the impetus for the present work.
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A PN is calledhomogeneousif for each placep holds:V (p, t) = V (p, t′) for all t, t′ ∈ p•, i.e. the
weights of all arcs fromp to its post-transitions are equal. When all of its arc weights are 1’s then the PN
is anordinary one. AnExtended Free-Choice net (EFC)is an ordinary PN such that for allp1, p2 ∈ P
holds: Whenp1 ∩ p2 6= ∅ thenp•1 = p•2. An Extended Simple net (ES)is an ordinary PN such that for
all p1, p2 ∈ P holds: Whenp1 ∩ p2 6= ∅ thenp•1 ⊆ p•2 or p•2 ⊆ p•1.

Now we introduce the notionsgeneralized EFCandgeneralized ES.

Definition 3.1. A PNN = (P, T, F, V,mo) is called ageneralized EFCiff N is homogeneous and for
all p1, p2 ∈ P holds: Whenp1 ∩ p2 6= ∅ thenp•1 = p•2.

Definition 3.2. A PN N = (P, T, F, V,mo) is called ageneralized ESiff N is homogeneous and for
all p1, p2 ∈ P holds: Whenp1 ∩ p2 6= ∅ thenp•1 ⊆ p•2 or p•2 ⊆ p•1.

The next definition we introduce in order to define “time windows” for transitions in conflict.

Definition 3.3. Let N = (P, T, F, V,mo) be a PN andp a place inN . ThenMin(p) := max{eft(t) |
t ∈ p•} andMax(p) := min{lf t(t) | t ∈ p•}.

It is clear that in a generalized EFC with a placep whichMin(p) is greater thanMax(p) there is a
transitiont ∈ p• andt can never fire because another transition has to fire beforet becomes ready to fire.
Thus, the transitiont is dead.

3.2. Some structural properies of generalized ES nets

In the following we always consider TPNsZ = (P, T, F, V,m0, I) which satisfy the three properties:

(V1) S(Z) is a generalized ES net,

(V2) for every placep ∈ P holdsMin(p) ≤ Max(p) and

(V3) for every transitiont ∈ T it holds: lft(t) > 0.

First, we give some definitions and propositions for better understanding the static structure of the
generalized ES Nets. Then we analyze the dynamic behaviour of the presumed TPNs.

Definition 3.4. A placep ∈ P is of first degreeiff

∀q ∈ P : p• ∩ q• 6= ∅ =⇒ p• ⊇ q•.

A placep ∈ P is of n-th degree iffp• 6= ∅ and

n = max
q∈P

{k | q• ) p• ∧ q is of k-th degree} + 1.

Theorem 1. Definition 3.4 is well-defined.

0Also known as asymmetric choice net (cp. [11]).
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Proof: We have to show that a place can never be of two different degrees.
According to definition 3.4, a place is of first degree when either it has no post-transitions or there

is no place with a proper superset of post-transitions. Therefore, no place of first degree can be also of
higher degree.

Let p ∈ P be a place ofm-th andn-th degree, whereasm andn are greater than 1. Then w.r.t.
definition 3.4 it holds:

∃qm ∈ P : qm is of (m − 1)-th degree∧ qm
• ) p• and∄r ∈ P : qm

• ) r• ) p• and

∃qn ∈ P : qn is of (n − 1)-th degree∧ qn
• ) p• and∄r ∈ P : qn

• ) r• ) p•. (1)

Then the inclusion∅ 6= p• ⊆ qm
• ∩ qn

• follows immediately and because of property (V1) and w.l.o.g.
alsoqm

• ⊆ qn
•. Sincep• ( qm

• ( qn
• and (1) hold the inclusion can be no proper. This leads to

qm
• = qn

• =⇒ ∀r ∈ P : (r• ( qm
• ⇔ r• ( qn

•) =⇒

m = max
r∈P

{k | r• ) qm
• ∧ r is of k-th degree} = max

r∈P
{k | r• ) qn

• ∧ r is of k-th degree} = n.2

Lemma 3.1. Two placesp, q ∈ P of same degree with at least one common post-transition havethe
same set of post-transitions.

Proof: Let p andq be two places withp• ∩ q• 6= ∅. Because of (V1) the subset relationp• ⊆ q• or
q• ⊆ p• is true. If the inclusion would be a proper, meaning w.l.o.gq• ) p•, then w.r.t. definition 3.4p
would be of higher degree thanq. Thus, the inclusion cannot be proper and thereforep• = q•. 2

Lemma 3.2. Let a transitiont ∈ T have a pre-place ofn-th degree. Then for everyi with 1 ≤ i ≤ n t
has a pre-place ofi-th degree.

