
A new one-sided variable inspection plan
for continuous distribution functions

Wolfgang Kössler

Summary

The ordinary variable inspection plans rely on the normality of the underlying
populations. However, often this assumption is vague or even not satisfied.

A new variable inspection plan is constructed that can be applied for con-
tinuous distributions with medium to long tails and that requires relatively
moderate sample sizes only.

The main idea is that nonconforming items occur in the tails of the dis-
tribution. The tails are approximated by a generalized Pareto distribution
and the fraction defective is estimated by the Maximum-Likelihood method.

Keywords: Attribute sampling plan, Extreme value distribution, General-
ized Pareto distribution, Maximum-Likelihood estimation, Threshold.
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1 Introduction

We consider a lot of units each having a quality characteristic X with a
continuous cummulative distribution function (c.d.f.) F . Given a sample
X1, ..., Xn a decision is to be made whether the lot is to be accepted or
not. Assuming that there is only an upper specification limit U the fraction
defective p of the lot is defined by

p = P (X > U) = 1 − F (U).

If the upper tail of the c.d.f. F is not too small, reasonable estimates p̂ of
p based on the sample can be constructed. Our variable inspection plan is
then defined as follows: If p̂ ≤ c, c ∈ (0, 1), the lot will be accepted, else it
will be rejected. The operating characteristic (OC)

Ln,c(p) := Pp(p̂ ≤ c), 0 < p < 1,

of the inspection plan constructed in this paper depends on the the underlying
c.d.f. but not on the location and scale parameters.

Variable inspection plans are computed by minimizing the sample size n
while meeting the 2-point conditions

Ln,c(p1) ≥ 1 − α and (1)

Ln,c(p2) ≤ β (2)

(0 < p1 < p2 < 1, 0 < β < 1 − α).
For a normally distributed X the Lieberman-Resnikoff plan (LR-plan,

cf. Resnikoff (1952), Lieberman and Resnikoff (1955)) can be applied.
In the case of double specification limits, exact Maximum-Likelihood plans
(ML-plans) are developed by Bruhn-Suhr and Krumbholz (1990). The
OC of the ML-plan and the LR-plan are given by Bruhn-Suhr and Krumb-

holz (1990, 1991). Note that in our case of only one specification limit the
LR-plan and the ML-plan are equivalent.

However, these inspection plans are very sensitive with respect to devi-
ations from the normal distribution assumption (cf. e.g. Masuda (1978),
Schneider and Wilrich (1981), Kössler and Lenz (1995, 1997)).

This problem gives rise to the question what should be done in the case
of a non-normal or even unknown c.d.f.? One way is to perform sampling
inspection by attributes, where an item i is considered to be nonconforming
if and only if Xi > U . The OC is easy to compute (cf. Uhlmann (1982),
ch.4.2.1). However, this method requires relatively large sample sizes.

In this paper we construct inspection plans that do not rely on the nor-
mality assumption and that require relatively moderate sample sizes only.
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The main idea is that nonconforming items i occur in the tails of the un-
derlying c.d.f., namely Xi > U = F−1(1 − p) with the (unknown) fraction
defective p. Additionally, items Xi with Xi ≈ U,Xi < U , can be considered
suspicious. They also should be considered in inspection plans.

The tails of a continuous c.d.f. can be approximated by a generalized
Pareto distribution (GPD) as explained in Section 2. The approximation
error is analysed in Section 3. In Section 4, estimates of the parameters of
the GPD are used to obtain estimates of the fraction defective. In this paper
we use Maximum-Likelihood estimators.

In Section 5 the asymptotic normality of these estimators is used to com-
pute inspection plans that meet the conditions (1) and (2) at least approxi-
mately.

Simulation studies performed in Section 6 show that this method works
well even for relatively small sample sizes. In Section 7 the new sampling
plan is compared with corresponding attribute sampling plans.

2 Some preliminaries from the extreme value

distribution theory

At first, assume that F is known. Let X(i) be the i-th order statistic of
the sample X1, . . . , Xn of size n. There are only 3 possible types of limiting
c.d.f.s. for the normalized maximum (X(n)−bn)/an. These, along with choices
for the centering and normalizing constants an and bn are given as follows
(take γ > 0, I denotes the indicator function and F−1 the quantile function):

G1,γ(x) := exp(−x−γ) · I(x > 0),

bn = 0, an = F−1(1 − 1

n
),

G2,γ(x) := exp(−(−x)γ) · I(x < 0) + I(x ≥ 0),

bn = sup{x : F (x) < 1} <∞, an = bn − F−1(1 − 1

n
),

G3,γ(x) := exp(−exp(−x)) =: G3(x),

bn = F−1(1 − 1

n
), an = h(bn),

h(u) =

∫
∞

u

(1 − F (v))dv/(1 − F (u)),

when the last integral exists (cf. Reiss (1989), Ch. 5).
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Remarks:

1. The constants an and bn can be replaced by other constants a′n and b′n
with a′n

an
→ 1 and b′n−bn

an
→ 0.

