On Dynamics in Selfish Network Creation

Bernd Kawald & Pascal Lenzner
Humboldt-University Berlin

SPAA’13, Montréal
Models of Selfish Network Creation (1)

- \(n \) selfish agents want to create a \textit{connected} undirected network \(G = (V, E) \)
Models of Selfish Network Creation (1)

- n selfish agents want to create a *connected* undirected network $G = (V, E)$
- agents want to minimize cost for network usage while maximizing connection quality
Models of Selfish Network Creation (1)

- n selfish agents want to create a *connected* undirected network $G = (V, E)$
- agents want to minimize cost for network usage while maximizing connection quality
- every edge costs $\alpha > 0$, each edge has owner who pays for it
n selfish agents want to create a connected undirected network $G = (V, E)$
agents want to minimize cost for network usage while maximizing connection quality
every edge costs $\alpha > 0$, each edge has owner who pays for it
cost of an agent u in network (G, α):

$\text{cost}(u) = \text{edgecost}(u) + \text{distancecost}(u)$

$= \alpha \cdot (\#\text{edges bought by agent } u) + \text{distancecost}(u)$
Models of Selfish Network Creation (1)

- $\text{cost}(u) = \alpha \cdot (\#\text{edges bought by agent } u) + \text{distancecost}(u)$
Models of Selfish Network Creation (1)

- \(\text{cost}(u) = \alpha \cdot (\#\text{edges bought by agent } u) + \text{distancecost}(u) \)

SUM-Version: [Fabrikant et al., PODC'03]

\[
\text{distancecost}(u) = \begin{cases}
 \sum_{v \in V(G)} d_G(u, v), & \text{if } (G, \alpha) \text{ is connected} \\
 \infty, & \text{otherwise}
\end{cases}
\]
Models of Selfish Network Creation (1)

- cost(\(u\)) = \(\alpha \cdot (\#\text{edges bought by agent } u) + \text{distancecost}(u)\)

SUM-Version: [Fabrikant et al., PODC’03]

\[
\text{distancecost}(u) = \begin{cases}
\sum_{v \in V(G)} d_G(u, v), & \text{if } (G, \alpha) \text{ is connected} \\
\infty, & \text{otherwise}
\end{cases}
\]
Models of Selfish Network Creation (1)

- \(\text{cost}(u) = \alpha \cdot (\#\text{edges bought by agent } u) + \text{distancecost}(u) \)

Sum-Version: [Fabrikant et al., PODC’03]

\[
\text{distancecost}(u) = \begin{cases}
\sum_{v \in V(G)} d_G(u, v), & \text{if } (G, \alpha) \text{ is connected} \\
\infty, & \text{otherwise}
\end{cases}
\]
Models of Selfish Network Creation (1)

- \(\text{cost}(u) = \alpha \cdot (\#\text{edges bought by agent } u) + \text{distancecost}(u) \)

Sum-Version: [Fabrikant et al., PODC’03]

\[
\text{distancecost}(u) = \begin{cases}
\sum_{v \in V(G)} d_G(u, v), & \text{if } (G, \alpha) \text{ is connected} \\
\infty, & \text{otherwise}
\end{cases}
\]
Models of Selfish Network Creation (1)

- \(\text{cost}(u) = \alpha \cdot (\#\text{edges bought by agent } u) + \text{distancecost}(u) \)

Sum-Version: [Fabrikant et al., PODC'03]

\[
\text{distancecost}(u) = \begin{cases}
\sum_{v \in V(G)} d_G(u, v), & \text{if } (G, \alpha) \text{ is connected} \\
\infty, & \text{otherwise}
\end{cases}
\]

Max-Version: [Demaine et al., PODC'07]

\[
\text{distancecost}(u) = \begin{cases}
\max_{v \in V(G)} d_G(u, v), & \text{if } (G, \alpha) \text{ is connected} \\
\infty, & \text{otherwise}
\end{cases}
\]
Models of Selfish Network Creation (1)

- \(\text{cost}(u) = \alpha \cdot (\#\text{edges bought by agent } u) + \text{distancecost}(u) \)

Sum-Version: [Fabrikant et al., PODC'03]

\[
\text{distancecost}(u) = \begin{cases}
\sum_{v \in V(G)} d_G(u, v), & \text{if } (G, \alpha) \text{ is connected} \\
\infty, & \text{otherwise}
\end{cases}
\]

Max-Version: [Demaine et al., PODC'07]

\[
\text{distancecost}(u) = \begin{cases}
\max_{v \in V(G)} d_G(u, v), & \text{if } (G, \alpha) \text{ is connected} \\
\infty, & \text{otherwise}
\end{cases}
\]
Models of Selfish Network Creation (1)

- cost\((u) = \alpha \cdot (\#\text{edges bought by agent } u) + \text{distancecost}(u) \)

Sum-Version: [Fabrikant et al., PODC'03]

\[
\text{distancecost}(u) = \begin{cases}
\sum_{v \in V(G)} d_G(u, v), & \text{if } (G, \alpha) \text{ is connected} \\
\infty, & \text{otherwise}
\end{cases}
\]

Max-Version: [Demaine et al., PODC'07]

\[
\text{distancecost}(u) = \begin{cases}
\max_{v \in V(G)} d_G(u, v), & \text{if } (G, \alpha) \text{ is connected} \\
\infty, & \text{otherwise}
\end{cases}
\]
• pure strategy S_u of agent u: $S_u \subseteq V \setminus \{u\}$. Depending on the model we have:
 • $S_u =$ set of neighbors of u
 • $S_u =$ set of neighbors to which u owns an edge
Models of Selfish Network Creation (1)

- pure strategy S_u of agent u: $S_u \subseteq V \setminus \{u\}$.

Depending on the model we have:
- $S_u =$ set of neighbors of u
- $S_u =$ set of neighbors to which u owns an edge
Models of Selfish Network Creation (1)

- pure strategy S_u of agent u: $S_u \subseteq V \setminus \{u\}$. Depending on the model we have:
 - $S_u = \text{set of neighbors of } u$
 - $S_u = \text{set of neighbors to which } u \text{ owns an edge}$
- S is vector of strategies of all agents
 - S and parameter α determines network (G, α)
 - network (G, α) with edge ownerships determines S
Models of Selfish Network Creation (2)
Models of Selfish Network Creation (2)

Swap Game (SG)
[Alon et al. SPAA’10]

- no edge-owners
- no edge-cost
- only single edge-swaps
- both endpoints can swap

⇒ Swap Equilibrium
Models of Selfish Network Creation (2)

Swap Game (SG)
[Alon et al. SPAA’10]

- no edge-owners
- no edge-cost
- only single edge-swaps
- both endpoints can swap

⇒ Swap Equilibrium
Models of Selfish Network Creation (2)

Swap Game (SG)
[Alon et al. SPAA’10]

- no edge-owners
- no edge-cost
- only single edge-swaps
- both endpoints can swap

⇒ Swap Equilibrium
Models of Selfish Network Creation (2)

Swap Game (SG)
[Alon et al. SPAA’10]

- no edge-owners
- no edge-cost
- only single edge-swaps
- both endpoints can swap

\[\Rightarrow \text{Swap Equilibrium} \]
Models of Selfish Network Creation (2)

<table>
<thead>
<tr>
<th>Swap Game (SG)</th>
<th>Asymmetric SG (ASG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Alon et al. SPAA’10]</td>
<td>[Mihalák & Schlegel MFCS’12]</td>
</tr>
<tr>
<td>- no edge-owners</td>
<td>- edges have owners</td>
</tr>
<tr>
<td>- no edge-cost</td>
<td>- no edge-cost</td>
</tr>
<tr>
<td>- only single edge-swaps</td>
<td>- only single edge-swaps</td>
</tr>
<tr>
<td>- both endpoints can swap</td>
<td>- only owner can swap</td>
</tr>
</tbody>
</table>

