
Quick start tutorialQuick start tutorial
for programming a SimSpark agent for programming a SimSpark agent
with the framework RoboNewbie_1.0with the framework RoboNewbie_1.0

Monika Domanska, Hans-Dieter Burkhard
Institute of Informatics

Humboldt University Berlin, 10099 Berlin

hdb@informatik.hu-berlin.de
domanska@informatik.hu-berlin.defjs

14.6.2013

2

Check the installationCheck the installation

MotionEditor, started with MotionEditor.jar:

3

Check the installationCheck the installation

SimSpark and RoboNewbie:

1) Start SimSpark with rcsserver3d.exe.

2) Start NetBeans and open the RoboNewbie project in it.
NetBeans >> File >> Open Project...
>> [choose the unzipped RoboNewbie directory]

3) Go to the package “examples”, and run
Agent_BasicStructure.java
(right click on the file name → Run File) .

In the SimSpark monitor window you should see a robot, after a
moment it lifts the arms, then it stands still for a few seconds, and
at the end the robot disappears.

4

Check the installationCheck the installation

SimSpark and RoboNewbie:

5

OutlineOutline

I. Structure overview

II. Architecture of agents

III.Classes for using perceptors

IV.Debugging agent code

V. Predefined effector usage: class KeyframeMotion

VI.Example to improve: agentSimpleSoccer

6

Structure overviewStructure overview

RoboNewbie:
● Java framework for programming the control of a SimSpark

robot
● set of useful classes and data
● set of implementation examples
● distributed as a zipped NetBeans project

— sources are in subdirectory „src“
— documentation in Javadoc-comments inside the source code,

read first the comments above the class definitions
— data in subdirectory „keyframes“ necessary for running examples
— used library in subdirectory „lib-apache-commons-math“

● Informations and software available at the RoboNewbie
homepage:
http://www.naoteamhumboldt.de/projects/RoboNewbie/

http://www.naoteamhumboldt.de/projects/RoboNewbie/

7

Structure overviewStructure overview

Java package structure:

Create your own programs here inside the RoboNewbie project (e.g. in a new
package „myAgents“), because of data and library dependencies.

„hardware access“ - connection to the
simulation server

special abilities for the agent

runnable is always the „Agent_“-class

[user´s programs]

project RoboNewbie

agentIO

util

keyframeMotion

localFieldView

examples

directMotion

8

OutlineOutline

I. Structure overview

II. Architecture of agents

III.Classes for using perceptors

IV.Debugging agent code

V. Predefined effector usage: class KeyframeMotion

VI.Example to improve: agentSimpleSoccer

9

Architecture of agentsArchitecture of agents

Components of a simulation:

SimSpark cycle 1 cycle 2 cycle 3 cycle 4 cycle ...

agent

send perceptor values
receive effector commands

process robot control

10

Architecture of agentsArchitecture of agents

Components of a simulation:

SimSpark cycle 1 cycle 2 cycle 3 cycle 4 cycle ...

agent

agent classes

EffectorOutputPerceptorInput

11

Architecture of agentsArchitecture of agents

SimSpark cycle 1 cycle 2 cycle 3 cycle 4 cycle ...

agent

agent classes

EffectorOutputPerceptorInput

12

Architecture of agentsArchitecture of agents

SimSpark cycle 1 cycle 2 cycle 3 cycle 4 cycle ...

agent

agent classes

How does that
work together?

EffectorOutputPerceptorInput

13

EffectorOutputPerceptorInput

Architecture of agentsArchitecture of agents

SimSpark cycle 1 cycle 2 cycle 3 cycle 4 cycle ...

agent

agent classes

2.

1.
3.

„Agent_...“-class:
runnable,

synchronization of server and agent,
coordination of agent classes

14

Architecture of agentsArchitecture of agents

Synchronization with the SimSpark server:

Receiving a server message with perceptor values
and
sending an agent message with effector commands
in every server cycle.

Coordination of agent classes:

Defining the order of class methods depends on classes choosen
for the agent.

Example:

Agent_BasicStructure.java

15

Architecture of agentsArchitecture of agents

Exercise 1: Try out changing Agent_BasicStructure.

1) Open the RoboNewbie-Project in NetBeans.
Make a new package for your own agents.
Copy Agent_BasicStructure from package examples into your
own package.

2) Start SimSpark with
"[SimSpark root directory]/rcssserver3d.exe"
Navigate at the monitor window with left mouse button, arrow
keys, keys a,s,d,w, page up, page down.