2. The c.d.f. F is said to be in the domain of attraction of Gi,γ if the
limiting c.d.f. of the maximum X(n) is Gi,γ, i = 1, 2, 3. The three types of
domains of attraction are denoted by Φγ , Ψγ and Λ, respectively. The c.d.f.s
G1,γ , G2,γ and G3 = G3,γ are well-known as the Fréchet, “negative” Weibull
and Gumbel c.d.f.

Definition: The generalized Pareto c.d.f. (GPD) is defined by

GPD(y; σ, k) :=

{
1 − (1 − ky

σ
)

1

k if k 6= 0

1 − e−
y
σ if k = 0,

where σ > 0. The range of y is given by 0 < y < ∞ if k ≤ 0 and 0 < y < σ
k

if k > 0 (cf. Smith (1987), p. 1175).

Let t be an arbitrary real value of the support of the c.d.f. F and denote
by xo := sup{x : F (x) < 1} the upper endpoint of F , where xo = ∞ is
admissable.

The conditional c.d.f. Ft(y) of X− t conditioned under X > t is given by

Ft(y) =
F (t+ y) − F (t)

1 − F (t)
, (3)

where 0 < y < xo − t. If t → xo this distribution converges uniformly to a
GPD with certain parameters σ and k as was shown by Pickands (1975),
Theorem 7, i.e.

lim
t→xo

‖Ft(y) −GPD(y; σ(t), k)‖∞ = 0.

To obtain the parameters k and σ we follow the arguments of Falk (1987).
Since F n(x) is the c.d.f. of X(n) we have for n→ ∞:

F n(anx+ bn) → G(x) iff

n logF (anx+ bn) → logG(x) iff

n(1 − F (anx+ bn)) → − logG(x) iff

1 − F (anx+ bn)

1 − (1 + log(G
1

n (x)))
→ 1.

Now

1 + logGi,γ(x) =





1 − x−γ if i = 1

1 − (−x)γ if i = 2

1 − e−x if i = 3

=: Wi,γ.
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Hence,

1 + logG
1

n

i,γ(x) =





W1,γ(n
1

γ x) if i = 1

W2,γ(n
1

−γ x) if i = 2

W3,γ(x+ log n) if i = 3

=: W(n)(x).

Given an, bn, t > 0, let xt = t−bn
an

. Then

1 − F (t) = 1 − F (anxt + bn)

∼





(n
1

γ xt)
−γ if i = 1

(−n−
1

γ xt)
γ if i = 2

e−(xt+logn) if i = 3.

=
1

n
·





( t
an

)−γ if i = 1

(− t−bn
an

)γ if i = 2

e−( t−bn
an

) if i = 3,

where the symbol ∼ denotes asymptotic equivalence. Therefore,

Ft(y) = 1 − 1 − F (t+ y)

1 − F (t)

∼ 1 −





(1 + y

t
)−γ if i = 1

(1 + y

t−bn
)γ if i = 2

e−
y

an if i = 3

= GPD(y; σ, k),

where

k =





− 1
γ

if i = 1
1
γ

if i = 2

0 if i = 3,

(4)

σ =





−kt if i = 1

−k(t− xo) if i = 2

h(t) if i = 3.

(5)

If i = 2 then bn = xo <∞. If i = 3 then n is chosen such that bn ≤ t < bn+1

and an = h(t), where the function h is defined as above.
If F is a GPD with parameters τ and k, τ > kt, then Ft is also a GPD,

now with parameters σ(t) = τ − kt and k. Special cases are the Pareto,
exponential, triangle and uniform.
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3 Approximation of the fraction defective p

Now we use the GPD to approximate the fraction defective p and analyse
the approximation error. Let t be fixed, t < U = F−1(1 − p); y = U − t
and ∆t(y) = Ft(y) −GPD(y; σ(t), k), where σ and k are defined by (5) and
(4). Then we obtain from (3):

1 − p = F (U) = F (t) + Ft(y) · (1 − F (t))

and hence,

p = (1 − F (t))(1 − Ft(y)) = (1 − F (t)) · (1 −GPD(y; σ, k) + ∆t(y)).

If we use theGPD-approximation we estimate instead of p the approximation

pF = (1 − F (t)) ·
{

(1 − ky

σ
)

1

k if k 6= 0

e−
y
σ if k = 0,

with the (absolute) error

p− pF = ∆t(y) · (1 − F (t)).

If t is an (1 − q)-quantile of the underlying c.d.f. F with q > p, then
pF = q · (1 −GPD(y; σ, k)) and p− pF = ∆t(y) · q.