⇒ Swap Equilibrium

⇒ Asymmetric Swap Eq.
Models of Selfish Network Creation (2)

Swap Game (SG)
[Alon et al. SPAA’10]
- no edge-owners
- no edge-cost
- only single edge-swaps
- both endpoints can swap
⇒ Swap Equilibrium

Asymmetric SG (ASG)
[Mihaláš & Schlegel MFCS’12]
- edges have owners
- no edge-cost
- only single edge-swaps
- only owner can swap
⇒ Asymmetric Swap Eq.
Models of Selfish Network Creation (2)

Swap Game (SG)
[Alon et al. SPAA’10]
- no edge-owners
- no edge-cost
- only single edge-swaps
- both endpoints can swap
⇒ Swap Equilibrium

Asymmetric SG (ASG)
[Mihalák & Schlegel MFCS’12]
- edges have owners
- no edge-cost
- only single edge-swaps
- only owner can swap
⇒ Asymmetric Swap Eq.
Models of Selfish Network Creation (2)

Swap Game (SG)
[Alon et al. SPAA’10]
- no edge-owners
- no edge-cost
- only single edge-swaps
- both endpoints can swap
⇒ Swap Equilibrium

Asymmetric SG (ASG)
[Mihalák & Schlegel MFCS’12]
- edges have owners
- no edge-cost
- only single edge-swaps
- only owner can swap
⇒ Asymmetric Swap Eq.
Models of Selfish Network Creation (2)

Swap Game (SG)
[Alon et al. SPAA’10]
- no edge-owners
- no edge-cost
- only single edge-swaps
- both endpoints can swap
⇒ Swap Equilibrium

Asymmetric SG (ASG)
[Mihalák & Schlegel MFCS’12]
- edges have owners
- no edge-cost
- only single edge-swaps
- only owner can swap
⇒ Asymmetric Swap Eq.
Models of Selfish Network Creation (2)

Swap Game (SG)
[Alon et al. SPAA’10]
- no edge-owners
- no edge-cost
- only single edge-swaps
- both endpoints can swap
⇒ Swap Equilibrium

Asymmetric SG (ASG)
[Mihalák & Schlegel MFCS’12]
- edges have owners
- no edge-cost
- only single edge-swaps
- only owner can swap
⇒ Asymmetric Swap Eq.

Greedy Buy Game (GBG)
[L. WINE’12]
- edges have owners
- each edge costs α
- agents can buy/swap/del one own edge
⇒ Greedy Equilibrium
Models of Selfish Network Creation (2)

Swap Game (SG)
[Alon et al. SPAA’10]
- no edge-owners
- no edge-cost
- only single edge-swaps
- both endpoints can swap
⇒ Swap Equilibrium

Asymmetric SG (ASG)
[Mihalák & Schlegel MFCS’12]
- edges have owners
- no edge-cost
- only single edge-swaps
- only owner can swap
⇒ Asymmetric Swap Eq.

Greedy Buy Game (GBG)
[L. WINE’12]
- edges have owners
- each edge costs α
- agents can buy/swap/del one own edge
⇒ Greedy Equilibrium
Models of Selfish Network Creation (2)

Swap Game (SG)
[Alon et al. SPAA’10]
- no edge-owners
- no edge-cost
- only single edge-swaps
- both endpoints can swap
⇒ Swap Equilibrium

Asymmetric SG (ASG)
[Mihalák & Schlegel MFCS’12]
- edges have owners
- no edge-cost
- only single edge-swaps
- only owner can swap
⇒ Asymmetric Swap Eq.

Greedy Buy Game (GBG)
[L. WINE’12]
- edges have owners
- each edge costs α
- agents can buy/swaps/del one own edge
⇒ Greedy Equilibrium
Models of Selfish Network Creation (2)

Swap Game (SG)
[Alon et al. SPAA’10]
- no edge-owners
- no edge-cost
- only single edge-swaps
- both endpoints can swap
⇒ Swap Equilibrium

Asymmetric SG (ASG)
[Mihalák & Schlegel MFCS’12]
- edges have owners
- no edge-cost
- only single edge-swaps
- only owner can swap
⇒ Asymmetric Swap Eq.

Greedy Buy Game (GBG)
[L. WINE’12]
- edges have owners
- each edge costs α
- agents can buy/swap/del one own edge
⇒ Greedy Equilibrium

\[
\begin{align*}
\alpha + 6 & \quad 2\alpha + 6 & \quad 2\alpha + 5 \\
\alpha + 6 & \quad 2\alpha + 6 & \quad 5
\end{align*}
\]
Models of Selfish Network Creation (2)

Swap Game (SG)
[Alon et al. SPAA’10]
- no edge-owners
- no edge-cost
- only single edge-swaps
- both endpoints can swap
⇒ Swap Equilibrium

Asymmetric SG (ASG)
[Mihalák & Schlegel MFCS’12]
- edges have owners
- no edge-cost
- only single edge-swaps
- only owner can swap
⇒ Asymmetric Swap Eq.

Greedy Buy Game (GBG)
[L. WINE’12]
- edges have owners
- each edge costs α
- agents can buy/swap/del one own edge
⇒ Greedy Equilibrium

\[
\begin{align*}
&\alpha + 6 \\
&2\alpha + 6 \\
&\alpha + 6 \\
&2\alpha + 5 \\
&\alpha + 6 \\
&\alpha + 6 \\
\end{align*}
\]
Models of Selfish Network Creation (2)

Swap Game (SG)
[Alon et al. SPAA’10]
- no edge-owners
- no edge-cost
- only single edge-swaps
- both endpoints can swap
⇒ Swap Equilibrium

Asymmetric SG (ASG)
[Mihaláč & Schlegel MFCS’12]
- edges have owners
- no edge-cost
- only single edge-swaps
- only owner can swap
⇒ Asymmetric Swap Eq.

Greedy Buy Game (GBG)
[L. WINE’12]
- edges have owners
- each edge costs α
- agents can buy/swap/del one own edge
⇒ Greedy Equilibrium
Models of Selfish Network Creation (2)

<table>
<thead>
<tr>
<th>Swap Game (SG)</th>
<th>Asymmetric SG (ASG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Alon et al. SPAA’10]</td>
<td>[Mihalák & Schlegel MFCS’12]</td>
</tr>
<tr>
<td>• no edge-owners</td>
<td>• edges have owners</td>
</tr>
<tr>
<td>• no edge-cost</td>
<td>• no edge-cost</td>
</tr>
<tr>
<td>• only single edge-swaps</td>
<td>• only single edge-swaps</td>
</tr>
<tr>
<td>• both endpoints can swap</td>
<td>• only owner can swap</td>
</tr>
<tr>
<td>⇒ Swap Equilibrium</td>
<td>⇒ Asymmetric Swap Eq.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Greedy Buy Game (GBG)</th>
<th>Buy Game (BG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[L. WINE’12]</td>
<td>[Fabrikant et al. PODC’03]</td>
</tr>
<tr>
<td>• edges have owners</td>
<td>• edges have owners</td>
</tr>
<tr>
<td>• each edge costs α</td>
<td>• each edge costs α</td>
</tr>
<tr>
<td>• agents can buy/swap/del one own edge</td>
<td>• arbitrary strategy-changes</td>
</tr>
<tr>
<td>⇒ Greedy Equilibrium</td>
<td>⇒ pure Nash Equilibrium</td>
</tr>
</tbody>
</table>
• previous work mainly focused on *structural* properties
• previous work mainly focussed on *structural* properties

Open Problem:

How can agents *find* equilibrium networks?
• previous work mainly focussed on *structural* properties

Open Problem:
How can agents **find** equilibrium networks?

⇒ we focus on the network creation **process**
• previous work mainly focussed on *structural* properties

Open Problem:
How can agents **find** equilibrium networks?