Proof: The proof will be done by induction. The initial step is trivial.
Inductive step: Let a placep ∈ •t be of(n + 1)-th degree. Then according to definition 3.4 there is a

placepn ∈ P of n-th degree witht ∈ p• ( p•n. This impliespn ∈ •t. 2

Definition 3.5. A transition t ∈ T is of n-th degreeiff

n = max
p∈•t

{k | p is of k-th degree}.

Lemma 3.3. For every two transitionss, t ∈ T and a common pre-placep ∈ •s∩•t of k-th degree holds

∀i ∈ N ∀q ∈ •t : 1 ≤ i ≤ k ∧ q is of i-th degree=⇒ q ∈ •s.

Proof: Let q ∈ •t be a pre-place ofi-th degree with1 ≤ i ≤ k. Thenq is a pre-place ofs because of

{s, t} ⊆ p• ⊆ q• =⇒ q ∈ •s. 2

Definition 3.6. 1. Two transitionss, t ∈ T are instatic conflict (short:s ≬ t) iff they have a common
pre-place, i.e.

s ≬ t :⇐⇒ •s ∩ •t 6= ∅.
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2. A transitions ∈ T is dominating a transitiont ∈ T w.r.t. a set of placesM ⊆ P (short: t <M s)
iff s andt are in static conflict and the set of pre-places ofs relative toM is a proper subset of the
set of pre-places oft relative toM i.e.

t <M s :⇐⇒ s ≬ t ∧ •s ∩ M ( •t ∩ M.

3. Two transitionss, t ∈ T areequivalent w.r.t. a set of placesM ⊆ P (short:s ∼M t) iff they have
the same pre-places relative toM , i.e.

s ∼M t :⇐⇒ •s ∩ M = •t ∩ M.

It is clear that each transitiont ∈ T is always in conflict with itself.

Lemma 3.4. The relation≬ is an equivalence relation overT .

Proof: Reflexivity and symmetry follow immediately from definition3.6. Letr, s, t ∈ T be transitions
with r ≬ s ands ≬ t. Then there exist common pre-placesp̃ andq̃ with p̃ ∈ •r ∩ •s of m-th degree and
q̃ ∈ •s ∩ •t of n-th degree. Then, due to lemmas 3.2 and 3.3 the following holds:

∃p ∈ •r ∩ •s : p is of 1-th degree and∃q ∈ •s ∩ •t : q is of 1-th degree.

Now, applying lemma 3.1 we obtain

s ∈ p• ∩ q• =⇒ {r, s, t} ⊆ p• = q• =⇒ ∅ 6= {p, q} ⊆ •r ∩ •t =⇒ r ≬ t.
2

Lemma 3.5. The relation∼M is an equivalence relation overT for every subsetM ⊆ P .

Proof: The relation∼M is an equivalence relation, since the equality (=) of sets is an equivalence
relation. 2

Lemma 3.6. The relation<M is transitive for everyM ⊆ P .

Proof: This holds because of the transitivity of the subset relation (⊆). 2

Lemma 3.7. For every two transitionss, t ∈ T which are in static conflict it holds:t ∼•t s ∨ t <•t s.

Proof: Let s andt be in static conflict. Hence, it holds:•s∩ •t 6= ∅ and therefore also∅ 6= •s∩ •t ⊆ •t.
There are two cases to be considered:
Case 1: •s ∩ •t = •t. Then according to the definition 3.6 (subitem (3)) it follows: t ∼•t s.
Case 2: •s ∩ •t ( •t. Then according to the definition 3.6 (subitem (2)) it follows: t <•t s. 2



J.P. Bachmann and L. Popova-Zeugmann / Time-independent Liveness in Time Petri Nets 9

3.3. When the skeleton is live, then the TPN is live as well

Definition 3.7. A placep ∈ P is live in a statez iff p has a pre-transitiont ∈ •p which is live inz, i.e.

p is live in z :⇐⇒ ∃t ∈ •p : t is live in z.

A placep ∈ P is dead in the statez iff all of its pre-transitions are dead inz, i.e.

p is dead inz :⇐⇒ ∀t ∈ •p : t is dead inz.