For some c.d.fs., e.g. for the Fréchet, i.e. F (x) = e−x
−γ

, γ > 0, the
relative error is small, p−pF

p
· 100% ≤ 10% in almost all cases of parameters γ

and fraction defectives p, p ≤ 0.2. For some other distributions, e.g. for the
normal, these approximations are worse (cf. Table 2).

But this is not the problem. We are more interested in an approximation
for finite, fixed t. For fixed t the parameters σ and k given from the extreme
value distribution theory may not be the best. This was already realized
by DuMouchel (1983) who obtained “optimal” values for k as solutions
from Maximum-Likelihood (ML) equations in the GPD-model. He choosed
t = F−1(0.9) for a given c.d.f. F and constructed pseudodata by xj =
F−1(0.9000 + j · 0.0001), j = 0, . . . , 999.

We use this idea with some modifications and additions. We choose the
smaller value of t = F−1(0.8), pseudodata xj = F−1(0.8 + j · 0.2/N), j =
0, . . . , N − 1, where N is the size of the pseudosample. The solutions of the
ML-equations are called pseudo-ML-estimates. They result in estimates p̂F
of pF . The estimated relative approximation errors êrr(p, F ) = p−p̂F

p
· 100%

are also computed for some p < 0.2. For N = 2000 the results are presented
in Tables 1 and 2.
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Table 1: The parameters σ and k “estimated” by ML compared with that
from the asymptotic theory.

pseudo ML-estimates asymptotic values
c.d.f. σ k σ k
Pareto (1) 5.016 -0.993 5.000 -1.000
Pareto (1.5) 1.960 -0.659 1.949 -0.667
Pareto (2) 1.121 -0.493 1.118 -0.500
Pareto (5) 0.275 -0.196 0.276 -0.200
Cauchy 1.744 -0.948 1.376 -1.000
Fréchet(1) 5.029 -0.992 4.481 -1.000
Fréchet(1.5) 2.021 -0.647 1.812 -0.667
Fréchet(2) 1.173 -0.477 1.058 -0.500
Fréchet(5) 0.296 -0.169 0.270 -0.200
Exponential 1.005 0.008 1.000 0.000
Logistic 1.182 0.062 1.116 0.000
Normal 0.663 0.192 0.559 0.000

From the entries for the Pareto and for the exponential distribution in
table 1 it can be observed that even for “ideal” data and large sample sizes
the ML estimates of σ and k have a bias. But for N = 2000 this bias is
small, except perhaps for the normal and Cauchy, resulting in small relative
errors, err(p, F ) ≤ 7% for all distributions considered and all p with p ∈
{0.005, 0.01, 0.05, 0.1, 0.15} (cf. Table 2). If p ≥ 0.05 or if the c.d.f. is not
normal or Cauchy, these errors are much smaller. If we choose N = 20000 or
N = 200 the differences between the “optimal” and the asymptotic σ and k,
will become smaller respectively larger.

This way the fraction defective is approximated by using the GPD. Fur-
thermore, it is shown that for a suitably chosen, fixed t the approximation
error is relatively small.

4 Estimation of the fraction defective p in the

GPD-model

Let t be a threshold, y = U−t and Fn the empirical c.d.f. of the sample. Now
assume that Ft is GPD(·; σ, k) with unknown σ and k, k < 0.5, i.e. the un-
known F has not too short tails. For comparison, if F is a triangle c.d.f. then
k = 0.5. In the context of quality control all interesting distributions satisfy
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Table 2: “Estimated” relative errors p−p̂F

p
· 100% in the approximation of Ft

by GPD

p
c.d.f. 0.005 0.01 0.05 0.1 0.15
Pareto(1) -1.578 -1.124 -0.208 0.023 0.052
Pareto(1.5) -1.808 -1.178 -0.053 0.139 0.108
Pareto(2) -2.420 -1.647 -0.271 0.015 0.050
Pareto(5) -3.109 -2.266 -0.720 0.277 0.093
Cauchy -5.541 -2.593 1.105 0.255 0.403
Fréchet(1) -1.725 -1.188 0.169 0.032 0.039
Fréchet(1.5) -2.393 -1.155 0.242 0.109 -0.024
Fréchet(2) -2.845 -1.256 0.206 -0.044 -0.152
Fréchet(5) -3.182 -0.944 0.291 -0.257 -0.346
Exponential 1.864 1.511 0.696 -0.348 -0.144
Logistic -0.722 2.509 1.130 -0.794 -0.972
Normal 5.475 6.926 0.715 -1.652 -1.465

this condition.
Let k̂ and σ̂ be consistent estimators of k and σ, respectively, in the

GPD-model. Then

p̂o = (1 − Fn(t)) ·
{

(1 − k̂y

σ̂
)

1

k̂ if k̂ 6= 0

e−
y
σ̂ if k̂ = 0

(6)

is a consistent estimator of p. Now specify

t = X(n−m) (7)

where m := d(n + 1)qe with some q, 0 < q < 1, and let dAe denote the
smallest integer greater than or equal to A. Then

p̂ = q ·
{

(1 − k̂y

σ̂
)

1

k̂ if k̂ 6= 0

e−
y
σ̂ if k̂ = 0

(8)

is also a consistent estimate of p.
Let yj = X(n−m+j) − t, j = 1, . . . , m, Y = (y1, . . . , ym) with t defined

by (7).