⇒ we focus on the network creation *process*
 • we analyze the most natural approach:

Distributed Local Search:
 • start with any connected network
 • at every step one agent is allowed to move (agent chosen at random or random max cost agent)
 • moving agent performs move to best response strategy
 • iterate until no agent wants to change strategy
Classifying Games According to their Dynamics

• guaranteed convergence:
 • FIPG: games having the finite improvement property (FIP)
 • FIP \iff generalized ordinal potential function exists
 • all sequences of improving moves are finite
 • no better response cycle
 • poly-FIPG: FIP + convergence in polynomially many rounds

• possible convergence:
 • WAG: games which are weakly acyclic
 • some sequences of improving moves are finite
 • BR-WAG: games which are weakly acyclic under best response
 • some sequences of best response moves are finite
Classifying Games According to their Dynamics

- guaranteed convergence:
 - FIPG: games having the **finite improvement property** (FIP)
Classifying Games According to their Dynamics

- guaranteed convergence:
 - FIPG: games having the **finite improvement property** (FIP)
 - FIP \iff generalized ordinal potential function exists
 - all sequences of improving moves are finite
 - no better response cycle

- poly-FIPG: FIP + convergence in polynomially many rounds

- WAG: games which are weakly acyclic
 - some sequences of improving moves are finite

- BR-WAG: games which are weakly acyclic under best response
 - some sequences of best response moves are finite
Classifying Games According to their Dynamics

- guaranteed convergence:
 - FIPG: games having the **finite improvement property (FIP)**
 - FIP ⇔ generalized ordinal potential function exists
 - all sequences of improving moves are finite
 - no better response cycle
 - poly-FIPG: FIP + convergence in polynomially many rounds
Classifying Games According to their Dynamics

- guaranteed convergence:
 - FIPG: games having the finite improvement property (FIP)
 - FIP \iff generalized ordinal potential function exists
 - all sequences of improving moves are finite
 - no better response cycle
 - poly-FIPG: FIP + convergence in polynomially many rounds

- possible convergence:
 - WAG: games which are weakly acyclic
 - some sequences of improving moves are finite
Classifying Games According to their Dynamics

- guaranteed convergence:
 - FIPG: games having the **finite improvement property (FIP)**
 - FIP \iff generalized ordinal potential function exists
 - all sequences of improving moves are finite
 - no better response cycle
 - poly-FIPG: FIP + convergence in polynomially many rounds

- possible convergence:
 - WAG: games which are weakly acyclic
 - some sequences of improving moves are finite
 - BR-WAG: games which are weakly acyclic under best response
 - some sequences of best response moves are finite
Classifying Games According to their Dynamics

- **guaranteed convergence:**
 - FIPG: games having the *finite improvement property (FIP)*
 - FIP \iff generalized ordinal potential function exists
 - all sequences of improving moves are finite
 - no better response cycle
 - poly-FIPG: FIP + convergence in polynomially many rounds

- **possible convergence:**
 - WAG: games which are weakly acyclic
 - some sequences of improving moves are finite
 - BR-WAG: games which are weakly acyclic under best response
 - some sequences of best response moves are finite
Previous Results on Dynamics

- FIPG
- poly-FIPG
- potential games
- BR-WAG
- WAG

- Sum-BG ∈ FIPG via better response cycle [Brandes et al. WINE’08]
- How fast converge bounded-budget versions? [Ehsani et al. SPAA’11]
- bounded-budget version is ASG (agents use up their budgets)
- Sum-SG on trees ∈ poly-FIPG, / ∈ FIPG otherwise [L. SAGT’11]
- on trees: any improving sequence has length $O(n^3)$, speed-up to $O(n)$ if max cost agents play best response

- Max-BG ∈ FIPG via better response cycle [Bilò et al. WINE’12]
Previous Results on Dynamics

- \textsc{Sum-BG} \notin \text{FIPG} via better response cycle \cite{Brandes et al. WINE'08}

\begin{itemize}
 \item \text{poly-FIPG}
 \item \text{FIPG}
 \item \text{BR-WAG}
 \item \text{WAG}
 \item potential games
\end{itemize}
Previous Results on Dynamics

- $\text{SUM-BG} \not\in \text{FIPG}$ via better response cycle [Brandes et al. WINE'08]
- How fast converge bounded-budget versions? [Ehsani et al. SPAA'11]
Previous Results on Dynamics

- \textbf{SUM-BG} \notin \text{FIPG} via better response cycle \cite{BrandesetalWINE08}
- How fast converge bounded-budget versions? \cite{EhsanietalSPAA11}
 - bounded-budget version is ASG (agents use up their budgets)
Previous Results on Dynamics

- **SUM-BG $\not\in$ FIPG** via better response cycle [Brandes et al. WINE’08]
- How fast converge bounded-budget versions? [Ehsani et al. SPAA’11]
 - bounded-budget version is ASG (agents use up their budgets)
- **SUM-SG on trees \in poly-FIPG, $\not\in$ FIPG otherwise** [L. SAGT’11]
Previous Results on Dynamics

- \textbf{SUM-BG} \notin FIPG via better response cycle [Brandes et al. WINE'08]
- How fast converge bounded-budget versions? [Ehsani et al. SPAA'11]
 - bounded-budget version is ASG (agents use up their budgets)
- \textbf{SUM-SG} on trees \in poly-FIPG, \notin FIPG otherwise [L. SAGT'11]
 - on trees: any improving sequence has length $O(n^3)$, speed-up to $O(n)$ if max cost agents play best response
Previous Results on Dynamics

- **SUM-BG** \notin **FIPG** via better response cycle [Brandes et al. WINE'08]
- How fast converge bounded-budget versions? [Ehsani et al. SPAA'11]
 - bounded-budget version is **ASG** (agents use up their budgets)
- **SUM-SG** on trees \in **poly-FIPG**, \notin **FIPG** otherwise [L. SAGT’11]
 - on trees: any improving sequence has length $O(n^3)$, speed-up to $O(n)$ if max cost agents play best response
- **MAX-BG** \notin **FIPG** via better response cycle [Bilò et al. WINE'12]
Previous Results on Dynamics

- **SUM-BG ∉ FIPG** via better response cycle [Brandes et al. WINE’08]
- How fast converge bounded-budget versions? [Ehsani et al. SPAA’11]
 - bounded-budget version is ASG (agents use up their budgets)
- **SUM-SG** on trees ∈ poly-FIPG, ∉ FIPG otherwise [L. SAGT’11]
 - on trees: any improving sequence has length $O(n^3)$, speed-up to $O(n)$ if max cost agents play best response
- **MAX-BG ∉ FIPG** via better response cycle [Bilò et al. WINE’12]
 ⇒ for most variants nothing known for **best** response dynamics
Our Results

Max-Swap Game

- on trees: poly-FIPG, at most $O(n^3)$ steps,
- in general: $/ \in FIPG$ via best response cycle
Our Results

Max-Swap Game

- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
Our Results

Max-Swap Game

- on trees: poly-FIPG, at most $\mathcal{O}(n^3)$ steps, speed-up to $\mathcal{O}(n \log n)$
- in general: \notin FIPG via best response cycle
Our Results

Max-Swap Game

- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: \notin FIPG via best response cycle

Asymmetric SG
Our Results

Max-Swap Game
- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: $\not\in$ FIPG via best response cycle

Asymmetric SG
- SG-results on trees carry over for Sum and Max
Our Results

Max-Swap Game
- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: \notin FIPG via best response cycle

Asymmetric SG
- SG-results on trees carry over for Sum and Max
- in general: $\text{Sum} \notin \text{WAG}$, $\text{Max} \notin \text{FIPG}$
Our Results

Max-Swap Game
- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: $\not \in$ FIPG via best response cycle