Lemma 3.8. Let z ∈ RSZ be a reachable state. Then there is a statez′ ∈ RSZ(z) such that every
transition and, therefore, every place is either dead or live in that state, i.e.

∀t ∈ T : t is dead inz′ ∨ t is live in z′ and (2)

∀p ∈ P : p is dead inz′ ∨ p is live in z′. (3)

Proof: Let z ∈ RSZ be a reachable state,t ∈ T an arbitrary transition and lett be not live inz. Then
there exists a statez1 ∈ RSZ(z) such thatt is dead inz1. Beacause of the finiteness of the setT there is
an ∈ N such that there is no transition which is not live inzn. This means that every transition is either
dead or live inzn. Hence, (2) is true forz′ := zn. Property (3) follows immediately from (2) because of
definition 3.7. 2

Definition 3.8. Let z ∈ RSZ be a reachable state,σ(τ) = τ0t1τ1 . . . tnτn be a feasible run with:

if τn = 0 then n = 0 (4)

and z
τ0−→ z1

0

t1−→ z0
1

τ1−→ z1
1

t2−→ z0
2

τ2−→ z1
2

t3−→ . . .
τn−1
−−−→ z1

n−1

tn−→ z0
n

τn−→ z1
n,

where for the statesz1
i = (m1

i , h
1
i ) holds

∀i ∈ N : 0 ≤ i < n =⇒ h1
i (ti+1) = lft(ti+1).

Thenσ(τ) is called aforced run starting fromz. Furthermore,σ(τ) is a forced run, passing the timee
iff n

∑

i=0

τi = e.

Property (4) claims that the forced run consists of a minimalnumber of transitions in order to pass the
timee ≥ 0.

Lemma 3.9. LetZ = (T, P, F, V,m, I) be a deadlock-free Time Petri net such that only the restriction
(V3) holds. Then for every reachable statez ∈ RSZ and every timee ≥ 0 there is a feasible runσ(τ)

with σ = t1 . . . tn, τ = τ0 . . . τn and starting atz and it holds
n
∑

i=0

τi = e. Even more, it is possible to

find a forced run starting fromz ∈ RSZ passing the timee ≥ 0.
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Proof: Let τ̂ := min
t∈T

{lft(t)} be the smallestlf t in Z andz1 = (m1, h1) ∈ RSZ be a reachable state.

Successively, transitions reaching their latest firing time will fire. After that, as much time as possible
will be passed. If more than|T | transitions will have been fired, then at leastτ̂ time will have passed.
This process will be repeated as much as needed, thus the proof will be done by nested recursion. The
counter variable for the outer recursion will bei and the one for the inner recursion will bej.

For i ≥ 1 successively setM0
i := {t ∈ T | hi(t) = lft(t)} and lett0i ∈ M0

i be an arbitrary transition
whose clock reached its latest firing time. Then setσ0

i := t0i and letz1
i ∈ RSZ(zi) be the state defined by

zi

σ0
i−→ z1

i = (m1
i , h

1
i ).

This describes the outer recursion.
With the inner recursion a statẽzi := zni

i will be constructed such that no clock of an enabled
transition is at its latest firing time. So, forj ≥ 1 set

M j
i :=

{

t ∈ T | hj
i (t) = lft(t)

}

( M j−1

i (5)

and lettji ∈ M j
i be a transition whose clock is at its latest firing time. Furthermore, setσj

i := σj−1

i tji

and letzj+1

i be the state defined byzj
i

t
j
i−→ zj+1

i . Obviously, the setsM j
i will be smaller with each step,

thusMni

i = ∅ for ani ∈ N. That is the way a statẽzi = (m̃i, h̃i) := zni

i will be reached after firing

σi := σni

i = t0i . . . tni−1

i . (6)

Now, a certain amount of time can be passed. Setτ0 := 0 and

τi := min











e −
i−1
∑

k=0

τk, max
t ∈ T

h̃i(t) 6= #

{

lft(t) − h̃i(t)
}











(7)

and letzi+1 = (mi+1, hi+1) be the state defined byzi
σi−→ z̃i

τi−→ zi+1.
BecauseZ is deadlock-free there is always a transitiont ∈ T such that̃hi(t) 6= # holds. Hence, this

definition is well-defined. Ifτi = 0 then
∑i−1

k=0
τk = e is true because of (7) and because of the basic

property (∀t ∈ T : h̃i(t) < lft(t)∨ h̃i(t) = #). Otherwisei will be incremented and the process is going
to be continued. Now,σ := σ1τ1σ2τ2 . . . σi−1τi−1 is a feasible and forced run starting fromz1 passing
the timee.