8



4.1 The ML-estimation

The ML estimates k̂ML and σ̂ML of k and σ, respectively, in the GPD-model
are given by argmaxσ,kl(Y; σ, k), where

l(Y; σ, k) =

{
−m log σ + ( 1

k
− 1)

∑m
j=1 log(1 − kyj

σ
) if k 6= 0

−m log σ − ∑m

j=1
yj

σ
if k = 0

is the log-likelihood of Y. Since the ML-estimates k̂ML and σ̂ML are consis-
tent, p̂ given by (8) is also consistent.

Note that the estimates k̂ML and σ̂ML are invariant with respect to
changes of the location parameters of F .

Recall that xo = sup{x : F ′(x) > 0}. Under certain conditions on the
rates of convergence of t → xo, U → xo if n → ∞, the ML-estimate p̂ML is
asymptotically normally distributed with expectation zero:

Z :=
√
m
p̂ML − p

p
→ N(0, V ). (9)

The details on the rates of convergence are given in Smith (1987). Since
they are more of theoretical interest they are omitted here.

To obtain a closed relation for V dependent on F we follow the arguments
of Smith (1987), Ch. 8, 9.

At first, assume that k 6= 0, i.e. F is attracted by a Fréchet- or “nega-
tive” Weibull-c.d.f. Let z, z > 0, be fixed and pm, qm, pm → 0, qm →
0, 0 < pm < qm be defined such that

z =
F−1(1 − pm)

F−1(1 − qm)

for every m, m = 1, 2, . . ..
Denote the nominator and the denominator of the last fraction by Um

and Tm, respectively. With υm := Um− Tm we obtain z = 1 + υm

Tm
= 1− kυm

σm
,

where σm is given by (5). Hence z is defined in the same way as in Smith

(1987). The asymptotic variance V = VF for pm, qm → 0 is then given by

VF = 1 + cTSc (10)

where

cT =

(
−1

k
(
1

z
− 1),

log z

k2
+

1

k2
(
1

z
− 1)

)
(11)
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and

S = (1 − k)

(
2 1
1 1 − k

)
, (12)

cf. Smith (1987), Ch. 8.
Now assume that k = 0 (F ∈ Λ), i.e. F is attracted by a Gumbel c.d.f.

Let ζ, ζ > 0 be fixed, ψ(T ) = 1−F (T )
f(T )

, where f is the density corresponding
to F and pm, qm, pm → 0, qm → 0, 0 < pm < qm be defined such that

ζ =
F−1(1 − pm) − F−1(1 − qm)

ψ(F−1(1 − qm))

for every m = 1, 2 . . ..
Hence, ζ = Um−Tm

ψ(Tm)
= υm

ψ(Tm)
is also defined in the same way as in Smith

(1987), Ch. 9. The asymptotic variance V = VF for pm, qm → 0, is then given
by

VF = 1 + 2ζ2 − ζ3 +
ζ4

4
, (13)

cf. Smith (1987), Theorem 9.5. Following the derivation of Smith (1987),
Ch. 8, we see that the asymptotic variance is also represented by

VF,qm =

{
1 − qm + cTSc if k 6= 0

1 − qm + 2ζ2 − ζ3 + ζ4

4
if k = 0.

(14)

This form yields a better approximation to the variance of Z.
The asymptotic variance depends on qm, but essentially on the choice of z

and ζ , respectively. Recall that p = 1−F (U) is the fraction nonconforming.
For given q, q > p, let T be the (1 − q)-quantile of F , i.e. q = 1 − F (T ).
Hence, we can define z and ζ by

z =
U

T
=
F−1(1 − p)

F−1(1 − q)
(15)

and

ζ =
U − T

ψ(T )
=
F−1(1 − p) − F−1(1 − q)

ψ(F−1(1 − q))
, (16)

respectively.
In the following we use the representation VF,q given by (14), where c,S, z,

and ζ are defined by (11), (12), (15) and (16), respectively. In Table 3 some
of these variances are presented.