Asymmetric SG
- SG-results on trees carry over for Sum and Max
- in general: $\text{Sum} \not \in \text{WAG}$, $\text{Max} \not \in \text{FIPG}$
- solve open problem [SPAA'11]
Our Results

Max-Swap Game
- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: $\not\in$ FIPG via best response cycle

Asymmetric SG
- SG-results on trees carry over for Sum and Max
- in general: $\text{Sum} \notin \text{WAG}$, $\text{Max} \notin \text{FIPG}$
- solve open problem [SPAA’11]
- promising empirical results
Our Results

Max-Swap Game
- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: \nsubseteq FIPG via best response cycle

Asymmetric SG
- SG-results on trees carry over for *Sum* and *Max*
- in general: *Sum* \nsubseteq WAG, *Max* \nsubseteq FIPG
- solve open problem [SPAA’11]
- promising empirical results

Greedy Buy Game

Buy Game
Our Results

Max-Swap Game
- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: $\not\in$ FIPG via best response cycle

Asymmetric SG
- SG-results on trees carry over for Sum and Max
- in general: $\text{Sum} \not\in \text{WAG}$, $\text{Max} \not\in \text{FIPG}$
- solve open problem [SPAA’11]
- promising empirical results

Greedy Buy Game
- Sum: best response cycle

Buy Game
- Sum: best response cycle
Our Results

Max-Swap Game
- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: \notin FIPG via best response cycle

Asymmetric SG
- SG-results on trees carry over for Sum and Max
- in general: Sum \notin WAG, Max \notin FIPG
- solve open problem [SPAA’11]
- promising empirical results

Greedy Buy Game
- Sum: best response cycle
- Max: best response cycle

Buy Game
- Sum: best response cycle
- Max: best response cycle
Our Results

Max-Swap Game
- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: $\not\in$ FIPG via best response cycle

Asymmetric SG
- SG-results on trees carry over for **Sum** and **Max**
- in general: **Sum** $\not\in$ WAG, **Max** $\not\in$ FIPG
- solve open problem [SPAA’11]
- promising empirical results

Greedy Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** $\not\in$ WAG on general host graphs

Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** $\not\in$ WAG on general host graphs
Our Results

Max-Swap Game
- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: \notin FIPG via best response cycle

Asymmetric SG
- SG-results on trees carry over for Sum and Max
- in general: $\text{Sum} \notin WAG$, $\text{Max} \notin FIPG$
- solve open problem [SPAA’11]
- promising empirical results

Greedy Buy Game
- Sum: best response cycle
- Max: best response cycle
- Sum and $\text{Max} \notin WAG$ on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game
- Sum: best response cycle
- Max: best response cycle
- Sum and $\text{Max} \notin WAG$ on general host graphs
Our Results

Max-Swap Game
- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: $\not\in$ FIPG via best response cycle

Asymmetric SG
- SG-results on trees carry over for Sum and Max
- in general: $\text{Sum} \not\in WAG$, $\text{Max} \not\in FIPG$
- solve open problem [SPAA’11]
- promising empirical results

Greedy Buy Game
- Sum: best response cycle
- Max: best response cycle
- Sum and $\text{Max} \not\in WAG$ on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game
- Sum: best response cycle
- Max: best response cycle
- Sum and $\text{Max} \not\in WAG$ on general host graphs
- bilateral Buy Game: $\text{Sum} \not\in WAG, \text{Max} \not\in FIPG$
Details for Max Swap Game on Trees

Max-Swap Game

- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: \notin FIPG via best response cycle
Details for **Max** Swap Game on Trees

Max-Swap Game

- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: \notin FIPG via best response cycle
Details for Max Swap Game on Trees

Max-Swap Game

- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: $\not \in$ FIPG via best response cycle

Remember:

- $\text{cost}(u) = \max_{v \in V(G)} d_G(u, v)$
- only single swap allowed
- both endpoints can swap
Details for MAX Swap Game on Trees

MAX-Swap Game

- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: \notin FIPG via best response cycle

Remember:

- $\text{cost}(u) = \max_{v \in V(G)} d_G(u, v)$
- only single swap allowed
- both endpoints can swap

- assume improving swap $uv \rightarrow uw$
Details for \textbf{Max} Swap Game on Trees

\textbf{Max-Swap Game}

- on trees: poly-FIPG, at most $\mathcal{O}(n^3)$ steps, speed-up to $\mathcal{O}(n \log n)$
- in general: \notin FIPG via best response cycle

Remember:

- $\text{cost}(u) = \max_{v \in V(G)} d_G(u, v)$
- only single swap allowed
- both endpoints can swap

- assume improving swap $uv \rightarrow uw$

\begin{center}
\begin{tikzpicture}
\node at (0,0) [shape=circle,draw] (u) {u};
\node at (1,0) [shape=circle,draw] (v) {v};
\node at (2,0) [shape=circle,draw] (w) {w};
\node at (0,-1) [shape=circle,draw] (A) {A};
\node at (2,-1) [shape=circle,draw] (B) {B};
\draw (u) -- (v) -- (w);
\draw (A) -- (u);
\draw (B) -- (w);
\end{tikzpicture}
\end{center}
Details for **Max Swap Game on Trees**

Max-Swap Game

- **on trees:** poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- **in general:** \notin FIPG via best response cycle

Remember:

- $\text{cost}(u) = \max_{v \in V(G)} d_G(u, v)$
- only single swap allowed
- both endpoints can swap

• assume improving swap $uv \rightarrow uw$

$\Rightarrow \forall x \in A : c_T(x) > c_{T'}(x)$

![Diagram](attachment:image.png)
Details for **Max Swap Game on Trees**

Max-Swap Game

- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: $\not\in$ FIPG via best response cycle

Remember:

- $\text{cost}(u) = \max_{v \in V(G)} d_G(u, v)$
- only single swap allowed
- both endpoints can swap

- assume improving swap $uv \rightarrow uw$

$$\Rightarrow \quad \forall x \in A : c_T(x) > c_T'(x)$$

- $x \in A$, $y \in B$ s.t. $c_T'(y) = d_T'(x, y)$
Details for **Max Swap Game on Trees**

Max-Swap Game
- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: \notin FIPG via best response cycle

Remember:
- $\text{cost}(u) = \max_{v \in V(G)} d_G(u, v)$
- only single swap allowed
- both endpoints can swap

- assume improving swap $uv \rightarrow uw$
 \[\Rightarrow \forall x \in A: c_T(x) > c_{T'}(x) \]
- $x \in A, y \in B$ s.t. $c_{T'}(y) = d_{T'}(x, y)$
 \[\Rightarrow c_T(x) > c_{T'}(y) \]
Details for **Max** Swap Game on Trees

Max-Swap Game

- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: $\not\in$ FIPG via best response cycle

Definition: Sorted Cost Vector

$$\vec{c}_G = (\gamma^1_G, \ldots, \gamma^n_G),$$

where γ^i_G is cost of agent with i-th highest cost in network G.

- assume improving swap $uv \rightarrow uw$
 \[\Rightarrow \ \forall x \in A : c_T(x) > c_{T'}(x) \]
- $x \in A$, $y \in B$ s.t. $c_{T'}(y) = d_{T'}(x, y)$
 \[\Rightarrow c_T(x) > c_{T'}(y) \]
Details for MAX Swap Game on Trees

MAX-Swap Game

- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: $\not\in$ FIPG via best response cycle

- assume improving swap $uv \rightarrow uw$

 $\Rightarrow \forall x \in A : c_T(x) > c_{T'}(x)$

 - $x \in A$, $y \in B$ s.t. $c_{T'}(y) = d_{T'}(x, y)$

 $\Rightarrow c_T(x) > c_{T'}(y)$

 $\Rightarrow \vec{c}_T > \text{lex } \vec{c}_{T'}$

Definition: Sorted Cost Vector

$$\vec{c}_G = (\gamma^1_G, \ldots, \gamma^n_G),$$

where γ^i_G is cost of agent with i-th highest cost in network G.

\[T : \quad \begin{array}{c}
A \\
\uparrow \\
v \\
\downarrow \\
B \\
\end{array} \quad \begin{array}{c}
w \\
\end{array} \]

\[T' : \quad \begin{array}{c}
A \\
\uparrow \\
v \\
\downarrow \\
B \\
\end{array} \quad \begin{array}{c}
w \\
\end{array} \]

\[x \rightarrow_{\text{red}} w \]
Details for **Max** Swap Game on Trees

Max-Swap Game

- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: $\not\in$ FIPG via best response cycle

Definition: Sorted Cost Vector

$$\vec{c}_G = (\gamma^1_G, \ldots, \gamma^n_G),$$
where γ^i_G is cost of agent with i-th highest cost in network G.