This process brings a finite feasible run starting fromz which can be seen by the following. There
areni transitions firing in every runσiτi. After that the timeτi is passed. (5) and (6) implyni ≤ |T | and
∀i > 1 : 1 ≤ ni, thus

∃ĩ ∈ N : |T | <

ĩ
∑

k=1

nk ≤ 2|T |. (8)

The left unequation of (8) implies that there is a transitiont̂ ∈ σ1 . . . σĩ which fires at least twice in that
run, thus its clock has been reset and the second time it fired at its latest firing time. Then

ĩ−1
∑

k=1

τk ≥ lft
(

t̂
)

≥ τ̂
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holds. The right unequation of (8) implies that the run is finite. By repeating that processn :=
[

τ
τ̂

]

+ 1
times, the number of transitions which fired is not greater then2

(⌈

τ
τ̂

⌉

+ 1
)

|T |. Furthermore, there is at
least the timeτ passed, since

τ ≤ nτ̂ = τ̂
(⌈τ

τ̂

]

⌉ + 1
)

⇐⇒
τ

τ̂
− 1 ≤

⌈τ

τ̂

⌉

.
2

Lemma 3.10. Let z0 = (m0, h0) ∈ RSZ be a reachable state inZ, t∗ ∈ T be an arbitrary transition and
•t∗ = {p1, . . . , pn} be the set of the pre-places oft∗ “ordered/indexed” by descending degree, i.e.

∀i ∈ N ∀j ∈ N : 1 ≤ i ≤ j ≤ n ∧ pi is of c-th degree∧ pj is of d-th degree=⇒ c ≥ d.

Furthermore, letM0 = ∅ andMi := {p1, . . . , pi} be for each1 ≤ i ≤ n.
If there is añi with 0 ≤ ĩ < n such that

∀p ∈ •t∗ \ Mĩ : p is live in z0, (9)

∀p ∈ Mĩ : m0(p) ≥ V (p, t∗) and (10)

∀t ∈ T : t ≬ t∗ =⇒ h0(t) = 0 ∨ h0(t) = #, (11)

then there is a statezn+1 ∈ RSZ(z0) andt∗ is ready to fire in statezn+1.

Proof: The proof is done by induction.

Base:At the beginning seti = ĩ andzi+1

0
= z0. The assumptions for the next step in the recursion are

made of (10) and (11).

Step: (i − 1) −→ i: First setj = 1. In every case of the following case dfferentiation wheret∗ is not
ready to fire the assumptions

∀p ∈ Mi−1 : mi
j+1(p) ≥ V (p, t∗) andmi

j+1(pi) > mi
j(pi) and (12)

∀t ∈ T : t ≬ t∗ =⇒ hi
j(t) = 0 ∨ hi

j(t) = # (13)

will be prooved for every reached pair(i, j). This especially implies (10) and (11). The placepi is live
in zi

j−1
sincei > ĩ and (9) holds, meaning∃ti ∈

•pi : ti is live in zi
j−1

, wherefore there is a feasible run
starting fromzi

j−1 and firingti at the end. This increases the number of tokens onpi.

∃σ̂i
j : zi

j−1

σ̂i
j

−→ ẑi
j = (m̂i

j , ĥ
i
j) ∧ m̂i

j(pi) > mi
j−1(pi).

Case 1:∀t ∈ σ̂i
j : •t ∩ Mi 6= ∅, meaning the number of tokens did not decrease on places ofMi. Then

setz̃i
j = (m̃i

j , h̃
i
j) := ẑi

j andσ̃i
j := σ̂i

j.
Case 2:∃t̃ ∈ σ̂i

j : •t̃ ∩ Mi 6= ∅. In this case a transition with a pre-place ofMi must have been firing

during σ̂i
j. Setσ̂i

j = 0τ̂ i
j

1t̂ij
1τ̂ i

j . . . bt̂ij
bτ̂ i

j for a b ∈ N. Then

∃a ∈ N : 1 ≤ a ≤ b =⇒ •(at̂ij) ∩ Mi 6= ∅ ∧
(

∀c ∈ N : 1 ≤ c < a =⇒ •(ct̂ij) ∩ Mi = ∅
)

,

i.e. at̂ij is the first transition of̂σi
j which has a pre-place ofMi. W.r.t. lemma 3.3 this transition has also

pi as a pre-place. Definẽσi
j := 0τ̂ i

j
1t̂ij

1τ̂ i
j . . . a−1t̂ij and the statẽzi

j = (m̃i
j , h̃

i
j) by zi

j1

σ̃i
j

−→ z̃i
j .
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In both cases a statẽzi
j is reached fulfilling (12) (substitutemi

j+1 by m̃i
j).