The entries on the left hand side of this table denote the c.d.f., eventu-
ally with some shape parameter included in parentheses. The abbreviation
“neg.Weibull” denotes the “negative” Weibull c.d.f.
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Table 3: The asymptotic variances VF,q of p̂ML given by (14)
p

0.01 0.05 0.1
q q q

type c.d.f. 0.2 0.1 0.3 0.2 0.1 0.3 0.2
Φγ Pareto(1) 13.38 6.96 3.96 2.76 1.66 2.07 1.56

Pareto(1.5) 13.43 6.81 3.92 2.80 1.66 2.12 1.56
Pareto(2) 13.33 6.70 3.91 2.82 1.66 2.14 1.56
Pareto(5) 12.75 6.47 3.92 2.88 1.62 2.16 1.52
Cauchy 15.18 7.20 5.84 3.13 1.70 2.81 1.72
Fréchet(1) 14.66 7.30 4.62 2.98 1.70 2.30 1.64
Fréchet(1.5) 14.82 7.15 4.54 3.01 1.70 2.34 1.65
Fréchet(2) 14.76 7.03 4.51 3.03 1.70 2.37 1.65
Fréchet(5) 14.17 6.77 4.46 3.08 1.67 2.41 1.62

Ψγ neg.Weibull(2.2) 10.58 6.42 4.49 3.01 1.45 2.24 1.39
neg.Weibull(2.5) 10.83 6.42 4.50 3.05 1.48 2.28 1.43
neg.Weibull(3) 11.23 6.42 4.51 3.09 1.51 2.33 1.46
neg.Weibull(5) 12.10 6.46 4.49 3.12 1.57 2.38 1.52

Λ exponential 12.00 6.32 3.95 2.90 1.59 2.15 1.49
logistic 7.92 5.58 3.01 2.57 1.55 1.84 1.41
normal 5.13 4.28 2.59 2.31 1.50 1.71 1.36
Weibull(1.2) 9.04 5.60 3.49 2.72 1.56 2.02 1.45
Weibull(1.5) 7.11 5.02 3.12 2.56 1.53 1.90 1.42
Weibull(2) 5.82 4.55 2.81 2.41 1.51 1.80 1.39
Weibull(3) 4.91 4.16 2.56 2.28 1.49 1.70 1.35
lognormal(0.3) 8.31 5.56 3.21 2.63 1.55 1.92 1.43
lognormal(0.5) 13.08 6.94 3.83 2.90 1.60 2.09 1.48
lognormal(0.8) 32.45 10.66 5.13 3.40 1.66 2.38 1.56
lognormal(1.0) 67.71 15.34 6.66 3.83 1.71 2.63 1.62
χ2

4 9.97 5.93 3.59 2.82 1.59 2.05 1.48
χ2

6 9.03 5.63 3.45 2.77 1.59 2.02 1.48
χ2

8 8.45 5.43 3.36 2.74 1.58 2.00 1.47
χ2

12 7.75 5.16 3.26 2.69 1.57 1.97 1.46
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From Table 3 we conclude that the relative differences between the vari-
ances are small if the fraction p/q is not too small (and perhaps if the c.d.f. is
not lognormal). Therefore we construct inspection plans using the asymp-
totic relation (9) with the variances computed from a Pareto(1)- distribution.

To do this we have to choose the (theoretical) threshold T or, equivalently,
the quantile q. Now the upper tolerance limit U is fixed and T has to be
smaller than U . A problem is that the asymptotics is valid if T → xo. On the
other hand, if m is large and the fraction defective p is small the asymptotic
relation (9) can be used.

4.2 The choice of t

Choosing the practical threshold t we have to consider the following facts:
On one hand the GPD-approximation works only if t < U . On the other
hand if t ≥ U a decision is to be made whether the lot is to be accepted or
not.

If t is an order statistic, say t = X(r), then we have

t ≥ U if and only if F−1(t) ≥ F−1(U)

if and only if U(r) ≥ 1 − p

if and only if p ≥ 1 − U(r) = 1 − s+ s− U(r),

where U(r) is the r-th order statistic of a random variable uniformly dis-
tributed on (0, 1). The distribution of U(r) can be reformulated using the
Binomial or the F-distribution. Let Bi(κ;n, s) be the binomial c.d.f. with
parameters n and s and Fν1,ν2(x) the c.d.f. of the F-distribution with (ν1, ν2)
degrees of freedom. Then we have

P (s− U(r) ≥ 0) = P (U(r) ≤ s) = Bi(n− r;n, 1 − s) =

= 1 − Fν1,ν2

(
r

n− r + 1
· 1 − s

s

)
=

= Fν2,ν1

(
n− r + 1

r
· s

1 − s

)
,

where ν1 = 2(n− r + 1) and ν2 = 2r.
Now let q be associated with r by r = b(n+1)(1−q)c, where bAc denotes

the largest integer less than or equal to A. Choosing s = 1 − p2, where p2 is
given from the 2-point condition (2), the relation t ≥ U implies p ≥ p2 with
probability at least Fν2,ν1(

q

1−q
· 1−p2

p2
) ≈ F2n(1−q),2nq(

q

1−q
· 1−p2

p2
). Consider this

as a function of p2 and q for different n. Looking at the shape of the function
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we see that for q ≥ p2 + 0.1 the probability of p > p2 conditioned on t > U
is greater than 0.9.

Therefore, if t ≥ U then p is large with high probability and the lot should
be rejected because of low quality.