- assume improving swap $uv \rightarrow uw$

 $$\Rightarrow \forall x \in A : c_T(x) > c_{T'}(x)$$

- $x \in A, y \in B$ s.t. $c_{T'}(y) = d_{T'}(x, y)$

 $$\Rightarrow c_T(x) > c_{T'}(y)$$

 $$\Rightarrow \vec{c}_T >_{\text{lex}} \vec{c}_{T'}$$

 $$\Rightarrow$$ diameter cannot increase
Details for **Max** Swap Game on Trees

Max-Swap Game

- on trees: poly-FIPG, at most $\mathcal{O}(n^3)$ steps, speed-up to $\mathcal{O}(n \log n)$
- in general: $\not\in$ FIPG via best response cycle

Definition: Sorted Cost Vector

$$\vec{c}_G = (\gamma^1_G, \ldots, \gamma^n_G),$$

where γ^i_G is cost of agent with i-th highest cost in network G.

- improving swap: \vec{c}_G must decrease, diameter cannot increase
Details for MAX Swap Game on Trees

MAX-Swap Game

- on trees: poly-FIPG, at most $\mathcal{O}(n^3)$ steps, speed-up to $\mathcal{O}(n \log n)$
- in general: $\not\in$ FIPG via best response cycle

Definition: Sorted Cost Vector

$$\vec{c}_G = (\gamma^1_G, \ldots, \gamma^n_G),$$

where γ^i_G is cost of agent with i-th highest cost in network G.

- improving swap: \vec{c}_G must decrease, diameter cannot increase
- consider tree network T having diameter $D \geq 4$:

Lemma

After $\frac{n^*D - D^2}{2}$ steps in T, diameter must decrease.
Details for **Max** Swap Game on Trees

Max-Swap Game
- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: $\not\in$ FIPG via best response cycle

Definition: Sorted Cost Vector
$$\vec{c}_G = (\gamma_1^G, \ldots, \gamma_n^G),$$
where γ_i^G is cost of agent with i-th highest cost in network G.

- improving swap: \vec{c}_G must decrease, diameter cannot increase
- consider tree network T having diameter $D \geq 4$:

Lemma
After $\frac{n*D-D^2}{2}$ steps in T, diameter must decrease.

- Equilibria are stars or double-stars [Alon et al. SPAA’10]
Max-Swap Game

- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: $\not\in$ FIPG via best response cycle

- improving swap: \vec{c}_G must decrease, diameter cannot increase
- consider tree network T having diameter $D \geq 4$:

Lemma

After $\frac{n^*D-D^2}{2}$ steps in T, diameter must decrease.

- Equilibria are stars or double-stars [Alon et al. SPAA’10]
 \Rightarrow process must converge after $O(n^3)$ steps.
Details for Asymmetric Swap Games

Asymmetric Swap Games

- SG-results on trees carry over for Sum and Max
- in general: Sum ∉ WAG, Max ∉ FIPG
- solve open problem [SPAA’11]
- promising empirical results
Details for Asymmetric Swap Games

Asymmetric Swap Games

- SG-results on trees carry over for \textit{Sum} and \textit{Max}
- in general: \textit{Sum} \notin WAG, \textit{Max} \notin FIPG
- solve open problem \cite{SPAA'11}
- promising empirical results
Details for Asymmetric Swap Games

Remember:

- \(\text{cost}(u) = \sum_{v \in V(G)} d_G(u, v) \)
- only single swap allowed
- only own edges can be swapped

Asymmetric Swap Games

- SG-results on trees carry over for \(\text{Sum} \) and \(\text{Max} \)
- in general: \(\text{Sum} \notin \text{WAG}, \ \text{Max} \notin \text{FIPG} \)
- solve open problem [SPAA’11]
- promising empirical results
Details for Asymmetric Swap Games

Remember:

- \(\text{cost}(u) = \sum_{v \in V(G)} d_G(u, v) \)
- only single swap allowed
- only own edges can be swapped

Proof: Best response cycle, in every step only one agent unhappy, moving agent has only one improving move:
Details for Asymmetric Swap Games

Remember:

- \(\text{cost}(u) = \sum_{v \in V(G)} d_G(u, v) \)
- only single swap allowed
- only own edges can be swapped

Proof: Best response cycle, in every step only one agent unhappy, moving agent has only one improving move:

- SG-results on trees carry over for \(\text{Sum} \) and \(\text{Max} \)
- in general: \(\text{Sum} \notin \text{WAG}, \text{Max} \notin \text{FIPG} \)
- solve open problem [SPAA’11]
- promising empirical results
Details for Asymmetric Swap Games

Remember:

- \(\text{cost}(u) = \sum_{v \in V(G)} d_G(u, v) \)
- only single swap allowed
- only own edges can be swapped

Asymmetric Swap Games

- SG-results on trees carry over for \(\text{Sum} \) and \(\text{Max} \)
- in general: \(\text{Sum} \not\in \text{WAG} \), \(\text{Max} \not\in \text{FIPG} \)
- solve open problem [SPAA’11]
- promising empirical results

Proof: Best response cycle, in every step only one agent unhappy, moving agent has only one improving move:

\[
\begin{align*}
fd &\rightarrow fe \\
\end{align*}
\]
Details for Asymmetric Swap Games

Remember:

- $\text{cost}(u) = \sum_{v \in V(G)} d_G(u, v)$
- only single swap allowed
- only own edges can be swapped

Proof: Best response cycle, in every step only one agent unhappy, moving agent has only one improving move:

\[
\begin{align*}
&f \rightarrow d \\
&d \rightarrow e \\
&d \rightarrow f \\
&f \rightarrow d
\end{align*}
\]
Details for Asymmetric Swap Games

Remember:
- \(\text{cost}(u) = \sum_{v \in V(G)} d_G(u, v) \)
- only single swap allowed
- only own edges can be swapped

Asymmetric Swap Games
- SG-results on trees carry over for \(\text{SUM} \) and \(\text{MAX} \)
- in general: \(\text{SUM} \notin \text{WAG}, \text{MAX} \notin \text{FIPG} \)
- solve open problem [SPAA'11]
- promising empirical results

Proof: Best response cycle, in every step only one agent unhappy, moving agent has only one improving move:

\[
\begin{align*}
fd & \rightarrow fe \\
bf & \rightarrow ba
\end{align*}
\]
Details for Asymmetric Swap Games

Remember:
- \(\text{cost}(u) = \sum_{v \in V(G)} d_G(u, v) \)
- only single swap allowed
- only own edges can be swapped

Asymmetric Swap Games
- SG-results on trees carry over for \(\text{Sum} \) and \(\text{Max} \)
- in general: \(\text{Sum} \notin \text{WAG}, \text{Max} \notin \text{FIPG} \)
- solve open problem [SPAA'11]
- promising empirical results

Proof: Best response cycle, in every step only one agent unhappy, moving agent has only one improving move:

\[
\begin{align*}
fd &\rightarrow fe \\
bf &\rightarrow ba
\end{align*}
\]
Details for Asymmetric Swap Games