3) Run your class Agent_BasicStructure to test if everything works
(in NetBeans: right click on the filename → Run File).

4) Try changes:

➔Choose another initial position for the robot.
➔Change the effector commands in method run().

Try out other velocities, they range from -2π to 2π.
Try using other robot joints, you find the joint names in class
RobotConsts in package util.

16

OutlineOutline

I. Structure overview

II. Architecture of agents

III.Classes for using perceptors

IV.Debugging agent code

V. Predefined effector usage: class KeyframeMotion

VI.Example to improve: agentSimpleSoccer

17

Classes for using perceptorsClasses for using perceptors

Three kinds of perceptors in SimSpark:

1.
for the server and
game state:
Time,
GameState

2.
proprioceptive:
HingeJoint,
Accelerometer,
GyroRate,
ForceResistance

3.
for the simulated
external environment:
Vision (objects like the
ball, other players, …),
Hear

18

Classes for using perceptorsClasses for using perceptors

Classes receiving messages from the server and providing data:

1.
for the server and
game state:
Time,
GameState

2.
proprioceptive:
HingeJoint,
Accelerometer,
GyroRate,
ForceResistance

3.
for the simulated
external environment:
Vision (objects like the
ball, other players, …),
Hear

 received by class PerceptorInput

in every server cycle in every second (Hear)
or third (Vision)

server cycle

access provided only by PerceptorInput more comfortable
access to Vision
provided by class
LocalFieldView

19

Classes for using perceptorsClasses for using perceptors

Examples:
● For PerceptorInput:

examples.Agent_TestPerceptorInput
Note: PerceptorInput is already used in the Exercise 1 with
Agent_BasicStructure.

● For LocalFieldView:
examples.agentTestLocalFieldView.Agent_TestLocalFieldView
We will use it in Exercise 2.

20

Classes for using perceptorsClasses for using perceptors

LocalFieldView
model („beliefs“) of actual field situation:

● local coordinate system
● coordinates of field items (ball, lines,

goal posts, flags and other robots)
and time of last sensing

PerceptorInput
raw Vision-data

21

Pay attention to inherited
methods from DatedItemModel.

For needed constants see the
comment on LocalFieldView.

Classes for using perceptorsClasses for using perceptors

GoalPostModel

+ getCoords
+ toString

PlayerModel

+ getID
+ getTeam
+ getBodyPart
+ toString

LineModel

+ getStart
+ getEnd
+ toString

FlagModel

+ getCoords
+ toString

BallModel

+ getCoords
+ toString

DatedItemModel

+ isInFOVnow
+ getTimeStamp
+ toString

Simplified class diagram for models delivered by LocalFieldView:

22

Classes for using perceptorsClasses for using perceptors

Exercise 2: Show, where the other agent is.

Implement an agent, which lifts the robots arm, when it senses
another robot and moves the arm down, when it does not sense
any robot. If the other robot is on the left side of your own one, lift
the left arm, and the right arm for the right side.
(Limits for lifting and droping the arms are not important, just set
the effectors to move into the correct direction.)

Instructions:
Change a copy of Agent_TestLocalFieldView. Define:
id = „2“
team = „simpleSoccer“
Beam coordinates: X=-1, Y=-1, Rot=90.

Use Agent_SimpleSoccer as the target. Start it at different initial
positions. Some restrictions apply according to soccer rules.
Press „k“ (kick-off) and „b“ (drop ball) in the Monitor window.

23

OutlineOutline

I. Structure overview

II. Architecture of agents

III.Classes for using perceptors

IV.Debugging agent code

V. Predefined effector usage: class KeyframeMotion

VI.Example to improve: agentSimpleSoccer

24

Debugging agent codeDebugging agent code

Problem:

Using debug messages printed on System.out need too much
time, and the agent can not synchronize with the 20ms-cycle of the
SimSpark server.
This causes different strange behaviours of the controled robot,
e.g. it does not execute motor commands as expected.

Solutions:

1. Use the class util.Logger and print the debug output after the
agent program has finished. The usage of util.Logger is shown in
the examples (same as for perceptor usage above):

● examples.Agent_TestPerceptorInput
● examples.agentTestLocalFieldView.Agent_TestLocalFieldView

2. Use the „Agent synchronized mode“ („Sync-mode“) of the
SimSpark server and print the output during the runtime of your
agent program.