This way, the choice of t = X(r), with r = b(n+ 1)(1− q)c and q = p2 + 0.1,
is sufficiently motivated.

Note that, for p2 → 0, we have q → 0.1, which seems to be sufficiently
small for using the asymptotic theory.

5 Determination of a new sampling plan

In the last section we have established a relation between the sample size n
and the threshold t. Given q > 0 define m by

m = n− b(n+ 1)(1 − q)c, (17)

i.e. for the estimation of the fraction defective only them largest observations
are used.

Since m is essential, the sampling plan is denoted by (n,m, c). An ap-
proximate OC of this sampling plan is given by the asymptotic distribution
of p̂ML. At first, assume that the underlying c.d.f. is a Pareto(1). Then the
variance V (p) is given by (14), (11) and (12) with k = −1.

To determine m and c meeting the two-point conditions (1) and (2) ap-
proximately we solve the system of equations

Pp1(p̂ < c) ≈ Φ(
√
m

c− p1

p1

√
V (p1)

) = 1 − α (18)

Pp2(p̂ < c) ≈ Φ(
√
m

c− p2

p2

√
V (p2)

) = β (19)

The (unique) solution (m′, c) of this system of equations is given by

m′ =
1

(p1 − p2)2
(p2

√
V (p2)Φ

−1(β) − p1

√
V (p1)Φ

−1(1 − α))2 (20)

c = p1 + Φ−1(1 − α)
p1

√
V (p1)√
m′

(21)
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Since m′ is generally not an integer, all the pairs (m,c) with m = dm′e and
c ∈ [cl, cr], where

cl = p1 + Φ−1(1 − α)
p1

√
V (p1)√
m

(22)

cr = p2 + Φ−1(β)
p2

√
V (p2)√
m

(23)

meet the two-point conditions approximately.
Given m and q the sample size n is determined by the solution of (17).

which is given by n = bm
q
c.

In such a way a new sampling plan (n,m, c) is obtained. It is given by

n = bm
q
c, m = dm′e where q = p2 + 0.1

and m′ and c are given by (20) and (21) . Note that V (p) is also dependent
on q. The approximate OC is given by

Ln,m,cML (p) = Φ(
√
m

c− p

p
√
V (p)

) (24)

Since the underlying c.d.f. is unknown, we use the variances V (p) given from
the Pareto(1) for all c.d.f.s.

In Table 4 the sampling plans (n,m, c) for 10 different 2-point conditions
are presented. For comparison the corresponding sample sizes nV and nA of
the LR-variable sampling plan and the attribute sampling plan, respectively,
are given in the last two columns of Table 4. (For the definition of c1, see
the next section.)

The examples 1,2,4,5,7 and 8 are adopted from Resnikoff (1952), Ta-
bles 3, 5 and 7. They result in “round” sample sizes nV for the LR-plan.
The computation of the sample sizes nA for the attribute sampling plan is
described in Uhlmann (1982), Ch.5.2.2.

From Table 4 it can be seen that the sample sizes for the new plan are
considerably less than that for the attribute sampling plan.

But how sensitive is the new plan with respect to deviations from the
Pareto(1)? This question is discussed in the next section.

6 Simulation studies

The method described to obtain variable sampling plans is based on the
asymptotic normality of the estimates p̂ with the variance V (p). The refer-
ence c.d.f. for computing V (p) is the Pareto(1).

14



Table 4: Sample sizes for the new and for the ordinary variable sampling
plans together with that for the attribute sampling plan.
Nr. p1 1 − α p2 β n m c c1 nV nA
1 0.0521 0.9500 0.1975 0.10 31 9 0.10845 0.1189 25 51
2 0.0634 0.9000 0.1975 0.10 34 10 0.11065 0.1204 25 50
3 0.0100 0.9000 0.0600 0.10 63 10 0.02398 0.0251 33 87
4 0.0100 0.9743 0.0592 0.10 82 13 0.02834 0.0294 50 110
5 0.0152 0.9000 0.0592 0.10 88 14 0.02956 0.0306 50 110
6 0.0100 0.9900 0.0600 0.10 88 14 0.03066 0.0317 61 130
7 0.0360 0.9500 0.0866 0.10 140 26 0.05806 0.0593 100 187
8 0.0406 0.9000 0.0866 0.10 145 27 0.05857 0.0598 100 187
9 0.0100 0.9900 0.0600 0.01 194 31 0.02398 0.0244 106 258
10 0.0100 0.9900 0.0300 0.10 362 47 0.02020 0.0204 205 469

To investigate whether the new sampling plan can be applied for moder-
ate sample sizes as well as for c.d.f.s different from the Pareto(1), simulation
studies are carried out. The OC is estimated and 0.95-confidence regions
are constructed at the points p1 and p2. The ten examples from Table 4
are investigated. The simulation size is M = 2000. The following c.d.f.s are
included in the simulation study: Pareto(1), Pareto(2), Cauchy, Fréchet(1),
Fréchet(2), normal, logistic, exponential and triangle. These c.d.f.s are ab-
breviated by P1, P2, CA, FR1, FR2, N, L, E and ∆ respectively.