Remember:

- \(\text{cost}(u) = \sum_{v \in V(G)} d_G(u, v) \)
- only single swap allowed
- only own edges can be swapped

Asymmetric Swap Games

- SG-results on trees carry over for \(\text{SUM} \) and \(\text{MAX} \)
- in general: \(\text{SUM} \notin \text{WAG}, \text{MAX} \notin \text{FIPG} \)
- solve open problem [SPAA'11]
- promising empirical results

Proof: Best response cycle, in every step only one agent unhappy, moving agent has only one improving move:

\[
\begin{align*}
fd &\rightarrow fe \\
bf &\rightarrow ba \\
fe &\rightarrow fd
\end{align*}
\]
Details for Asymmetric Swap Games

Remember:

- \(\text{cost}(u) = \sum_{v \in V(G)} d_G(u, v) \)
- only single swap allowed
- only own edges can be swapped

Asymmetric Swap Games

- SG-results on trees carry over for \(\text{SUM} \) and \(\text{MAX} \)
- in general: \(\text{SUM} \notin \text{WAG} \), \(\text{MAX} \notin \text{FIPG} \)
- solve open problem [SPAA’11]
- promising empirical results

Proof: Best response cycle, in every step only one agent unhappy, moving agent has only one improving move:

\[
egin{align*}
fd & \rightarrow fe & & & bf & \rightarrow ba & & & fe & \rightarrow fd
\end{align*}
\]
Details for Asymmetric Swap Games

Remember:

- \(\text{cost}(u) = \sum_{v \in V(G)} d_G(u, v) \)
- only single swap allowed
- only own edges can be swapped

Asymmetric Swap Games

- SG-results on trees carry over for \(\text{Sum} \) and \(\text{Max} \)
- in general: \(\text{Sum} \notin \text{WAG} \)
- solve open problem [SPAA’11]
- promising empirical results

Proof: Best response cycle, in every step only one agent unhappy, moving agent has only one improving move:

- \(fd \rightarrow fe \)
- \(bf \rightarrow ba \)
- \(fe \rightarrow fd \)
- \(ba \rightarrow bf \)
Details for Asymmetric Swap Games

Asymmetric Swap Games

- SG-results on trees carry over for **Sum** and **Max**
- in general: **Sum** $\not\in$ WAG, **Max** $\not\in$ FIPG
- solve open problem [SPAA’11]
- promising empirical results
Details for Asymmetric Swap Games

- each agent has budget B

Asymmetric Swap Games

- SG-results on trees carry over for Sum and Max
- in general: $\text{Sum} \notin \text{WAG}$, $\text{Max} \notin \text{FIPG}$
- solve open problem [SPAA'11]
- promising empirical results
Details for Asymmetric Swap Games

- Each agent has budget B

Open Problem [Ehsani et al. SPAA'11]
Determine convergence speed of Sum and Max in bounded budget version.

Asymmetric Swap Games
- SG-results on trees carry over for Sum and Max
- In general: $\text{Sum} \notin \text{WAG}$, $\text{Max} \notin \text{FIPG}$
- Solve open problem [SPAA'11]
- Promising empirical results
Details for Asymmetric Swap Games

- each agent has budget B

Open Problem [Ehsani et al. SPAA’11]
Determine convergence speed of Sum and Max in bounded budget version.

Asymmetric Swap Games
- SG-results on trees carry over for Sum and Max
- in general: $\text{Sum} \notin \text{WAG}$, $\text{Max} \notin \text{FIPG}$
- solve open problem [SPAA’11]
- promising empirical results

Solution: No convergence guarantee for Sum and Max!
Details for Asymmetric Swap Games

- each agent has budget B

Asymmetric Swap Games

- SG-results on trees carry over for Sum and Max
- in general: $\text{Sum} \notin \text{WAG}$, $\text{Max} \notin \text{FIPG}$
- solve open problem [SPAA’11]
- promising empirical results

Solution: No convergence guarantee for Sum and Max!

- best response cycle exists if $B = \alpha$ for all agents
Details for Asymmetric Swap Games

- each agent has budget B

Open Problem [Ehsani et al. SPAA'11]
Determine convergence speed of \textit{Sum} and \textit{Max} in bounded budget version.

Asymmetric Swap Games
- SG-results on trees carry over for \textit{Sum} and \textit{Max}
- in general: \textit{Sum} $\not\in$ WAG, \textit{Max} $\not\in$ FIPG
- solve open problem [SPAA'11]
- promising empirical results

Solution: No convergence guarantee for \textit{Sum} and \textit{Max}!
- best response cycle exists if $B = \alpha$ for all agents
 \Rightarrow sharp boundary between convergence and non-convergence
Details for Asymmetric Swap Games

- each agent has budget B

Open Problem [Ehsani et al. SPAA'11]
Determine convergence speed of Sum and Max in bounded budget version.

Asymmetric Swap Games
- SG-results on trees carry over for Sum and Max
- in general: $\text{Sum} \notin \text{WAG}$, $\text{Max} \notin \text{FIPG}$
- solve open problem [SPAA’11]
- promising empirical results

Solution: No convergence guarantee for Sum and Max!
- best response cycle exists if $B = \alpha$ for all agents
 ⇒ sharp boundary between convergence and non-convergence
Details for (Greedy) Buy Games

Greedy Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** ∉ WAG on general host graphs
- extensive simulations show convergence in < 8n steps

Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** ∉ WAG on general host graphs
- bilateral Buy Game: **Sum** ∉ WAG, **Max** ∉ FIPG
Details for (Greedy) Buy Games

Greedy Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum and Max** $\not\in$ WAG on general host graphs
- Extensive simulations show convergence in $< 8n$ steps

Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum and Max** $\not\in$ WAG on general host graphs
- Bilateral Buy Game: **Sum** $\not\in$ WAG, **Max** $\not\in$ FIPG
Details for (Greedy) Buy Games

We give best response cycle for $7 < \alpha < 8$:

Greedy Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** \notin WAG on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** \notin WAG on general host graphs
- bilateral Buy Game: **Sum** \notin WAG, **Max** \notin FIPG
Details for (Greedy) Buy Games

We give best response cycle for $7 < \alpha < 8$:

\[\begin{array}{ccc}
 a & \rightarrow & b \\
 b & \rightarrow & c \\
 c & \rightarrow & d \\
 d & \rightarrow & e \\
 e & \rightarrow & f \\
 f & \rightarrow & g \\
 g & \rightarrow & h \\
 h & \rightarrow & i \\
 i & \rightarrow & j \\
 j & \rightarrow & k \\
 k & \rightarrow & l \\
 l & \rightarrow & m \\
 m & \rightarrow & n \\
 n & \rightarrow & o \\
 o & \rightarrow & p \\
 p & \rightarrow & q \\
 q & \rightarrow & r \\
 r & \rightarrow & s \\
 s & \rightarrow & t \\
 t & \rightarrow & u \\
 u & \rightarrow & v \\
 v & \rightarrow & w \\
 w & \rightarrow & x \\
 x & \rightarrow & y \\
 y & \rightarrow & z \\
 z & \rightarrow & a \\
\end{array} \]

Greedy Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** $\not\in$ WAG on general host graphs
- Extensive simulations show convergence in $< 8n$ steps

Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** $\not\in$ WAG on general host graphs
- Bilateral Buy Game: **Sum** $\not\in$ WAG, **Max** $\not\in$ FIPG
Details for (Greedy) Buy Games

We give best response cycle for $7 < \alpha < 8$:

$gf \rightarrow gc$

Greedy Buy Game

- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** $\not\in$ WAG on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game

- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** $\not\in$ WAG on general host graphs
- bilateral Buy Game: **Sum** $\not\in$ WAG, **Max** $\not\in$ FIPG
Details for (Greedy) Buy Games