The following case differentiation constructs a statezi
j ∈ RSZ(z̃i

j) which fulfills (13), as well.

Case 1:In z̃i
j the assumption (13) is already fulfilled. Then setzi

j = (mi
j , h

i
j) := z̃i

j .

Case 2:∃t̃ ∈ T : t̃ ≬ t∗ ∧ ĥi
j(t̃) > 0. Due to Lemma 3.9 there exists a forced runσ̄i

j with

z̃i
j

σ̄i
j

−→ z̄i
j = (m̄i

j , h̄
i
j).

passing the time lft
(

t̃
)

− h̃i
j(t̃) starting fromz̃i

j . Remark that all transitions of̄σi
j fire at their latest firing

time during.

Case 2.1:h̄i
j(t̃) = lft

(

t̃
)

. This means that the transitioñt which impedes the asumptions (13) for the
next firing is ready to fire in̄zi

j. ∀t ∈ σ̄i
j : •t ∩ Mi = ∅ holds sincēσi

j is a forced run starting from̃zi
j .

The firing of t̃ could decrease the number of tokens of a place ofMi.

Case 2.1.1: •t̃ ∩ Mi 6= ∅. For all statessz̆i
j = (sm̆i

j ,
sh̆

i

j) which has been reached durinḡσi
j the

assumption
(t∗)−

Mi

≤ sm̆i
j
Mi

holds. This face, lemma 3.3 and V2 bringst̃− ≤ sm̆i
j =⇒ (t∗)− ≤ sm̆i

j, whereforeh̄i
j(t̃) = h̄i

j(t
∗).

Finally t∗ is ready to fire in̄zi
j because of eft(t∗) ≤ lft

(

t̃
)

= h̄i
j(t̃) which holds because of V3. In this

case the proof is done.

Case 2.1.2:•t̃ ∩ Mi = ∅. Then∀1 ≤ k ≤ i : pk /∈ •t̃ holds. The assumptions (12) and (13) for the next

step of the recursion are fulfilled with̄zi
j

t̃
−→ zi

j . In this case setσi
j := σ̃i

j σ̄
i
j t̃.

Case 2.2:h̄i
j(t̃) < lft

(

t̃
)

∨ h̄i
j(t̃) = #. In this case a transition which is in static conflict witht̃ fired

during σ̄i
j , meaning∃t ∈ σ̄i

j : t ≬ t̃. Setσ̄i
j = τ̄0t̄1τ̄1 . . . t̄rτ̄r. Then

∃t̄a ∈ σ̄i
j : t̄a ≬ t∗ ∧ ∀1 ≤ b < a : •t̄b ∩

•t∗ = ∅ (14)

holds because of lemma 3.4. Then defineσ̇i
j := τ̄0t̄1 . . . τ̄a−1 andżi

j = (ṁi
j , ḣ

i
j) by z̃i

j

σ̇i
j

−→ żi
j.

Case 2.2.1:•t̄a ∩ Mi 6= ∅. For all statessz̆i
j = (sm̆i

j,
s h̆i

j) reached durinġσi
j

(t∗)−

Mi

≤s m̆i
j
Mi

holds analogously to case 2.1.1. In addition lemma 3.3 and V2holds whereforēt−a ≤s m̆i
j =⇒ (t∗)− ≤s

m̆i
j holds for these states. Setḣi

j(t̄a) = ḣi
j(t

∗). Finally, t∗ is ready to fire inżi
j because eft(t∗) ≤

lft
(

ṫa
)

= ḣi
j(t̄a) holds. In this case the proof is done.

Case 2.2.2:•t̄a ∩ Mi = ∅. Define the statezi
j by żi

j

t̄a−→ zi
j . The assumptions (12) and (13) are then

fulfilled in zi
j since (14) holds. Then setσi

j := σ̃i
j σ̇

i
j t̄a.

By successively repeating this process forj > 1 until mi
j(pi) ≥ V (pi, t

∗) holds, a feasible run
σi = σi

1 . . . σi
j1

starting fromzi
0 is reached or a state is reached during that process in whicht∗ is ready
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to fire. This process will finish after finite steps since the number of tokens onpi raise for increasingj.
Let zi+1

0
be the state defined by

zi
0

σi

−→ zi+1

0
.