To produce uniform random numbers the generator G2UI01 from the
program package NUMATH2, cf. PP NUMATH (1984), is used. This
random number generator is based on the algorithm vi+1 = vi·75 mod(231−
1), i = 1, 2, . . . , with normalizing on (0,1). The starting integer is generated
by the actual computer time.

Samples from a population with c.d.f. F are produced by the transfor-
mation x = F−1(u), u ∈ (0, 1). The computations are performed in FOR-
TRAN on an IBM 386 computer.

Some approximate 0.95−confidence intervals IdOC
= (A1, A2) are given in

Table 5.
First simulations show that the OC is, dependent on the sample size,

more or less shifted to the left. The reasons for this behaviour may be bias
and skewness in the estimation of p.

To compensate this property the acceptance number c is shifted to the
right by c1 := c ·(1+3/n). The new sampling plans (n, c1) are now considered
in the simulation study. The Table 6 contains the estimated OC-values at
the points p1 and p2 for the ten examples and the densities above.

For the Pareto(1) and the Fréchet(1) all the values p1, p2 are located in

15



Table 5: Approximate confidence intervals IdOC
for the OC dependent on ÔC

ÔC A1 A2 ÔC A1 A2

0.995 0.9919 0.9981 0.005 0.0019 0.0081
0.990 0.9856 0.9944 0.010 0.0056 0.0144
0.985 0.9797 0.9903 0.015 0.0097 0.0203
0.975 0.9682 0.9818 0.025 0.0182 0.0318
0.960 0.9514 0.9686 0.040 0.0314 0.0486
0.950 0.9404 0.9596 0.050 0.0404 0.0596
0.940 0.9296 0.9504 0.060 0.0496 0.0704
0.910 0.8975 0.9225 0.090 0.0775 0.1025
0.900 0.8869 0.9131 0.100 0.0869 0.1131
0.890 0.8763 0.9037 0.110 0.0963 0.1237

the corresponding confidence region. For the other densities there are some
examples with somewhat too small (1 − α)-values, and very few examples
with too large β-values. Large β-values occur only in cases of densities with
very large (Cauchy) or very small (triangle) tails. For the normal we have
some examples (6-10) with somewhat too small (1−α), whereas for the other
densities there are few examples with small (1 − α). Even for the Cauchy
the OC-curve is not far from the two points (p1, 1 − α) and (p2, β).

For illustration, Example 7 (cf. Table 4) is considered and three OC-
curves are presented in Figure 1. The continuous line is the curve of the
asymptotic OC Ln,m,cML (p) of the new sampling plan if the density is Pareto(1),
the dotted line is the worst case simulated OC-curve (here the worst case is
attained for the normal) and the dashed line is the OC-curve of the corre-
sponding attribute plan (n, cA) (cf. Section 7).

Comparing the results of the robustness study with that obtained for the
ML- or LR-variable sampling plans (cf. Kössler and Lenz (1995, 1997)),
the new variable sampling plan seems to be very promising.

7 Comparison of the new variable sampling

plans with attribute sampling plans

From the simulation study it can be seen that the two-point conditions are
satisfied in most cases and if not, then the OC-values do not differ much
from the nominal values. This is valid for all densities considered, although
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Table 6: Estimated OC at the points p1 and p2 for the new sampling plan
No. p1 1 − α P1 P2 C FR1 FR2 L N E ∆

p2 β
1 0.0521 0.95 .953 .944 .953 .955 .930∗ .947 .948 .942 .991

0.1975 0.10 .112 .066 .108 .100 .067 .107 .102 .093 .114∗

2 0.0634 0.90 .922 .896 .914 .912 .880∗ .909 .930 .903 .977
0.1975 0.10 .096 .062 .084 .106 .072 .096 .110 .095 .107

3 0.0100 0.90 .935 .926 .938 .940 .932 .923 .935 .935 .979
0.0600 0.10 .010 .086 .095 .099 .097 .098 .095 .109 .112∗

4 0.0100 0.974 .976 .983 .969 .977 .976 .966 .972 .968 .995
0.0592 0.10 .091 .093 .109 .092 .092 .098 .102 .082 .115∗

5 0.0150 0.90 .934 .934 .939 .931 .925 .911 .910 .922 .964
0.0592 0.10 .094 .070 .119∗ .099 .076 .082 .102 .087 .114∗

6 0.0100 0.99 .989 .984∗ .989 .991 .987 .984∗ .978∗ .981∗ .998
0.0600 0.10 .099 .090 .127∗ .109 .079 .094 .101 .106 .113