We give best response cycle for $7 < \alpha < 8$:

\[
\begin{align*}
&\text{Greedy Buy Game} \\
&\text{•} \, \textbf{Sum}: \text{best response cycle} \\
&\text{•} \, \textbf{Max}: \text{best response cycle} \\
&\text{•} \, \textbf{Sum} \text{ and } \textbf{Max} \notin \text{WAG on general host graphs} \\
&\text{•} \, \text{extensive simulations show convergence in } < 8n \text{ steps}
\end{align*}
\]

\[
\begin{align*}
&\text{Buy Game} \\
&\text{•} \, \textbf{Sum}: \text{best response cycle} \\
&\text{•} \, \textbf{Max}: \text{best response cycle} \\
&\text{•} \, \textbf{Sum} \text{ and } \textbf{Max} \notin \text{WAG on general host graphs} \\
&\text{•} \, \text{bilateral Buy Game: } \textbf{Sum} \notin \text{WAG}, \textbf{Max} \notin \text{FIPG}
\end{align*}
\]
Details for (Greedy) Buy Games

We give best response cycle for $7 < \alpha < 8$:

\[a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow f \rightarrow c \rightarrow b \rightarrow a \]

Greedy Buy Game

- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** \notin WAG on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game

- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** \notin WAG on general host graphs
- bilateral Buy Game: **Sum** \notin WAG, **Max** \notin FIPG
Details for (Greedy) Buy Games

We give best response cycle for $7 < \alpha < 8$:

Greedy Buy Game

- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum and Max** $\not\in$ WAG on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game

- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum and Max** $\not\in$ WAG on general host graphs
- bilateral Buy Game: **Sum** $\not\in$ WAG, **Max** $\not\in$ FIPG
Details for (Greedy) Buy Games

We give best response cycle for $7 < \alpha < 8$:

![Diagram showing best response cycle for (Greedy) Buy Games with $7 < \alpha < 8$.]

Greedy Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** $\not\in$ WAG on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** $\not\in$ WAG on general host graphs
- bilateral Buy Game: **Sum** $\not\in$ WAG, **Max** $\not\in$ FIPG
Details for (Greedy) Buy Games

We give best response cycle for $7 < \alpha < 8$:

- **Greedy Buy Game**
 - **Sum**: best response cycle
 - **Max**: best response cycle
 - **Sum** and **Max** \notin WAG on general host graphs
 - extensive simulations show convergence in $< 8n$ steps

- **Buy Game**
 - **Sum**: best response cycle
 - **Max**: best response cycle
 - **Sum** and **Max** \notin WAG on general host graphs
 - bilateral Buy Game: **Sum** \notin WAG, **Max** \notin FIPG
Details for (Greedy) Buy Games

We give best response cycle for $7 < \alpha < 8$:

Greedy Buy Game

- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** \notin WAG on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game

- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** \notin WAG on general host graphs
- bilateral Buy Game: **Sum** \notin WAG, **Max** \notin FIPG
Details for (Greedy) Buy Games

We give best response cycle for $7 < \alpha < 8$:

Greedy Buy Game

- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum and Max $\not\in$ WAG on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game

- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum and Max $\not\in$ WAG on general host graphs
- bilateral Buy Game: **Sum $\not\in$ WAG, Max $\not\in$ FIPG
Details for (Greedy) Buy Games

We give best response cycle for $7 < \alpha < 8$:

- $g \rightarrow f$ buys fb
- f buys fb
- c rem. cb
- $gc \rightarrow gf$
- c buys cb

Greedy Buy Game

- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** $\not\in$ WAG on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game

- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** $\not\in$ WAG on general host graphs
- bilateral Buy Game: **Sum** $\not\in$ WAG, **Max** $\not\in$ FIPG
Details for (Greedy) Buy Games

We give best response cycle for $7 < \alpha < 8$:

Greedy Buy Game

- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** $\notin WAG$ on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game

- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** $\notin WAG$ on general host graphs
- bilateral Buy Game: **Sum** $\notin WAG$, **Max** $\notin FIPG
Details for (Greedy) Buy Games

We give best response cycle for $7 < \alpha < 8$:

Greedy Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** \notin WAG on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** \notin WAG on general host graphs
- bilateral Buy Game: **Sum** \notin WAG, **Max** \notin FIPG
Details for (Greedy) Buy Games

Greedy Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** $\not\in$ WAG on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game
- **Sum**: best response cycle
- **Max**: best response cycle
- **Sum** and **Max** $\not\in$ WAG on general host graphs
- bilateral Buy Game: **Sum** $\not\in$ WAG, **Max** $\not\in$ FIPG
Details for (Greedy) Buy Games

- we simulated SUM-GBG and MAX-GBG with 10 to 100 agents

Greedy Buy Game
- SUM: best response cycle
- MAX: best response cycle
- SUM and $\text{MAX} \not\in \text{WAG}$ on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game
- SUM: best response cycle
- MAX: best response cycle
- SUM and $\text{MAX} \not\in \text{WAG}$ on general host graphs
- bilateral Buy Game: $\text{SUM} \not\in \text{WAG}, \text{MAX} \not\in \text{FIPG}$
Details for (Greedy) Buy Games

- we simulated SUM-GBG and MAX-GBG with 10 to 100 agents
- either random move-policy or max cost move-policy

Greedy Buy Game
- SUM: best response cycle
- MAX: best response cycle
- SUM and $\text{MAX} \notin \text{WAG}$ on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game
- SUM: best response cycle
- MAX: best response cycle
- SUM and $\text{MAX} \notin \text{WAG}$ on general host graphs
- bilateral Buy Game: $\text{SUM} \notin \text{WAG}, \text{MAX} \notin \text{FIPG}$
Details for (Greedy) Buy Games

- we simulated Sum-GBG and Max-GBG with 10 to 100 agents
- either random move-policy or max cost move-policy
- connected random initial networks, always best responses

Greedy Buy Game
- Sum: best response cycle
- Max: best response cycle
- Sum and $\text{Max} \notin \text{WAG}$ on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game
- Sum: best response cycle
- Max: best response cycle
- Sum and $\text{Max} \notin \text{WAG}$ on general host graphs
- bilateral Buy Game: $\text{Sum} \notin \text{WAG}, \text{Max} \notin \text{FIPG}$
Details for (Greedy) Buy Games

- we simulated SUM-GBG and MAX-GBG with 10 to 100 agents
- either random move-policy or max cost move-policy
- connected random initial networks, always best responses
- edge-range: $n, 2n, 4n$, α-range: $\frac{n}{10}, \frac{n}{4}, \frac{n}{2}, n$, 5000 runs each

Greedy Buy Game

- SUM: best response cycle
- MAX: best response cycle
- SUM and $\text{MAX} \notin \text{WAG}$ on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game

- SUM: best response cycle
- MAX: best response cycle
- SUM and $\text{MAX} \notin \text{WAG}$ on general host graphs
- bilateral Buy Game: $\text{SUM} \notin \text{WAG}, \text{MAX} \notin \text{FIPG}$
Details for (Greedy) Buy Games

- we simulated SUM-GBG and MAX-GBG with 10 to 100 agents
- either random move-policy or max cost move-policy
- connected random initial networks, always best responses
- edge-range: $n, 2n, 4n$, α-range: $\frac{n}{10}, \frac{n}{4}, \frac{n}{2}, n$, 5000 runs each
 \Rightarrow despite millions of runs: no cyclic instance found

Greedy Buy Game
- SUM: best response cycle
- MAX: best response cycle
- SUM and $\text{MAX} \notin \text{WAG}$ on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game
- SUM: best response cycle
- MAX: best response cycle
- SUM and $\text{MAX} \notin \text{WAG}$ on general host graphs
- bilateral Buy Game: $\text{SUM} \notin \text{WAG}, \text{MAX} \notin \text{FIPG}$
Details for (Greedy) Buy Games