These steps will be repeated fori = (̃i + 1), . . . , n. Thent∗ fires or a statezn+1 is reached in which
t∗ is enabled and

∀t ∈ T : t ≬ t∗ =⇒ hn+1(t) = 0 ∨ hn+1(t) = # (15)

holds. Letσf be a forced run passing the time eft(t∗) starting fromzn+1. Then∀t ∈ σf : •t ∩ •t∗ = ∅
holds since (V3) and (15) is fulfilled. Letzf = (mf , hf ) be the state defined by

zn+1 σf

−→ zf .

Then(t∗)− ≤ mf and eft(t∗) = hf (t∗) holds, i.e.t∗ is ready to fire inzf . 2

Lemma 3.11. Let z = (m,h) ∈ RSZ be a reachable state inZ andt∗ ∈ T be an arbitrary transition.
Then if each pre-placep of t∗ is live thant∗ is live, as well.

Proof: Let z0 = (m0, h0) ∈ RSZ(z) be an arbitrary state reachable fromz. In the following a statez2

will be constructed which fulfill the conditions of lemma 3.10.

Case 1:If the condition (11) of lemma 3.10 is already fulfilled then setz2 := z0.

Case 2:∃t̃ ∈ T : t̃ ≬ t∗ ∧ h0(t̃) > 0. Let σ1 be a forced run passing the time lft
(

t̃
)

− h0(t̃) starting from
z0. Define the statez1 by

z0 σ1

−→ z1 = (m1, h1).

Case 2.1:h1(t̃) = lft
(

t̃
)

. The letz2 be the state defined byz0 σ1

−→ z1 t̃
−→ z2 = (m2, h2). In this state the

condition∀t ∈ T : t ≬ t∗ =⇒ h2(t) = 0 ∨ h2(t) = # holds.

Case 2.2:h1(t̃) < lft
(

t̃
)

∨ h1(t̃) = #. Defineσ1 := τ0t1τ1 . . . trτr. Then

∃ta ∈ σ1 : ta ≬ t∗ ∧ ∀1 ≤ b ≤ a : •tb ∩
•t∗ = ∅

must hold. In this case letz2 be the state defined byz0 τ0t1...ta−−−−−→ z2. In this state the assumption
∀t ∈ T : t ≬ t∗ =⇒ h2(t) = 0 ∨ h2(t) = # holds.

In every casez2 fulfills the assumptions for lemma 3.10 withĩ = 0, wherefore there is a following
statez3 ∈ RSZ(z2) in which t∗ is ready to fire. 2

Lemma 3.12. Let z ∈ RSZ be a reachable state inZ. Then iff t ∈ T is dead inz the following holds:

∃p ∈ •t ∃z′ ∈ RSZ(z) : p is dead inz′.

Proof: By lemma 3.8 there is a following statez′ ∈ RSZ(z) in which all transitions and places are either
dead or live, meaning

∀t ∈ T : t is dead inz′ ∨ t is live in z′ and

∀p ∈ P : p is dead inz′ ∨ p is live in z′.

If all p ∈ •t would be live inz′ then, by lemma 3.11,t would be live inz′ in contradiction to the
assumptions. 2
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Lemma 3.13. Let z = (m,h) ∈ RSZ be a reachable state andt∗ ∈ T be a transition with the properties:
Every pre-place oft∗ is dead or live inz and at least one pre-place oft∗ is dead inz. Then there is a state
z̃ = (m̃, h̃) ∈ RSZ(z) and it holds:

∃p ∈ •t∗ : p is dead inz̃ ∧ m̃(p) < V (p, t∗).

Proof: Let •t∗ = {p1, . . . , pn} be the set of the pre-places oft∗ indexed by descending degree, i.e.

∀i ∈ N ∀j ∈ N : 1 ≤ i ≤ j ≤ n ∧ pi is of c-th degree∧ pj is of d-ter degree=⇒ c ≥ d.

Furthermore, let
pm ∈ •t∗ : pm is dead inz ∧ ∀m < i ≤ n : pi is live in z

be the last (w.r.t. the indices) pre-place oft∗ which is dead inz, let

L1 := {pi ∈
•t∗ | 1 ≤ i < m ∧ pi is live in z}

be the set of pre-places which are live inz and have at least the same degree aspm and eventually let

L2 := {pi ∈
•t∗ | m < i ≤ n ∧ pi is live in z}

be the set of pre-places which are live inz and have at most the same degree aspm. Furthermore, w.l.o.g.
let ∀p ∈ •t∗ : p is dead inz =⇒ m(p) ≥ V (p, t∗). Otherwise, the proof would already be done.