7 0.0360 0.95 .953 .935∗ .939 .945 .940 .925∗ .919∗ .929∗ .969
0.0866 0.10 .077 .071 .104 .093 .065 .074 .094 .093 .088

8 0.0406 0.90 .908 .880∗ .891 .904 .899 .877∗ .879∗ .869∗ .931
0.0866 0.10 .107 .063 .098 .099 .070 .084 .085 .088 .096

9 0.0100 0.99 .988 .992 .983∗ .986 .988 .986 .982∗ .986 .996
0.0600 0.01 .005 .003 .007 .006 .004 .005 .004 .003 .009

10 0.0100 0.99 .991 .989 .990 .991 .991 .986 .983∗ .986 .996
0.0300 0.10 .101 .112 .115∗ .104 .095 .090 .086 .091 .204∗

Remarks on Table 6:

1. 1−α-values are rounded down to three decimal digits, and β-values are
rounded up to three decimal digits.

2. The star (∗) indicates that the nominal OC-value is not in the confidence
region.
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Figure 1: OC-curves for example 7
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the new sampling plan was constructed for Pareto(1). This is illustrated in
Table 7 for the ten examples considered. In column simulated (1 − α) worst

case also the corresponding density is presented. The entry ! indicates that
the two-point condition is satisfied for all densities considered.

We assume that the sample size n is the term of interest, i.e. we are
interested in keeping n as small as possible or to obtain a steep OC for a
given n.

To further clarify the superiority of the new variable sampling plan over
the attribute plan we consider for fixed sample sizes n, fixed p1, p2 and β the
optimal attribute plan, i.e. the attribute plan maximizing (1 − α).

Recall that it is assumed that the sample is drawn from a continuous
population, meaning that the population is sufficiently large. Let cA be the
maximal number of nonconforming items in the sample that are accepted.
The OC of the attribute plan (n, cA) is given by

Ln,cA(p) =

cA∑

i=0

(
n

i

)
pi(1 − p)n−i = 1 −

∫ n−cA
cA+1

p
1−p

0

f2(cA+1),2(n−cA)(y) dy

= 1 − F2(cA+1),2(n−cA)(
n− cA
cA + 1

p

1 − p
),

where, again, Fν1,ν2(y) is the c.d.f. of the F-distribution with (ν1, ν2) degrees
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Table 7: Comparison of the new variable sampling plan with attribute plans
nominal new variable plan attribute plan

No. p1 p2 β 1 − α n m c simulated 1 − α cA 1 − αA

worst case
1 0.0521 0.1975 0.1 0.95 31 9 0.1189 0.93 (F2) 2 0.77
2 0.0634 0.1975 0.1 0.90 34 10 0.1204 0.88 (F2) 3 0.74
3 0.0100 0.0600 0.1 0.90 63 10 0.0251 ! 0 0.55
4 0.0100 0.0592 0.1 0.974 82 13 0.0294 ! 1 0.78
5 0.0150 0.0592 0.1 0.90 88 14 0.0396 ! 2 0.83
6 0.0100 0.0600 0.1 0.99 88 14 0.0317 0.978 (N) 2 0.92
7 0.0360 0.0866 0.1 0.95 140 26 0.0593 0.919 (N) 7 0.88
8 0.0406 0.0866 0.1 0.90 145 27 0.0598 0.867 (E) 7 0.76
9 0.0100 0.0600 .01 0.99 194 31 0.0244 0.982 (N) 4 0.96

10 0.0100 0.0300 0.1 0.99 362 47 0.0204 0.983 (N) 6 0.93

of freedom and fν1,ν2(y) is the corresponding density, (0 < cA < n) (cf.
Uhlmann (1982), (2.38)).

The relation Ln,cA(p2) ≤ β is equivalent to

p2 ≥
(cA + 1)F−1(1 − β; 2(cA + 1), 2(n− cA))

n− cA + (cA + 1)F−1(1 − β; 2(cA + 1), 2(n− cA))
, (25)

where F−1(1 − β; ν1, ν2) is the quantile function of the F-distribution with
(ν1, ν2) degrees of freedom (cf. Uhlmann (1982), Theorem 4.7).

The smallest number cA satisfying the condition (25) and the correspond-
ing (1 − αA) are given in the last two columns of Table 7.

The (1 − αA)-values are considerably smaller than the worst-case simu-
lated (1 − α). To illustrate this property for Example 7 (cf. Table 4) the
OC-curve for the attribute plan (n, cA) is included in Figure 1 (cf. the dashed
line).

For normally distributed populations, of course, the LR- or ML-sampling
plans are to be preferred. But usually, there is no exact information about
the distribution of the underlying population in practice.

If the underlying c.d.f. is continuous and not U-shaped, the new variable
sampling plan instead of an attribute plan should be applied.
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Institut für Informatik
Humboldt-Universität zu Berlin
Unter den Linden 6
D-10099 Berlin

21