25

Debugging agent codeDebugging agent code

„Agent synchronized mode“ (Sync-mode):
The SimSpark server does not run in real time – it waits in each
cycle until it has received an agent message from every connected
agent, and then it starts the next cycle.

> System.out can be used :)

How to set the Sync-mode:
in file „[SimSpark root dir]/spark.rb“ change line 46 to :
$agentSyncMode = true

The integrated monitor will stop together with the server, to see the
simulation start another monitor window with
„[SimSpark root dir]/rcssmonitor3d.exe“

26

OutlineOutline

I. Structure overview

II. Architecture of agents

III.Classes for using perceptors

IV.Debugging agent code

V. Predefined effector usage: class KeyframeMotion

VI.Example to improve: agentSimpleSoccer

27

Predefined effector usage: class KeyframeMotionPredefined effector usage: class KeyframeMotion

Keyframe motions: Whole motions, e.g. walking two steps,
modeled in a sequence of postures „like in a comic“.

Class KeyframeMotion provides predefined motions:
● walk two steps forward
● stop walking
● big and small steps for turning right and left
● side steps to the left and right
● stand up from lying on the back
● roll over on the back (from lying on the front side)
● falling to the front and back
● motion the head down, left and right
● wave with both arms

Motions defined in .txt-files in
„[RoboNewbie root directory]/keyframes“

28

Predefined effector usage: class KeyframeMotionPredefined effector usage: class KeyframeMotion

Usage of the motions:

1) Once: if the robot is ready for the next motion (i.e. if it has
finished the last one), set the desired motion
in any class, usually in a class representing the thinking

AND

2) Continuously in every server cycle: call method
executeKeyframeSequence()
in method act() of the „Agent_“-class

Example:

Agent_SimpleWalkToBall

29

Predefined effector usage: class KeyframeMotionPredefined effector usage: class KeyframeMotion

Exercise 3: Walk avoiding an obstacle.

Start the robot facing the ball. It should walk forward, not hitting the
ball, but staying close to the direct way:

30

Predefined effector usage: class KeyframeMotionPredefined effector usage: class KeyframeMotion

Exercise 3: Walk avoiding an obstacle.

Instructions:
Change a copy of example agentSimpleWalkToBall. Define:
Beam coordinates: X=-1.5, Y=0, Rot=0.
(ID and team freely choosen.)
Use the ball model just to consider, when the robot should start
evading. The evading itself should be a sequence of keyframe
motions, not depending on the perceptors anymore.

31

Predefined effector usage: class KeyframeMotionPredefined effector usage: class KeyframeMotion

Two possibilities for designing new keyframe motions:

1. with a text editor

● each line represents one
frame
● first value is transition time
● then values for target angles
for the joints in the order as
defined in RoboNewbie class
util.RobotConsts

2. with program MotionEditor

● made by RoboCup team
NaoTH from Humboldt
University Berlin
● download executable and
usage instructions from the
RoboNewbie homepage

32

Predefined effector usage: class KeyframeMotionPredefined effector usage: class KeyframeMotion

Exercise 4: Design a motion for kicking the ball and try it out.

Instructions:
— Design the motion with the MotionEditor and save it in file

„[RoboNewbie root directory]/keyframes/test.txt“.
(Optional: You can generate the motion for the other side with
examples.agentKeyframeDeveloper.OtherSideGenerator.java)

— Test the new motion with RoboNewbie example
agentKeyframeDeveloper (see comment on class for usage).

— Integrate the motion to be provided by class KeyframeMotion as
described in the comment on the class KeyframeMotion.

— Write an agent using the new motion to check, if it is integrated
correctly.

33

OutlineOutline

I. Structure overview

II. Architecture of agents

III.Classes for using perceptors

IV.Debugging agent code

V. Predefined effector usage: class KeyframeMotion

VI.Example to improve: agentSimpleSoccer

34

Special

exercise:

Example to improve: agentSimpleSoccerExample to improve: agentSimpleSoccer

● Uses all possibilities of RoboNewbie.
● Applies KeyframeMotion for the body motions

and
special motion class LookAroundMotion in package
directMotion for the cyclic head motion.

 Motion classes are coordinated in „Agent_“-class.
● Needs 10 minutes to push the ball almost into the opponent

goal.

Exercise 5: Try to improve agentSimpleSoccer.

 Design or implement new motions and send
 them to us! We´re always looking for projects
 realized with RoboNewbie.

35

Thanks for your attention!

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35

