Malte Borgmann

Institut für Informatik Humboldt-Universität zu Berlin

November 16, 2022

Gliederung

- Die Poincaré Vermutung
 - Henri Poincrré
 - Die Vermutung
- 2 Grundlagen der Topologie
 - Idee
 - Formen
- 3 Fundamentalgruppe
- 4 Abspann

Henri Poincaré

Die Poincaré Vermutung

Französischer Mathematiker und Physiker

Henri Poincrré

Henri Poincaré

Die Poincaré Vermutung

- Französischer Mathematiker und Physiker
- "entdeckte" vor Einstein

$$E = mc^2$$

Henri Poincaré

Die Poincaré Vermutung

- Französischer Mathematiker und Physiker
- "entdeckte" vor Einstein

$$E = mc^2$$

Mitbegründer und Wegweiser der (algebraischen) Topologie [2] Die Vermutung

ŏo

Wortlaut

Poincaré Vermutung

Jede einfach zusammenhängende, kompakte, unberandete, 3-dimensionale Mannigfaltigkeit ist homöomorph zur 3-Sphäre.

Die Vermutung

Erläuterung

Die Poincaré Vermutung

Poincaré Vermutung

Jede einfach zusammenhängende, kompakte, unberandete, 3-dimensionale Mannigfaltigkeit ist homöomorph zur 3-Sphäre.[3]

ŏ•

Erläuterung

Die Poincaré Vermutung

Poincaré Vermutung

Jede einfach zusammenhängende, kompakte, unberandete, 3-dimensionale Mannigfaltigkeit ist homöomorph zur 3-Sphäre.[3]

■ 3-dimensionale Manigfaltigkeit \approx lokal so wie der \mathbb{R}^3

Die Vermutung

ŏ•

Erläuterung

Die Poincaré Vermutung

Poincaré Vermutung

Jede einfach zusammenhängende, kompakte, unberandete, 3-dimensionale Mannigfaltigkeit ist homöomorph zur 3-Sphäre.[3]

- 3-dimensionale Manigfaltigkeit \approx lokal so wie der \mathbb{R}^3
- kompakt sowie unberandet technische Vorraussetzungen

ŏ•

Erläuterung

Die Poincaré Vermutung

Poincaré Vermutung

Jede einfach zusammenhängende, kompakte, unberandete, 3-dimensionale Mannigfaltigkeit ist homöomorph zur 3-Sphäre.[3]

- 3-dimensionale Manigfaltigkeit \approx lokal so wie der \mathbb{R}^3
- kompakt sowie unberandet technische Vorraussetzungen
- einfach zusammenhängend im zweiten Teil des Vortrags

ŏ•

Erläuterung

Die Poincaré Vermutung

Poincaré Vermutung

Jede einfach zusammenhängende, kompakte, unberandete, 3-dimensionale Mannigfaltigkeit ist homöomorph zur 3-Sphäre.[3]

- 3-dimensionale Manigfaltigkeit \approx lokal so wie der \mathbb{R}^3
- kompakt sowie unberandet technische Vorraussetzungen
- einfach zusammenhängend im zweiten Teil des Vortrags
- homöomorph im folgenden Teil des Vortrags

Was wollen wir?

■ Topologie ist die mathematische Lehre von Formen im Raum

Was wollen wir?

- Topologie ist die mathematische Lehre von Formen im Raum
- fundamental verschiedene Formen unterscheiden
- Eigenschaften von Formen verstehen und charakterisieren

Was meinen wir mit Formen?

■ Punktmengen mit einer "Idee" von Nähe

Was meinen wir mit Formen?

- Punktmengen mit einer "Idee" von Nähe
- lacktriangle gröbst vereinfacht Teilmengen von \mathbb{R}^n

Was meinen wir mit Formen?