Due to the definitions ofL1 andL2 there is a transitionti ∈ •pi which is live in z for everypi ∈
L1 ∪ L2. Hence, a feasible runσ1 with z

σ1−→ z1 = (m1, h1) starting fromz exists such that the pre-
transitionti of pi ∈ L1 which is live inz occurs at leastV (pi, t

∗) times inσ1. Following, the number of
tokens on the placespi ∈ L1 increased at leastV (pi, t

∗) times duringσ1.

Case 1:∃pi ∈ L1 : m1(pi) < V (pi, t
∗). Then∃t̃ ∈ σ1 : pi ∈

•t̃ must hold. Due to lemma 3.3 the place
pm is also a pre-place of̃t. Thus, the number of tokens onpm in z1 is less than the number of tokens on
pm in z.

Case 2:∀pi ∈ L1 : m1(pi) ≥ V (pi, t
∗).

Case 2.1:∀t ∈ T : t ≬ t∗ =⇒ h1(t) = 0 ∨ h1(t) = #. In this case the conditions for lemma 3.10 are
fulfilled with L1 asMĩ. Thus, there is a statez2 ∈ RSZ(z1) in which t∗ is ready to fire. By firingt∗ in
z2 the number of tokens onpm decreases.

Case 2.2: ∃t̃ ∈ T : t̃ ≬ t∗ ∧ h1(t̃) > 0. Then the forced runσ2, started atz1, passing the time
lft

(

t̃
)

− h1(t̃) achieves a statez2 = (m2, h2) ∈ RSZ(z1), i.e. z1 σ2−→ z2

Case 2.2.1h2(t̃) = lft
(

t̃
)

. Thent̃ is ready to fire inz2.

Case 2.2.1.1•t̃ ∩ L1 = ∅. In this case the conditions of lemma 3.10 are fulfilled withL1 asMĩ in the
state followingz2 by firing t̃. Hence, there is a following statez3 such thatt∗ is ready to fire inz3.

Case 2.2.1.2•t̃ ∩ L1 6= ∅. Due to lemma 3.3,pm is also a pre-place of̃t, thus the number of tokens on
pm decrease by firing̃t in z2.

Case 2.2.2h2(t̃) 6= lft
(

t̃
)

. In this case a transition̂t ∈ σ2, which is in static conflict with̃t had to fire.
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Case 2.2.2.1•t̂ ∩ L1 = ∅. In this case the conditions of lemma 3.10 are fulfilled withL1 asMĩ. Thus
there is a statez3 ∈ RSZ(z2) in which t∗ is ready to fire. After the firing oft∗ in z3 the number of tokens
onpm decrease.

Case 2.2.2.2•t̂ ∩ L1 6= ∅. Due to lemma 3.3,pm is also a pre-place of̂t and therefore the number of
tokens onpm in z2 is less than the number of tokens onpm in z1.

Altogether the number of tokens onpm decreased. Sincepm is dead inz, the number of tokens on
pm cannot be increased in a following state. Hence, by repeating this process a statẽz = (m̃, h̃) will be
reached after finite steps and̃m(pm) < V (pm, t∗) holds. 2

Lemma 3.14. Let z ∈ RSZ be a reachable state andt ∈ T be a transition which is dead inz. Then there
is a statez′ = (m′, h′) ∈ RSZ(z) such that the following holds:

∃p ∈ •t : p is dead inz′ ∧ m′(p) < V (p, t).

Proof: According to lemma 3.8 there is a statez′′ ∈ RSZ(z) such that every transition and every place
is either dead or live in that state. Especially,t is dead inz′′. Due to lemma 3.12 it holds:

∃z′′′ ∈ RSZ(z′′) ⊆ RSZ(z) ∃p ∈ •t : p is dead inz′′′.

Then because of lemma 3.13 it follows:

∃z′ = (m′, h′) ∈ RSZ(z′′′) ⊆ RSZ(z) ∃p ∈ •t : p is dead inz′ ∧ m′(p) < V (p, t).
2

Lemma 3.15. Let z ∈ Z be a reachable state. If all transitions are either dead or live inz, i.e.

