HUMBOLDT-UNIVERSITÄT ZU BERLIN

ZMP based Walking

Overview and our experience

Yuan Xu xu@informatik.hu-berlin.de

What is ZMP?

Figure: The distributed floor reaction force can be replaced by a single force acts on Zero-moment Point (ZMP).

What is ZMP?

Ways to measure ZMP

$$p = \frac{\int x f(x) dx}{\int f(x) dx}$$

Inverse Dynamics:

$$\left[\begin{array}{c} f_{\mathbf{z}} \\ \tau \end{array}\right] = InvDyn(\mathbf{x}, \dot{\mathbf{x}}, \ddot{\mathbf{x}})$$

$$p = -rac{\gamma}{f_z}$$

Simplification

$$p = x - \frac{z\ddot{x}}{\ddot{z} + g}$$

Figure: One mass model

Simplification

$$p = x - \frac{z\ddot{x}}{g}$$

Figure: Linear inverted pendulum

ZMP based pattern generation

Closed loop Walk

Problem and Future work

Figure: Two masses model

- low level control (un-smooth movement)
- stabilizer
- ► foot compensation
- better model