- Punktmengen mit einer "Idee" von Nähe
- lacksquare gröbst vereinfacht Teilmengen von \mathbb{R}^n

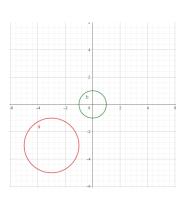
Definition

Ein **topologischer Raum** besteht aus einer Menge M sowie einer Menge $\mathcal{T}\subseteq 2^M$ der sogenannten *Topologie* von M

Formen

Das Problem

"gleiche" Formen sind nach dieser Definition fast nie gleich



Die Lösung

Formen

Die Lösung

Homöomorphismen

Zwei Topologische Räume $(X,\mathbb{T}),(Y,\mathbb{T}')$ sind homöomorph genau dann wenn es eine *stetige, bijektive* Abbildung $f:X\longrightarrow Y$ gibt, deren Inverse f^{-1} ebenfalls stetig ist.

Die Lösung

Homöomorphismen

Zwei Topologische Räume $(X,\mathbb{T}),(Y,\mathbb{T}')$ sind homöomorph genau dann wenn es eine *stetige*, *bijektive* Abbildung $f:X\longrightarrow Y$ gibt, deren Inverse f^{-1} ebenfalls stetig ist.

Homöomorphe topologische Räume sind "gleich".

Die Lösung

Homöomorphismen

Zwei Topologische Räume $(X,\mathbb{T}),(Y,\mathbb{T}')$ sind homöomorph genau dann wenn es eine *stetige*, *bijektive* Abbildung $f:X\longrightarrow Y$ gibt, deren Inverse f^{-1} ebenfalls stetig ist.

Homöomorphe topologische Räume sind "gleich". Es ist sehr schwer zu testen, ob topologische Räume gleich sind.

- kein seltenes Problem, keine seltene Lösung
- Beispiele:

- kein seltenes Problem, keine seltene Lösung
- Beispiele: Vektorräume und die Dimension

- kein seltenes Problem, keine seltene Lösung
- Beispiele: Vektorräume und die Dimension, Graphen und Zusammenhangskomponenten

Invarianten

- kein seltenes Problem, keine seltene Lösung
- Beispiele: Vektorräume und die Dimension, Graphen und Zusammenhangskomponenten, Matritzen und nicht-Null Determinanten
- für topologische Räume zum Beispiel Zusammenhangskomponenten

Fundamentalgruppe

Gegeben ein topologischer Raum X und $p \in X$ einem Punkt in X definieren wir die Fundamentalgruppe $\pi_1(X, p) := (p \stackrel{\gamma}{\leadsto} p)_{/h}[3]$

Dabei ist $p \stackrel{\gamma}{\leadsto} p$ ein (stetiger) Pfad vom Punkt p zu sich selbst durch den topologischen Raum.

h die sogenannte Homotopie ist eine Äquivalenzrelation unter der stetig ineinander umwandelbare Pfade äguivalent sind.

Die Fundamentalgruppe

Fundamentalgruppe

Gegeben ein topologischer Raum X und $p \in X$ einem Punkt in X definieren wir die Fundamentalgruppe $\pi_1(X, p) := (p \stackrel{\gamma}{\leadsto} p)_{/h}[3]$

Fundamentalgruppe

Dabei ist $p \stackrel{\gamma}{\leadsto} p$ ein (stetiger) Pfad vom Punkt p zu sich selbst durch den topologischen Raum.

h die sogenannte Homotopie ist eine Äquivalenzrelation unter der stetig ineinander umwandelbare Pfade äguivalent sind.

Ist $\pi_1(x, p) = 0$ nennen wir X einfach zusammenhängend.

Lesenswerte Quellen

- [1] Prof. Dr. Helga Baum. Analysis 1 und 2. 2015. URL: https://www.mathematik.hu-berlin.de/-baum/Skript/Analysis-LA-14-15-Summe.pdf (visited on 11/09/2022).
- [2] Henri Pointcaré. Papers on Topology. Analysis Situs and Its Five Supplements. Trans. by John Stillwell. 2009. URL: https://www.maths.ed.ac.uk/~v1ranick/papers/poincare2009.pdf (visited on 11/09/2022).
- [3] Prof. Dr. Chris Wendl. *Topology I and II*. 2021. URL: https://www.mathematik.hu-berlin.de/~wendl/Winter2018/Topologie2/lecturenotes.pdf (visited on 11/09/2022).