∀t ∈ T : t is dead inz ∨ t is live in z,

then there is a statez′ ∈ RSZ(z) such that every transition which is dead in that state has a pre-place
which has not enough tokens for the purpose of enabling this transition, i.e.

∀t ∈ T : t is dead inz′ =⇒ ∃p ∈ •t : p is dead inz′ ∧ m′(p) < V (p, t).

Proof: Let z0 = (m0, h0) := z and T̃ := {t ∈ T : t is dead inz} be the set of all transition which
are dead inz. Remark that, due to definition 3.7, all places are dead or live in z0 too. The following
argumentatin will be repeated fori ≥ 0.

Let T̃i :=
{

t ∈ T : t is dead inzi ∧ ∃p ∈ •t : p is dead inzi ∧ mi(pi) < V (pi, t)
}

⊆ T̃ ⊆ T be the
set of all transitions which are dead inzi and which have a pre-place, not enough marked for enabling
the appropriate transition. If̃T \ T̃i 6= ∅ then chooseti ∈ T̃ \ T̃i and fix it. Due to lemma 3.14 there is a
statezi+1 = (mi+1, hi+1) ∈ RSZ(zi) such that

∃p ∈ •ti : p is dead inzi+1 ∧ mi+1(p) < V (p, ti)

holds. Hence,ti /∈ T̃is ( T̃i+1 ∋ ti is true.
Since the number of transitions is finite the sequence(T̃i)i∈N will be constant fromTn for an ∈ N.

Due to constructioñTn = T̃ holds. 2
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Lemma 3.16. LetZ = (T, P, F, V,m, I) be a TPN with a live skeleton. ThenZ is deadlock-free.

Proof: Everyp-markingm of a reachable statez ∈ RSZ is also a reachable marking of the skeleton
S(Z). Assuming that there is a statez = (m,h) andZ is dead inz concludes that no transition is
enabled inm. This is a contradiction to the liveness of the skeleton.

Theorem 2. For each TPN with the properies (V1), (V2) and (V3) it holds: WhenS(Z) is live thanZ
is live, as well.

Proof: Assume that the skeletonS(Z) is live but the TPNZ is not live.
Due to lemma 3.8 there is a statez′ ∈ RSZ such that every transition and every place is either dead

or live in that state. Because of lemma 3.15 there is a statez′′ = (m′′, h′′) ∈ RSZ(z′) such that every
transitiont ∈ T which is dead inz′′ has a pre-place, dead inz′′ and has not enough token for enablingt,
i.e. ∃p ∈ •t : m′′(p) < V (p, t). Let

T̃ :=
{

t ∈ T : t is dead inz′′
}

andP̃ := •T̃

be. SinceZ is deadlock-free it follows because of lemma 3.16 thatT \ T̃ 6= ∅. Due to the construction
of T̃ it holds:

∀t ∈ T̃ ∃p ∈ •t ∩ P̃ : m′′(p) < V (p, t).

Let t∗ ∈ T̃ be an arbitrary transition. SinceS(Z) is live andm′′ is a reachable marking inS(Z)

there is a transition sequenceσ = w1 . . . wr such thatm′′ σ
−→

t∗
−→ is feasible in the skeleton. Now, because

a pre-place oft∗ exists which is dead inz′′ and has not enough tokens for enablingt∗ there is a transition
wi ∈ σ andwi ∈ T̃ . Let i be minimal with this property, i.e.

wi ∈ T̃ ∧ ∀1 ≤ j < i : wj /∈ T̃ .

Due to the same reasone forwi ∈ T̃ it holds:

∃wj ∈ w1 . . . wi−1 : wj ∈ T̃ .

This is a contradiction to the minimality ofi and thereforeZ has to be live. 2

4. Conclusions

In this paper we manage to give an enlargement of the set of TPNs which are time-independent live,
that means their liveness does not depend on the time. The proper enlargement refers to the property
“generalized ES nets”. For more than fifteen years the proof has been done for generalized EFC nets.
However, a generalization of the “old” proof for generalized ES nets does not work.

It is important to know that the properties (V1), (V2) and (V3) cannot be done weaker (cf. [6]).
Thus, for the future, we are looking for new time-independent live classes of TPNs: Especially we will
consider BFC nets, defined in [3] and generalize them in the same manner as we have done with the
EFC nets and the ES nets. However, such a class will be defined by dynamic properties, which are not
decidable for TPNs in general.
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