- we simulated $\text{SUM}-\text{GBG}$ and $\text{MAX}-\text{GBG}$ with 10 to 100 agents
- either random move-policy or max cost move-policy
- connected random initial networks, always best responses
- edge-range: $n, 2n, 4n$, α-range: $\frac{n}{10}, \frac{n}{4}, \frac{n}{2}, n$, 5000 runs each
 ⇒ despite millions of runs: no cyclic instance found
 ⇒ suprisingly fast convergence: $\text{SUM} < 7n$ moves, $\text{MAX} < 8n$

Greedy Buy Game

- SUM: best response cycle
- MAX: best response cycle
- SUM and $\text{MAX} \notin \text{WAG}$ on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game

- SUM: best response cycle
- MAX: best response cycle
- SUM and $\text{MAX} \notin \text{WAG}$ on general host graphs
- bilateral Buy Game: $\text{SUM} \notin \text{WAG}, \text{MAX} \notin \text{FIPG}$
Details for (Greedy) Buy Games

Max # of steps until convergence, SUM version

- \(m=n, a=n/10, \text{max cost}\)
- \(m=n, a=n/4, \text{max cost}\)
- \(m=n, a=n, \text{max cost}\)
Details for (Greedy) Buy Games

Max # of steps until convergence, SUM version

- $m=n$, $a=n/10$, max cost
- $m=n$, $a=n/4$, max cost
- $m=n$, $a=n$, max cost
- $m=4n$, $a=n/10$, max cost
- $m=4n$, $a=n/4$, max cost
- $m=4n$, $a=n$, max cost
Details for (Greedy) Buy Games

Max # of steps until convergence, SUM version

- $m=n$, $a=n/10$, max cost
- $m=n$, $a=n/4$, max cost
- $m=n$, $a=n$, max cost
- $m=4n$, $a=n/10$, max cost
- $m=4n$, $a=n/4$, max cost
- $m=4n$, $a=n$, max cost
- $m=n$, $a=n/10$, random
- $m=n$, $a=n/4$, random
- $m=n$, $a=n$, random
Details for (Greedy) Buy Games

Max # of steps until convergence, SUM version

- $m=n$, $a=n/10$, max cost
- $m=n$, $a=n/4$, max cost
- $m=n$, $a=n$, max cost
- $m=4n$, $a=n/10$, max cost
- $m=4n$, $a=n/4$, max cost
- $m=4n$, $a=n$, max cost
- $m=n$, $a=n/10$, random
- $m=n$, $a=n/4$, random
- $m=n$, $a=n$, random
- $m=4n$, $a=n/10$, random
- $m=4n$, $a=n/4$, random
- $m=4n$, $a=n$, random
Details for (Greedy) Buy Games

Max # of steps until convergence, SUM version

- $m=n, a=n/10$, max cost
- $m=n, a=n/4$, max cost
- $m=n, a=n$, max cost
- $m=4n, a=n/10$, max cost
- $m=4n, a=n/4$, max cost
- $m=4n, a=n$, max cost
- $m=n, a=n/10$, random
- $m=n, a=n/4$, random
- $m=n, a=n$, random
- $m=4n, a=n/10$, random
- $m=4n, a=n/4$, random
- $m=4n, a=n$, random

$f(n) = 7n$
Details for (Greedy) Buy Games

Max # of steps until convergence, MAX version

- $m=n$, $a=n/10$, max cost
- $m=n$, $a=n/4$, max cost
- $m=n$, $a=n$, max cost
Details for (Greedy) Buy Games

Max # of steps until convergence, MAX version

- \(m=n, a=n/10, \) max cost
- \(m=n, a=n/4, \) max cost
- \(m=n, a=n, \) max cost
- \(m=4n, a=n/10, \) max cost
- \(m=4n, a=n/4, \) max cost
- \(m=4n, a=n, \) max cost

Graph showing the relationship between steps and agents for different configurations.

Agents vs. Steps graph with markers for each condition.
Details for (Greedy) Buy Games

Max # of steps until convergence, MAX version

- \(m=n, a=n/10\), max cost
- \(m=n, a=n/4\), max cost
- \(m=n, a=n\), max cost
- \(m=4n, a=n/10\), max cost
- \(m=4n, a=n/4\), max cost
- \(m=4n, a=n\), max cost
- \(m=n, a=n/10\), random
- \(m=n, a=n/4\), random
- \(m=n, a=n\), random
Details for (Greedy) Buy Games

Max # of steps until convergence, MAX version

m=n, a=n/10, max cost
m=n, a=n/4, max cost
m=n, a=n, max cost
m=4n, a=n/10, max cost
m=4n, a=n/4, max cost
m=4n, a=n, max cost
m=n, a=n/10, random
m=n, a=n/4, random
m=n, a=n, random
m=4n, a=n/10, random
m=4n, a=n/4, random
m=4n, a=n, random
Details for (Greedy) Buy Games

Max # of steps until convergence, MAX version

- $m=n$, $a=n/10$, max cost
- $m=n$, $a=n/4$, max cost
- $m=n$, $a=n$, max cost
- $m=4n$, $a=n/10$, max cost
- $m=4n$, $a=n/4$, max cost
- $m=4n$, $a=n$, max cost
- $m=n$, $a=n/10$, random
- $m=n$, $a=n/4$, random
- $m=n$, $a=n$, random
- $m=4n$, $a=n/10$, random
- $m=4n$, $a=n/4$, random
- $m=4n$, $a=n$, random

$f(n) = 8n$
Our Results

Max-Swap Game
- on trees: poly-FIPG, at most $O(n^3)$ steps, speed-up to $O(n \log n)$
- in general: $\not\in$ FIPG via best response cycle

Asymmetric SG
- SG-results on trees carry over for Sum and Max
- in general: $\text{Sum} \not\in \text{WAG}$, $\text{Max} \not\in \text{FIPG}$
- solve open problem [SPAA'11]
- promising empirical results

Greedy Buy Game
- Sum: best response cycle
- Max: best response cycle
- Sum and $\text{Max} \not\in \text{WAG}$ on general host graphs
- extensive simulations show convergence in $< 8n$ steps

Buy Game
- Sum: best response cycle
- Max: best response cycle
- Sum and $\text{Max} \not\in \text{WAG}$ on general host graphs
- bilateral Buy Game: $\text{Sum} \not\in \text{WAG}, \text{Max} \not\in \text{FIPG}$
Open Problems

- The Sum-(G)BG and Max-(G)BG are not weakly acyclic.
- Give best response cycle where in every step exactly one agent is unhappy and this agent has exactly one improving move.
- Open Problem: Why do dynamics in (Greedy) Buy Games converge so fast?
- Open Problem: Is convergence to approximate equilibrium guaranteed? If so, for which approx-factor?
Open Problems

Conjecture

The $\text{SUM-}(G)BG$ and $\text{MAX-}(G)BG$ are not weakly acyclic.
Open Problems

Conjecture

The \textit{Sum-}-(G)BG and \textit{Max-}-(G)BG are not weakly acyclic.

- give best response cycle where in every step exactly one agent is unhappy and this agent has exactly one improving move
Open Problems

Conjecture

The $\text{SUM-}(G)BG$ and $\text{MAX-}(G)BG$ are not weakly acyclic.

- give best response cycle where in every step exactly one agent is unhappy and this agent has exactly one improving move

Open Problem

Why do dynamics in (Greedy) Buy Games converge so fast?
Open Problems

Conjecture

The $\text{SUM-}(G)BG$ and $\text{MAX-}(G)BG$ are not weakly acyclic.

- give best response cycle where in every step exactly one agent is unhappy and this agent has exactly one improving move

Open Problem

Why do dynamics in (Greedy) Buy Games converge so fast?

Open Problem

Is convergence to approximate equilibrium guaranteed? If so, for which approx-factor?